// Derived from Inferno utils/6c/reg.c // http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #include #include #include "gg.h" #include "opt.h" #define NREGVAR 32 /* 16 general + 16 floating */ #define REGBITS ((uint32)0xffffffff) static Reg* firstr; static int first = 1; int rcmp(const void *a1, const void *a2) { Rgn *p1, *p2; int c1, c2; p1 = (Rgn*)a1; p2 = (Rgn*)a2; c1 = p2->cost; c2 = p1->cost; if(c1 -= c2) return c1; return p2->varno - p1->varno; } static void setaddrs(Bits bit) { int i, n; Var *v; Node *node; while(bany(&bit)) { // convert each bit to a variable i = bnum(bit); node = var[i].node; n = var[i].name; bit.b[i/32] &= ~(1L<<(i%32)); // disable all pieces of that variable for(i=0; inode == node && v->name == n) v->addr = 2; } } } static char* regname[] = { ".AX", ".CX", ".DX", ".BX", ".SP", ".BP", ".SI", ".DI", ".R8", ".R9", ".R10", ".R11", ".R12", ".R13", ".R14", ".R15", ".X0", ".X1", ".X2", ".X3", ".X4", ".X5", ".X6", ".X7", ".X8", ".X9", ".X10", ".X11", ".X12", ".X13", ".X14", ".X15", }; static Node* regnodes[NREGVAR]; static void walkvardef(Node *n, Reg *r, int active); void regopt(Prog *firstp) { Reg *r, *r1; Prog *p; Graph *g; ProgInfo info; int i, z, active; uint32 vreg; Bits bit; if(first) { fmtinstall('Q', Qconv); exregoffset = D_R15; first = 0; } mergetemp(firstp); /* * control flow is more complicated in generated go code * than in generated c code. define pseudo-variables for * registers, so we have complete register usage information. */ nvar = NREGVAR; memset(var, 0, NREGVAR*sizeof var[0]); for(i=0; iopt = nil; return; } firstr = (Reg*)g->start; for(r = firstr; r != R; r = (Reg*)r->f.link) { p = r->f.prog; if(p->as == AVARDEF || p->as == AVARKILL) continue; proginfo(&info, p); // Avoid making variables for direct-called functions. if(p->as == ACALL && p->to.type == D_EXTERN) continue; r->use1.b[0] |= info.reguse | info.regindex; r->set.b[0] |= info.regset; bit = mkvar(r, &p->from); if(bany(&bit)) { if(info.flags & LeftAddr) setaddrs(bit); if(info.flags & LeftRead) for(z=0; zuse1.b[z] |= bit.b[z]; if(info.flags & LeftWrite) for(z=0; zset.b[z] |= bit.b[z]; } bit = mkvar(r, &p->to); if(bany(&bit)) { if(info.flags & RightAddr) setaddrs(bit); if(info.flags & RightRead) for(z=0; zuse2.b[z] |= bit.b[z]; if(info.flags & RightWrite) for(z=0; zset.b[z] |= bit.b[z]; } } for(i=0; iaddr) { bit = blsh(i); for(z=0; zaddr, v->etype, v->width, v->node, v->offset); } if(debug['R'] && debug['v']) dumpit("pass1", &firstr->f, 1); /* * pass 2 * find looping structure */ flowrpo(g); if(debug['R'] && debug['v']) dumpit("pass2", &firstr->f, 1); /* * pass 2.5 * iterate propagating fat vardef covering forward * r->act records vars with a VARDEF since the last CALL. * (r->act will be reused in pass 5 for something else, * but we'll be done with it by then.) */ active = 0; for(r = firstr; r != R; r = (Reg*)r->f.link) { r->f.active = 0; r->act = zbits; } for(r = firstr; r != R; r = (Reg*)r->f.link) { p = r->f.prog; if(p->as == AVARDEF && isfat(p->to.node->type) && p->to.node->opt != nil) { active++; walkvardef(p->to.node, r, active); } } /* * pass 3 * iterate propagating usage * back until flow graph is complete */ loop1: change = 0; for(r = firstr; r != R; r = (Reg*)r->f.link) r->f.active = 0; for(r = firstr; r != R; r = (Reg*)r->f.link) if(r->f.prog->as == ARET) prop(r, zbits, zbits); loop11: /* pick up unreachable code */ i = 0; for(r = firstr; r != R; r = r1) { r1 = (Reg*)r->f.link; if(r1 && r1->f.active && !r->f.active) { prop(r, zbits, zbits); i = 1; } } if(i) goto loop11; if(change) goto loop1; if(debug['R'] && debug['v']) dumpit("pass3", &firstr->f, 1); /* * pass 4 * iterate propagating register/variable synchrony * forward until graph is complete */ loop2: change = 0; for(r = firstr; r != R; r = (Reg*)r->f.link) r->f.active = 0; synch(firstr, zbits); if(change) goto loop2; if(debug['R'] && debug['v']) dumpit("pass4", &firstr->f, 1); /* * pass 4.5 * move register pseudo-variables into regu. */ for(r = firstr; r != R; r = (Reg*)r->f.link) { r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS; r->set.b[0] &= ~REGBITS; r->use1.b[0] &= ~REGBITS; r->use2.b[0] &= ~REGBITS; r->refbehind.b[0] &= ~REGBITS; r->refahead.b[0] &= ~REGBITS; r->calbehind.b[0] &= ~REGBITS; r->calahead.b[0] &= ~REGBITS; r->regdiff.b[0] &= ~REGBITS; r->act.b[0] &= ~REGBITS; } /* * pass 5 * isolate regions * calculate costs (paint1) */ r = firstr; if(r) { for(z=0; zrefahead.b[z] | r->calahead.b[z]) & ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]); if(bany(&bit) && !r->f.refset) { // should never happen - all variables are preset if(debug['w']) print("%L: used and not set: %Q\n", r->f.prog->lineno, bit); r->f.refset = 1; } } for(r = firstr; r != R; r = (Reg*)r->f.link) r->act = zbits; rgp = region; nregion = 0; for(r = firstr; r != R; r = (Reg*)r->f.link) { for(z=0; zset.b[z] & ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]); if(bany(&bit) && !r->f.refset) { if(debug['w']) print("%L: set and not used: %Q\n", r->f.prog->lineno, bit); r->f.refset = 1; excise(&r->f); } for(z=0; zact.b[z] | addrs.b[z]); while(bany(&bit)) { i = bnum(bit); rgp->enter = r; rgp->varno = i; change = 0; paint1(r, i); bit.b[i/32] &= ~(1L<<(i%32)); if(change <= 0) continue; rgp->cost = change; nregion++; if(nregion >= NRGN) { if(debug['R'] && debug['v']) print("too many regions\n"); goto brk; } rgp++; } } brk: qsort(region, nregion, sizeof(region[0]), rcmp); if(debug['R'] && debug['v']) dumpit("pass5", &firstr->f, 1); /* * pass 6 * determine used registers (paint2) * replace code (paint3) */ rgp = region; for(i=0; ivarno); vreg = paint2(rgp->enter, rgp->varno); vreg = allreg(vreg, rgp); if(rgp->regno != 0) { if(debug['R'] && debug['v']) { Var *v; v = var + rgp->varno; print("registerize %N+%lld (bit=%2d et=%2E) in %R\n", v->node, v->offset, rgp->varno, v->etype, rgp->regno); } paint3(rgp->enter, rgp->varno, vreg, rgp->regno); } rgp++; } if(debug['R'] && debug['v']) dumpit("pass6", &firstr->f, 1); /* * free aux structures. peep allocates new ones. */ for(i=0; iopt = nil; flowend(g); firstr = R; /* * pass 7 * peep-hole on basic block */ if(!debug['R'] || debug['P']) peep(firstp); /* * eliminate nops */ for(p=firstp; p!=P; p=p->link) { while(p->link != P && p->link->as == ANOP) p->link = p->link->link; if(p->to.type == D_BRANCH) while(p->to.u.branch != P && p->to.u.branch->as == ANOP) p->to.u.branch = p->to.u.branch->link; } if(debug['R']) { if(ostats.ncvtreg || ostats.nspill || ostats.nreload || ostats.ndelmov || ostats.nvar || ostats.naddr || 0) print("\nstats\n"); if(ostats.ncvtreg) print(" %4d cvtreg\n", ostats.ncvtreg); if(ostats.nspill) print(" %4d spill\n", ostats.nspill); if(ostats.nreload) print(" %4d reload\n", ostats.nreload); if(ostats.ndelmov) print(" %4d delmov\n", ostats.ndelmov); if(ostats.nvar) print(" %4d var\n", ostats.nvar); if(ostats.naddr) print(" %4d addr\n", ostats.naddr); memset(&ostats, 0, sizeof(ostats)); } } static void walkvardef(Node *n, Reg *r, int active) { Reg *r1, *r2; int bn; Var *v; for(r1=r; r1!=R; r1=(Reg*)r1->f.s1) { if(r1->f.active == active) break; r1->f.active = active; if(r1->f.prog->as == AVARKILL && r1->f.prog->to.node == n) break; for(v=n->opt; v!=nil; v=v->nextinnode) { bn = v - var; r1->act.b[bn/32] |= 1L << (bn%32); } if(r1->f.prog->as == ACALL) break; } for(r2=r; r2!=r1; r2=(Reg*)r2->f.s1) if(r2->f.s2 != nil) walkvardef(n, (Reg*)r2->f.s2, active); } /* * add mov b,rn * just after r */ void addmove(Reg *r, int bn, int rn, int f) { Prog *p, *p1; Adr *a; Var *v; p1 = mal(sizeof(*p1)); clearp(p1); p1->pc = 9999; p = r->f.prog; p1->link = p->link; p->link = p1; p1->lineno = p->lineno; v = var + bn; a = &p1->to; a->offset = v->offset; a->etype = v->etype; a->type = v->name; a->node = v->node; a->sym = linksym(v->node->sym); // need to clean this up with wptr and // some of the defaults p1->as = AMOVL; switch(simtype[(uchar)v->etype]) { default: fatal("unknown type %E", v->etype); case TINT8: case TUINT8: case TBOOL: p1->as = AMOVB; break; case TINT16: case TUINT16: p1->as = AMOVW; break; case TINT64: case TUINT64: case TPTR64: p1->as = AMOVQ; break; case TFLOAT32: p1->as = AMOVSS; break; case TFLOAT64: p1->as = AMOVSD; break; case TINT32: case TUINT32: case TPTR32: break; } p1->from.type = rn; if(!f) { p1->from = *a; *a = zprog.from; a->type = rn; if(v->etype == TUINT8) p1->as = AMOVB; if(v->etype == TUINT16) p1->as = AMOVW; } if(debug['R'] && debug['v']) print("%P ===add=== %P\n", p, p1); ostats.nspill++; } uint32 doregbits(int r) { uint32 b; b = 0; if(r >= D_INDIR) r -= D_INDIR; if(r >= D_AX && r <= D_R15) b |= RtoB(r); else if(r >= D_AL && r <= D_R15B) b |= RtoB(r-D_AL+D_AX); else if(r >= D_AH && r <= D_BH) b |= RtoB(r-D_AH+D_AX); else if(r >= D_X0 && r <= D_X0+15) b |= FtoB(r); return b; } static int overlap(int64 o1, int w1, int64 o2, int w2) { int64 t1, t2; t1 = o1+w1; t2 = o2+w2; if(!(t1 > o2 && t2 > o1)) return 0; return 1; } Bits mkvar(Reg *r, Adr *a) { Var *v; int i, t, n, et, z, flag; int64 w; uint32 regu; int64 o; Bits bit; Node *node; /* * mark registers used */ t = a->type; if(t == D_NONE) goto none; if(r != R) r->use1.b[0] |= doregbits(a->index); switch(t) { default: regu = doregbits(t); if(regu == 0) goto none; bit = zbits; bit.b[0] = regu; return bit; case D_ADDR: a->type = a->index; bit = mkvar(r, a); setaddrs(bit); a->type = t; ostats.naddr++; goto none; case D_EXTERN: case D_STATIC: case D_PARAM: case D_AUTO: n = t; break; } node = a->node; if(node == N || node->op != ONAME || node->orig == N) goto none; node = node->orig; if(node->orig != node) fatal("%D: bad node", a); if(node->sym == S || node->sym->name[0] == '.') goto none; et = a->etype; o = a->offset; w = a->width; if(w < 0) fatal("bad width %lld for %D", w, a); flag = 0; for(i=0; inode == node && v->name == n) { if(v->offset == o) if(v->etype == et) if(v->width == w) return blsh(i); // if they overlaps, disable both if(overlap(v->offset, v->width, o, w)) { // print("disable overlap %s %d %d %d %d, %E != %E\n", s->name, v->offset, v->width, o, w, v->etype, et); v->addr = 1; flag = 1; } } } switch(et) { case 0: case TFUNC: goto none; } if(nvar >= NVAR) { if(debug['w'] > 1 && node != N) fatal("variable not optimized: %#N", node); // If we're not tracking a word in a variable, mark the rest as // having its address taken, so that we keep the whole thing // live at all calls. otherwise we might optimize away part of // a variable but not all of it. for(i=0; inode == node) v->addr = 1; } goto none; } i = nvar; nvar++; v = var+i; v->offset = o; v->name = n; v->etype = et; v->width = w; v->addr = flag; // funny punning v->node = node; // node->opt is the head of a linked list // of Vars within the given Node, so that // we can start at a Var and find all the other // Vars in the same Go variable. v->nextinnode = node->opt; node->opt = v; bit = blsh(i); if(n == D_EXTERN || n == D_STATIC) for(z=0; zclass == PPARAM) for(z=0; zclass == PPARAMOUT) for(z=0; zaddrtaken) v->addr = 1; // Disable registerization for globals, because: // (1) we might panic at any time and we want the recovery code // to see the latest values (issue 1304). // (2) we don't know what pointers might point at them and we want // loads via those pointers to see updated values and vice versa (issue 7995). // // Disable registerization for results if using defer, because the deferred func // might recover and return, causing the current values to be used. if(node->class == PEXTERN || (hasdefer && node->class == PPARAMOUT)) v->addr = 1; if(debug['R']) print("bit=%2d et=%2E w=%lld+%lld %#N %D flag=%d\n", i, et, o, w, node, a, v->addr); ostats.nvar++; return bit; none: return zbits; } void prop(Reg *r, Bits ref, Bits cal) { Reg *r1, *r2; int z, i, j; Var *v, *v1; for(r1 = r; r1 != R; r1 = (Reg*)r1->f.p1) { for(z=0; zrefahead.b[z]; if(ref.b[z] != r1->refahead.b[z]) { r1->refahead.b[z] = ref.b[z]; change++; } cal.b[z] |= r1->calahead.b[z]; if(cal.b[z] != r1->calahead.b[z]) { r1->calahead.b[z] = cal.b[z]; change++; } } switch(r1->f.prog->as) { case ACALL: if(noreturn(r1->f.prog)) break; // Mark all input variables (ivar) as used, because that's what the // liveness bitmaps say. The liveness bitmaps say that so that a // panic will not show stale values in the parameter dump. // Mark variables with a recent VARDEF (r1->act) as used, // so that the optimizer flushes initializations to memory, // so that if a garbage collection happens during this CALL, // the collector will see initialized memory. Again this is to // match what the liveness bitmaps say. for(z=0; zact.b[z]; ref.b[z] = 0; } // cal.b is the current approximation of what's live across the call. // Every bit in cal.b is a single stack word. For each such word, // find all the other tracked stack words in the same Go variable // (struct/slice/string/interface) and mark them live too. // This is necessary because the liveness analysis for the garbage // collector works at variable granularity, not at word granularity. // It is fundamental for slice/string/interface: the garbage collector // needs the whole value, not just some of the words, in order to // interpret the other bits correctly. Specifically, slice needs a consistent // ptr and cap, string needs a consistent ptr and len, and interface // needs a consistent type word and data word. for(z=0; z= nvar || ((cal.b[z]>>i)&1) == 0) continue; v = var+z*32+i; if(v->node->opt == nil) // v represents fixed register, not Go variable continue; // v->node->opt is the head of a linked list of Vars // corresponding to tracked words from the Go variable v->node. // Walk the list and set all the bits. // For a large struct this could end up being quadratic: // after the first setting, the outer loop (for z, i) would see a 1 bit // for all of the remaining words in the struct, and for each such // word would go through and turn on all the bits again. // To avoid the quadratic behavior, we only turn on the bits if // v is the head of the list or if the head's bit is not yet turned on. // This will set the bits at most twice, keeping the overall loop linear. v1 = v->node->opt; j = v1 - var; if(v == v1 || ((cal.b[j/32]>>(j&31))&1) == 0) { for(; v1 != nil; v1 = v1->nextinnode) { j = v1 - var; cal.b[j/32] |= 1<<(j&31); } } } } break; case ATEXT: for(z=0; zset.b[z]) | r1->use1.b[z] | r1->use2.b[z]; cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]); r1->refbehind.b[z] = ref.b[z]; r1->calbehind.b[z] = cal.b[z]; } if(r1->f.active) break; r1->f.active = 1; } for(; r != r1; r = (Reg*)r->f.p1) for(r2 = (Reg*)r->f.p2; r2 != R; r2 = (Reg*)r2->f.p2link) prop(r2, r->refbehind, r->calbehind); } void synch(Reg *r, Bits dif) { Reg *r1; int z; for(r1 = r; r1 != R; r1 = (Reg*)r1->f.s1) { for(z=0; zrefbehind.b[z] & r1->refahead.b[z])) | r1->set.b[z] | r1->regdiff.b[z]; if(dif.b[z] != r1->regdiff.b[z]) { r1->regdiff.b[z] = dif.b[z]; change++; } } if(r1->f.active) break; r1->f.active = 1; for(z=0; zcalbehind.b[z] & r1->calahead.b[z]); if(r1->f.s2 != nil) synch((Reg*)r1->f.s2, dif); } } uint32 allreg(uint32 b, Rgn *r) { Var *v; int i; v = var + r->varno; r->regno = 0; switch(v->etype) { default: fatal("unknown etype %d/%E", bitno(b), v->etype); break; case TINT8: case TUINT8: case TINT16: case TUINT16: case TINT32: case TUINT32: case TINT64: case TUINT64: case TINT: case TUINT: case TUINTPTR: case TBOOL: case TPTR32: case TPTR64: i = BtoR(~b); if(i && r->cost > 0) { r->regno = i; return RtoB(i); } break; case TFLOAT32: case TFLOAT64: i = BtoF(~b); if(i && r->cost > 0) { r->regno = i; return FtoB(i); } break; } return 0; } void paint1(Reg *r, int bn) { Reg *r1; int z; uint32 bb; z = bn/32; bb = 1L<<(bn%32); if(r->act.b[z] & bb) return; for(;;) { if(!(r->refbehind.b[z] & bb)) break; r1 = (Reg*)r->f.p1; if(r1 == R) break; if(!(r1->refahead.b[z] & bb)) break; if(r1->act.b[z] & bb) break; r = r1; } if(LOAD(r) & ~(r->set.b[z]&~(r->use1.b[z]|r->use2.b[z])) & bb) { change -= CLOAD * r->f.loop; } for(;;) { r->act.b[z] |= bb; if(r->f.prog->as != ANOP) { // don't give credit for NOPs if(r->use1.b[z] & bb) change += CREF * r->f.loop; if((r->use2.b[z]|r->set.b[z]) & bb) change += CREF * r->f.loop; } if(STORE(r) & r->regdiff.b[z] & bb) { change -= CLOAD * r->f.loop; } if(r->refbehind.b[z] & bb) for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link) if(r1->refahead.b[z] & bb) paint1(r1, bn); if(!(r->refahead.b[z] & bb)) break; r1 = (Reg*)r->f.s2; if(r1 != R) if(r1->refbehind.b[z] & bb) paint1(r1, bn); r = (Reg*)r->f.s1; if(r == R) break; if(r->act.b[z] & bb) break; if(!(r->refbehind.b[z] & bb)) break; } } uint32 regset(Reg *r, uint32 bb) { uint32 b, set; Adr v; int c; set = 0; v = zprog.from; while(b = bb & ~(bb-1)) { v.type = b & 0xFFFF? BtoR(b): BtoF(b); if(v.type == 0) fatal("zero v.type for %#ux", b); c = copyu(r->f.prog, &v, nil); if(c == 3) set |= b; bb &= ~b; } return set; } uint32 reguse(Reg *r, uint32 bb) { uint32 b, set; Adr v; int c; set = 0; v = zprog.from; while(b = bb & ~(bb-1)) { v.type = b & 0xFFFF? BtoR(b): BtoF(b); c = copyu(r->f.prog, &v, nil); if(c == 1 || c == 2 || c == 4) set |= b; bb &= ~b; } return set; } uint32 paint2(Reg *r, int bn) { Reg *r1; int z; uint32 bb, vreg, x; z = bn/32; bb = 1L << (bn%32); vreg = regbits; if(!(r->act.b[z] & bb)) return vreg; for(;;) { if(!(r->refbehind.b[z] & bb)) break; r1 = (Reg*)r->f.p1; if(r1 == R) break; if(!(r1->refahead.b[z] & bb)) break; if(!(r1->act.b[z] & bb)) break; r = r1; } for(;;) { r->act.b[z] &= ~bb; vreg |= r->regu; if(r->refbehind.b[z] & bb) for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link) if(r1->refahead.b[z] & bb) vreg |= paint2(r1, bn); if(!(r->refahead.b[z] & bb)) break; r1 = (Reg*)r->f.s2; if(r1 != R) if(r1->refbehind.b[z] & bb) vreg |= paint2(r1, bn); r = (Reg*)r->f.s1; if(r == R) break; if(!(r->act.b[z] & bb)) break; if(!(r->refbehind.b[z] & bb)) break; } bb = vreg; for(; r; r=(Reg*)r->f.s1) { x = r->regu & ~bb; if(x) { vreg |= reguse(r, x); bb |= regset(r, x); } } return vreg; } void paint3(Reg *r, int bn, int32 rb, int rn) { Reg *r1; Prog *p; int z; uint32 bb; z = bn/32; bb = 1L << (bn%32); if(r->act.b[z] & bb) return; for(;;) { if(!(r->refbehind.b[z] & bb)) break; r1 = (Reg*)r->f.p1; if(r1 == R) break; if(!(r1->refahead.b[z] & bb)) break; if(r1->act.b[z] & bb) break; r = r1; } if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb) addmove(r, bn, rn, 0); for(;;) { r->act.b[z] |= bb; p = r->f.prog; if(r->use1.b[z] & bb) { if(debug['R'] && debug['v']) print("%P", p); addreg(&p->from, rn); if(debug['R'] && debug['v']) print(" ===change== %P\n", p); } if((r->use2.b[z]|r->set.b[z]) & bb) { if(debug['R'] && debug['v']) print("%P", p); addreg(&p->to, rn); if(debug['R'] && debug['v']) print(" ===change== %P\n", p); } if(STORE(r) & r->regdiff.b[z] & bb) addmove(r, bn, rn, 1); r->regu |= rb; if(r->refbehind.b[z] & bb) for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link) if(r1->refahead.b[z] & bb) paint3(r1, bn, rb, rn); if(!(r->refahead.b[z] & bb)) break; r1 = (Reg*)r->f.s2; if(r1 != R) if(r1->refbehind.b[z] & bb) paint3(r1, bn, rb, rn); r = (Reg*)r->f.s1; if(r == R) break; if(r->act.b[z] & bb) break; if(!(r->refbehind.b[z] & bb)) break; } } void addreg(Adr *a, int rn) { a->sym = nil; a->offset = 0; a->type = rn; ostats.ncvtreg++; } int32 RtoB(int r) { if(r < D_AX || r > D_R15) return 0; return 1L << (r-D_AX); } int BtoR(int32 b) { b &= 0xffffL; if(nacl) b &= ~((1<<(D_BP-D_AX)) | (1<<(D_R15-D_AX))); if(b == 0) return 0; return bitno(b) + D_AX; } /* * bit reg * 16 X0 * ... * 31 X15 */ int32 FtoB(int f) { if(f < D_X0 || f > D_X15) return 0; return 1L << (f - D_X0 + 16); } int BtoF(int32 b) { b &= 0xFFFF0000L; if(b == 0) return 0; return bitno(b) - 16 + D_X0; } void dumpone(Flow *f, int isreg) { int z; Bits bit; Reg *r; print("%d:%P", f->loop, f->prog); if(isreg) { r = (Reg*)f; for(z=0; zset.b[z] | r->use1.b[z] | r->use2.b[z] | r->refbehind.b[z] | r->refahead.b[z] | r->calbehind.b[z] | r->calahead.b[z] | r->regdiff.b[z] | r->act.b[z] | 0; if(bany(&bit)) { print("\t"); if(bany(&r->set)) print(" s:%Q", r->set); if(bany(&r->use1)) print(" u1:%Q", r->use1); if(bany(&r->use2)) print(" u2:%Q", r->use2); if(bany(&r->refbehind)) print(" rb:%Q ", r->refbehind); if(bany(&r->refahead)) print(" ra:%Q ", r->refahead); if(bany(&r->calbehind)) print(" cb:%Q ", r->calbehind); if(bany(&r->calahead)) print(" ca:%Q ", r->calahead); if(bany(&r->regdiff)) print(" d:%Q ", r->regdiff); if(bany(&r->act)) print(" a:%Q ", r->act); } } print("\n"); } void dumpit(char *str, Flow *r0, int isreg) { Flow *r, *r1; print("\n%s\n", str); for(r = r0; r != nil; r = r->link) { dumpone(r, isreg); r1 = r->p2; if(r1 != nil) { print(" pred:"); for(; r1 != nil; r1 = r1->p2link) print(" %.4ud", (int)r1->prog->pc); print("\n"); } // r1 = r->s1; // if(r1 != R) { // print(" succ:"); // for(; r1 != R; r1 = r1->s1) // print(" %.4ud", (int)r1->prog->pc); // print("\n"); // } } }