// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package bignum // A package for arbitrary precision arithmethic. // It implements the following numeric types: // // - Natural unsigned integer numbers // - Integer signed integer numbers // - Rational rational numbers import Fmt "fmt" // ---------------------------------------------------------------------------- // Internal representation // // A natural number of the form // // x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0] // // with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n, // with the digits x[i] as the array elements. // // A natural number is normalized if the array contains no leading 0 digits. // During arithmetic operations, denormalized values may occur which are // always normalized before returning the final result. The normalized // representation of 0 is the empty array (length = 0). // // The operations for all other numeric types are implemented on top of // the operations for natural numbers. // // The base B is chosen as large as possible on a given platform but there // are a few constraints besides the size of the largest unsigned integer // type available: // // 1) To improve conversion speed between strings and numbers, the base B // is chosen such that division and multiplication by 10 (for decimal // string representation) can be done without using extended-precision // arithmetic. This makes addition, subtraction, and conversion routines // twice as fast. It requires a "buffer" of 4 bits per operand digit. // That is, the size of B must be 4 bits smaller then the size of the // type (Digit) in which these operations are performed. Having this // buffer also allows for trivial (single-bit) carry computation in // addition and subtraction (optimization suggested by Ken Thompson). // // 2) Long division requires extended-precision (2-digit) division per digit. // Instead of sacrificing the largest base type for all other operations, // for division the operands are unpacked into "half-digits", and the // results are packed again. For faster unpacking/packing, the base size // in bits must be even. type ( Digit uint64; Digit2 uint32; // half-digits for division ) const LogW = 64; const LogH = 4; // bits for a hex digit (= "small" number) const LogB = LogW - LogH; // largest bit-width available const ( // half-digits W2 = LogB / 2; // width B2 = 1 << W2; // base M2 = B2 - 1; // mask // full digits W = W2 * 2; // width B = 1 << W; // base M = B - 1; // mask ) // ---------------------------------------------------------------------------- // Support functions func assert(p bool) { if !p { panic("assert failed"); } } func IsSmall(x Digit) bool { return x < 1<= 0; i-- { print(" ", x[i]); } println(); } // ---------------------------------------------------------------------------- // Raw operations on sequences of digits // // Naming conventions // // c carry // x, y operands // z result // n, m len(x), len(y) func Add1(z, x *[]Digit, c Digit) Digit { n := len(x); for i := 0; i < n; i++ { t := c + x[i]; c, z[i] = t>>W, t&M } return c; } func Add(z, x, y *[]Digit) Digit { var c Digit; n := len(x); for i := 0; i < n; i++ { t := c + x[i] + y[i]; c, z[i] = t>>W, t&M } return c; } func Sub1(z, x *[]Digit, c Digit) Digit { n := len(x); for i := 0; i < n; i++ { t := c + x[i]; c, z[i] = Digit(int64(t)>>W), t&M; // requires arithmetic shift! } return c; } func Sub(z, x, y *[]Digit) Digit { var c Digit; n := len(x); for i := 0; i < n; i++ { t := c + x[i] - y[i]; c, z[i] = Digit(int64(t)>>W), t&M; // requires arithmetic shift! } return c; } // Returns c = x*y div B, z = x*y mod B. func Mul11(x, y Digit) (Digit, Digit) { // Split x and y into 2 sub-digits each, // multiply the digits separately while avoiding overflow, // and return the product as two separate digits. // This code also works for non-even bit widths W // which is why there are separate constants below // for half-digits. const W2 = (W + 1)/2; const DW = W2*2 - W; // 0 or 1 const B2 = 1<>W2, x&M2; y1, y0 := y>>W2, y&M2; // x*y = t2*B2^2 + t1*B2 + t0 t0 := x0*y0; t1 := x1*y0 + x0*y1; t2 := x1*y1; // compute the result digits but avoid overflow // z = z1*B + z0 = x*y z0 := (t1<>W2)>>(W-W2); return z1, z0; } func Mul(z, x, y *[]Digit) { n := len(x); m := len(y); for j := 0; j < m; j++ { d := y[j]; if d != 0 { c := Digit(0); for i := 0; i < n; i++ { // z[i+j] += c + x[i]*d; z1, z0 := Mul11(x[i], d); t := c + z[i+j] + z0; c, z[i+j] = t>>W, t&M; c += z1; } z[n+j] = c; } } } func Shl(z, x *[]Digit, s uint) Digit { assert(s <= W); n := len(x); var c Digit; for i := 0; i < n; i++ { c, z[i] = x[i] >> (W-s), x[i] << s & M | c; } return c; } func Shr(z, x *[]Digit, s uint) Digit { assert(s <= W); n := len(x); var c Digit; for i := n - 1; i >= 0; i-- { c, z[i] = x[i] << (W-s) & M, x[i] >> s | c; } return c; } func And1(z, x *[]Digit, y Digit) { for i := len(x) - 1; i >= 0; i-- { z[i] = x[i] & y; } } func And(z, x, y *[]Digit) { for i := len(x) - 1; i >= 0; i-- { z[i] = x[i] & y[i]; } } func Or1(z, x *[]Digit, y Digit) { for i := len(x) - 1; i >= 0; i-- { z[i] = x[i] | y; } } func Or(z, x, y *[]Digit) { for i := len(x) - 1; i >= 0; i-- { z[i] = x[i] | y[i]; } } func Xor1(z, x *[]Digit, y Digit) { for i := len(x) - 1; i >= 0; i-- { z[i] = x[i] ^ y; } } func Xor(z, x, y *[]Digit) { for i := len(x) - 1; i >= 0; i-- { z[i] = x[i] ^ y[i]; } } // ---------------------------------------------------------------------------- // Natural numbers export type Natural []Digit; var ( NatZero *Natural = &Natural{}; NatOne *Natural = &Natural{1}; NatTwo *Natural = &Natural{2}; NatTen *Natural = &Natural{10}; ) // Creation export func Nat(x uint) *Natural { switch x { case 0: return NatZero; case 1: return NatOne; case 2: return NatTwo; case 10: return NatTen; } assert(Digit(x) < B); return &Natural{Digit(x)}; } // Predicates func (x *Natural) IsOdd() bool { return len(x) > 0 && x[0]&1 != 0; } func (x *Natural) IsZero() bool { return len(x) == 0; } // Operations func Normalize(x *Natural) *Natural { n := len(x); for n > 0 && x[n - 1] == 0 { n-- } if n < len(x) { x = x[0 : n]; // trim leading 0's } return x; } func (x *Natural) Add(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.Add(x); } z := new(Natural, n + 1); c := Add(z[0 : m], x[0 : m], y); z[n] = Add1(z[m : n], x[m : n], c); return Normalize(z); } func (x *Natural) Sub(y *Natural) *Natural { n := len(x); m := len(y); if n < m { panic("underflow") } z := new(Natural, n); c := Sub(z[0 : m], x[0 : m], y); if Sub1(z[m : n], x[m : n], c) != 0 { panic("underflow"); } return Normalize(z); } func (x *Natural) Mul(y *Natural) *Natural { n := len(x); m := len(y); z := new(Natural, n + m); Mul(z, x, y); return Normalize(z); } // DivMod needs multi-precision division which is not available if Digit // is already using the largest uint size. Instead, unpack each operand // into operands with twice as many digits of half the size (Digit2), do // DivMod, and then pack the results again. func Unpack(x *Natural) *[]Digit2 { n := len(x); z := new([]Digit2, n*2 + 1); // add space for extra digit (used by DivMod) for i := 0; i < n; i++ { t := x[i]; z[i*2] = Digit2(t & M2); z[i*2 + 1] = Digit2(t >> W2 & M2); } // normalize result k := 2*n; for k > 0 && z[k - 1] == 0 { k-- } return z[0 : k]; // trim leading 0's } func Pack(x *[]Digit2) *Natural { n := (len(x) + 1) / 2; z := new(Natural, n); if len(x) & 1 == 1 { // handle odd len(x) n--; z[n] = Digit(x[n*2]); } for i := 0; i < n; i++ { z[i] = Digit(x[i*2 + 1]) << W2 | Digit(x[i*2]); } return Normalize(z); } func Mul1(z, x *[]Digit2, y Digit2) Digit2 { n := len(x); var c Digit; f := Digit(y); for i := 0; i < n; i++ { t := c + Digit(x[i])*f; c, z[i] = t>>W2, Digit2(t&M2); } return Digit2(c); } func Div1(z, x *[]Digit2, y Digit2) Digit2 { n := len(x); var c Digit; d := Digit(y); for i := n-1; i >= 0; i-- { t := c*B2 + Digit(x[i]); c, z[i] = t%d, Digit2(t/d); } return Digit2(c); } // DivMod returns q and r with x = y*q + r and 0 <= r < y. // x and y are destroyed in the process. // // The algorithm used here is based on 1). 2) describes the same algorithm // in C. A discussion and summary of the relevant theorems can be found in // 3). 3) also describes an easier way to obtain the trial digit - however // it relies on tripple-precision arithmetic which is why Knuth's method is // used here. // // 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical // Algorithms." Addison-Wesley, Reading, 1969. // (Algorithm D, Sec. 4.3.1) // // 2) Henry S. Warren, Jr., "A Hacker's Delight". Addison-Wesley, 2003. // (9-2 Multiword Division, p.140ff) // // 3) P. Brinch Hansen, Multiple-length division revisited: A tour of the // minefield. "Software - Practice and Experience 24", (June 1994), // 579-601. John Wiley & Sons, Ltd. func DivMod(x, y *[]Digit2) (*[]Digit2, *[]Digit2) { n := len(x); m := len(y); if m == 0 { panic("division by zero"); } assert(n+1 <= cap(x)); // space for one extra digit x = x[0 : n + 1]; assert(x[n] == 0); if m == 1 { // division by single digit // result is shifted left by 1 in place! x[0] = Div1(x[1 : n+1], x[0 : n], y[0]); } else if m > n { // y > x => quotient = 0, remainder = x // TODO in this case we shouldn't even unpack x and y m = n; } else { // general case assert(2 <= m && m <= n); // normalize x and y // TODO Instead of multiplying, it would be sufficient to // shift y such that the normalization condition is // satisfied (as done in "Hacker's Delight"). f := B2 / (Digit(y[m-1]) + 1); if f != 1 { Mul1(x, x, Digit2(f)); Mul1(y, y, Digit2(f)); } assert(B2/2 <= y[m-1] && y[m-1] < B2); // incorrect scaling y1, y2 := Digit(y[m-1]), Digit(y[m-2]); d2 := Digit(y1)<= 0; i-- { k := i+m; // compute trial digit (Knuth) var q Digit; { x0, x1, x2 := Digit(x[k]), Digit(x[k-1]), Digit(x[k-2]); if x0 != y1 { q = (x0< (x0<>W2), Digit2(t&M2); // requires arithmetic shift! } // correct if trial digit was too large if c + Digit(x[k]) != 0 { // add y c := Digit(0); for j := 0; j < m; j++ { t := c + Digit(x[i+j]) + Digit(y[j]); c, x[i+j] = t >> W2, Digit2(t & M2) } assert(c + Digit(x[k]) == 0); // correct trial digit q--; } x[k] = Digit2(q); } // undo normalization for remainder if f != 1 { c := Div1(x[0 : m], x[0 : m], Digit2(f)); assert(c == 0); } } return x[m : n+1], x[0 : m]; } func (x *Natural) Div(y *Natural) *Natural { q, r := DivMod(Unpack(x), Unpack(y)); return Pack(q); } func (x *Natural) Mod(y *Natural) *Natural { q, r := DivMod(Unpack(x), Unpack(y)); return Pack(r); } func (x *Natural) DivMod(y *Natural) (*Natural, *Natural) { q, r := DivMod(Unpack(x), Unpack(y)); return Pack(q), Pack(r); } func (x *Natural) Shl(s uint) *Natural { n := uint(len(x)); m := n + s/W; z := new(Natural, m+1); z[m] = Shl(z[m-n : m], x, s%W); return Normalize(z); } func (x *Natural) Shr(s uint) *Natural { n := uint(len(x)); m := n - s/W; if m > n { // check for underflow m = 0; } z := new(Natural, m); Shr(z, x[n-m : n], s%W); return Normalize(z); } func (x *Natural) And(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.And(x); } z := new(Natural, n); And(z[0 : m], x[0 : m], y); Or1(z[m : n], x[m : n], 0); return Normalize(z); } func (x *Natural) Or(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.Or(x); } z := new(Natural, n); Or(z[0 : m], x[0 : m], y); Or1(z[m : n], x[m : n], 0); return Normalize(z); } func (x *Natural) Xor(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.Xor(x); } z := new(Natural, n); Xor(z[0 : m], x[0 : m], y); Or1(z[m : n], x[m : n], 0); return Normalize(z); } func (x *Natural) Cmp(y *Natural) int { n := len(x); m := len(y); if n != m || n == 0 { return n - m; } i := n - 1; for i > 0 && x[i] == y[i] { i--; } d := 0; switch { case x[i] < y[i]: d = -1; case x[i] > y[i]: d = 1; } return d; } func Log2(x Digit) uint { assert(x > 0); n := uint(0); for x > 0 { x >>= 1; n++; } return n - 1; } func (x *Natural) Log2() uint { n := len(x); if n > 0 { return (uint(n) - 1)*W + Log2(x[n - 1]); } panic("Log2(0)"); } // Computes x = x div d in place (modifies x) for "small" d's. // Returns updated x and x mod d. func DivMod1(x *Natural, d Digit) (*Natural, Digit) { assert(0 < d && IsSmall(d - 1)); c := Digit(0); for i := len(x) - 1; i >= 0; i-- { t := c<>W, t&M; } z[n] = c; return Normalize(z); } // Determines base (octal, decimal, hexadecimal) if base == 0. // Returns the number and base. export func NatFromString(s string, base uint, slen *int) (*Natural, uint) { // determine base if necessary i, n := 0, len(s); if base == 0 { base = 10; if n > 0 && s[0] == '0' { if n > 1 && (s[1] == 'x' || s[1] == 'X') { base, i = 16, 2; } else { base, i = 8, 1; } } } // convert string assert(2 <= base && base <= 16); x := Nat(0); for ; i < n; i++ { d := HexValue(s[i]); if d < base { x = MulAdd1(x, Digit(base), Digit(d)); } else { break; } } // provide number of string bytes consumed if necessary if slen != nil { *slen = i; } return x, base; } // Natural number functions func Pop1(x Digit) uint { n := uint(0); for x != 0 { x &= x-1; n++; } return n; } func (x *Natural) Pop() uint { n := uint(0); for i := len(x) - 1; i >= 0; i-- { n += Pop1(x[i]); } return n; } func (x *Natural) Pow(n uint) *Natural { z := Nat(1); for n > 0 { // z * x^n == x^n0 if n&1 == 1 { z = z.Mul(x); } x, n = x.Mul(x), n/2; } return z; } export func MulRange(a, b uint) *Natural { switch { case a > b: return Nat(1); case a == b: return Nat(a); case a + 1 == b: return Nat(a).Mul(Nat(b)); } m := (a + b)>>1; assert(a <= m && m < b); return MulRange(a, m).Mul(MulRange(m + 1, b)); } export func Fact(n uint) *Natural { // Using MulRange() instead of the basic for-loop // lead to faster factorial computation. return MulRange(2, n); } export func Binomial(n, k uint) *Natural { return MulRange(n-k+1, n).Div(MulRange(1, k)); } func (x *Natural) Gcd(y *Natural) *Natural { // Euclidean algorithm. for !y.IsZero() { x, y = y, x.Mod(y); } return x; } // ---------------------------------------------------------------------------- // Integer numbers // // Integers are normalized if the mantissa is normalized and the sign is // false for mant == 0. Use MakeInt to create normalized Integers. export type Integer struct { sign bool; mant *Natural; } // Creation export func MakeInt(sign bool, mant *Natural) *Integer { if mant.IsZero() { sign = false; // normalize } return &Integer{sign, mant}; } export func Int(x int) *Integer { sign := false; var ux uint; if x < 0 { sign = true; if -x == x { // smallest negative integer t := ^0; ux = ^(uint(t) >> 1); } else { ux = uint(-x); } } else { ux = uint(x); } return MakeInt(sign, Nat(ux)); } // Predicates func (x *Integer) IsOdd() bool { return x.mant.IsOdd(); } func (x *Integer) IsZero() bool { return x.mant.IsZero(); } func (x *Integer) IsNeg() bool { return x.sign && !x.mant.IsZero() } func (x *Integer) IsPos() bool { return !x.sign && !x.mant.IsZero() } // Operations func (x *Integer) Neg() *Integer { return MakeInt(!x.sign, x.mant); } func (x *Integer) Add(y *Integer) *Integer { var z *Integer; if x.sign == y.sign { // x + y == x + y // (-x) + (-y) == -(x + y) z = MakeInt(x.sign, x.mant.Add(y.mant)); } else { // x + (-y) == x - y == -(y - x) // (-x) + y == y - x == -(x - y) if x.mant.Cmp(y.mant) >= 0 { z = MakeInt(false, x.mant.Sub(y.mant)); } else { z = MakeInt(true, y.mant.Sub(x.mant)); } } if x.sign { z.sign = !z.sign; } return z; } func (x *Integer) Sub(y *Integer) *Integer { var z *Integer; if x.sign != y.sign { // x - (-y) == x + y // (-x) - y == -(x + y) z = MakeInt(false, x.mant.Add(y.mant)); } else { // x - y == x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if x.mant.Cmp(y.mant) >= 0 { z = MakeInt(false, x.mant.Sub(y.mant)); } else { z = MakeInt(true, y.mant.Sub(x.mant)); } } if x.sign { z.sign = !z.sign; } return z; } func (x *Integer) Mul(y *Integer) *Integer { // x * y == x * y // x * (-y) == -(x * y) // (-x) * y == -(x * y) // (-x) * (-y) == x * y return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant)); } func (x *Integer) MulNat(y *Natural) *Integer { // x * y == x * y // (-x) * y == -(x * y) return MakeInt(x.sign, x.mant.Mul(y)); } // Quo and Rem implement T-division and modulus (like C99): // // q = x.Quo(y) = trunc(x/y) (truncation towards zero) // r = x.Rem(y) = x - y*q // // ( Daan Leijen, "Division and Modulus for Computer Scientists". ) func (x *Integer) Quo(y *Integer) *Integer { // x / y == x / y // x / (-y) == -(x / y) // (-x) / y == -(x / y) // (-x) / (-y) == x / y return MakeInt(x.sign != y.sign, x.mant.Div(y.mant)); } func (x *Integer) Rem(y *Integer) *Integer { // x % y == x % y // x % (-y) == x % y // (-x) % y == -(x % y) // (-x) % (-y) == -(x % y) return MakeInt(x.sign, x.mant.Mod(y.mant)); } func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) { q, r := x.mant.DivMod(y.mant); return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r); } // Div and Mod implement Euclidian division and modulus: // // d = x.Div(y) // m = x.Mod(y) with: 0 <= m < |d| and: y = x*d + m // // ( Raymond T. Boute, The Euclidian definition of the functions // div and mod. "ACM Transactions on Programming Languages and // Systems (TOPLAS)", 14(2):127-144, New York, NY, USA, 4/1992. // ACM press. ) func (x *Integer) Div(y *Integer) *Integer { q, r := x.QuoRem(y); if r.IsNeg() { if y.IsPos() { q = q.Sub(Int(1)); } else { q = q.Add(Int(1)); } } return q; } func (x *Integer) Mod(y *Integer) *Integer { r := x.Rem(y); if r.IsNeg() { if y.IsPos() { r = r.Add(y); } else { r = r.Sub(y); } } return r; } func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) { q, r := x.QuoRem(y); if r.IsNeg() { if y.IsPos() { q = q.Sub(Int(1)); r = r.Add(y); } else { q = q.Add(Int(1)); r = r.Sub(y); } } return q, r; } func (x *Integer) Shl(s uint) *Integer { return MakeInt(x.sign, x.mant.Shl(s)); } func (x *Integer) Shr(s uint) *Integer { z := MakeInt(x.sign, x.mant.Shr(s)); if x.IsNeg() { panic("UNIMPLEMENTED Integer.Shr() of negative values"); } return z; } func (x *Integer) And(y *Integer) *Integer { var z *Integer; if !x.sign && !y.sign { z = MakeInt(false, x.mant.And(y.mant)); } else { panic("UNIMPLEMENTED Integer.And() of negative values"); } return z; } func (x *Integer) Or(y *Integer) *Integer { var z *Integer; if !x.sign && !y.sign { z = MakeInt(false, x.mant.Or(y.mant)); } else { panic("UNIMPLEMENTED Integer.Or() of negative values"); } return z; } func (x *Integer) Xor(y *Integer) *Integer { var z *Integer; if !x.sign && !y.sign { z = MakeInt(false, x.mant.Xor(y.mant)); } else { panic("UNIMPLEMENTED Integer.Xor() of negative values"); } return z; } func (x *Integer) Cmp(y *Integer) int { // x cmp y == x cmp y // x cmp (-y) == x // (-x) cmp y == y // (-x) cmp (-y) == -(x cmp y) var r int; switch { case x.sign == y.sign: r = x.mant.Cmp(y.mant); if x.sign { r = -r; } case x.sign: r = -1; case y.sign: r = 1; } return r; } func (x *Integer) ToString(base uint) string { if x.mant.IsZero() { return "0"; } var s string; if x.sign { s = "-"; } return s + x.mant.ToString(base); } func (x *Integer) String() string { return x.ToString(10); } func (x *Integer) Format(h Fmt.Formatter, c int) { t := x.ToString(FmtBase(c)); // BUG in 6g Fmt.fprintf(h, "%s", t); } // Determines base (octal, decimal, hexadecimal) if base == 0. // Returns the number and base. export func IntFromString(s string, base uint, slen *int) (*Integer, uint) { // get sign, if any sign := false; if len(s) > 0 && (s[0] == '-' || s[0] == '+') { sign = s[0] == '-'; s = s[1 : len(s)]; } var mant *Natural; mant, base = NatFromString(s, base, slen); // correct slen if necessary if slen != nil && sign { *slen++; } return MakeInt(sign, mant), base; } // ---------------------------------------------------------------------------- // Rational numbers export type Rational struct { a *Integer; // numerator b *Natural; // denominator } // Creation export func MakeRat(a *Integer, b *Natural) *Rational { f := a.mant.Gcd(b); // f > 0 if f.Cmp(Nat(1)) != 0 { a = MakeInt(a.sign, a.mant.Div(f)); b = b.Div(f); } return &Rational{a, b}; } export func Rat(a0 int, b0 int) *Rational { a, b := Int(a0), Int(b0); if b.sign { a = a.Neg(); } return MakeRat(a, b.mant); } // Predicates func (x *Rational) IsZero() bool { return x.a.IsZero(); } func (x *Rational) IsNeg() bool { return x.a.IsNeg(); } func (x *Rational) IsPos() bool { return x.a.IsPos(); } func (x *Rational) IsInt() bool { return x.b.Cmp(Nat(1)) == 0; } // Operations func (x *Rational) Neg() *Rational { return MakeRat(x.a.Neg(), x.b); } func (x *Rational) Add(y *Rational) *Rational { return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b)); } func (x *Rational) Sub(y *Rational) *Rational { return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b)); } func (x *Rational) Mul(y *Rational) *Rational { return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b)); } func (x *Rational) Quo(y *Rational) *Rational { a := x.a.MulNat(y.b); b := y.a.MulNat(x.b); if b.IsNeg() { a = a.Neg(); } return MakeRat(a, b.mant); } func (x *Rational) Cmp(y *Rational) int { return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b)); } func (x *Rational) ToString(base uint) string { s := x.a.ToString(base); if !x.IsInt() { s += "/" + x.b.ToString(base); } return s; } func (x *Rational) String() string { return x.ToString(10); } func (x *Rational) Format(h Fmt.Formatter, c int) { t := x.ToString(FmtBase(c)); // BUG in 6g Fmt.fprintf(h, "%s", t); } // Determines base (octal, decimal, hexadecimal) if base == 0. // Returns the number and base of the nominator. export func RatFromString(s string, base uint, slen *int) (*Rational, uint) { // read nominator var alen, blen int; a, abase := IntFromString(s, base, &alen); b := Nat(1); // read denominator or fraction, if any if alen < len(s) { ch := s[alen]; if ch == '/' { alen++; b, base = NatFromString(s[alen : len(s)], base, &blen); } else if ch == '.' { alen++; b, base = NatFromString(s[alen : len(s)], abase, &blen); assert(base == abase); f := Nat(base).Pow(uint(blen)); a = MakeInt(a.sign, a.mant.Mul(f).Add(b)); b = f; } } // provide number of string bytes consumed if necessary if slen != nil { *slen = alen + blen; } return MakeRat(a, b), abase; }