// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Regular expression library. package regexp import ( "os"; "array"; ) var debug = false; export var ErrInternal = os.NewError("internal error"); export var ErrUnmatchedLpar = os.NewError("unmatched '('"); export var ErrUnmatchedRpar = os.NewError("unmatched ')'"); export var ErrUnmatchedLbkt = os.NewError("unmatched '['"); export var ErrUnmatchedRbkt = os.NewError("unmatched ']'"); export var ErrBadRange = os.NewError("bad range in character class"); export var ErrExtraneousBackslash = os.NewError("extraneous backslash"); export var ErrBadClosure = os.NewError("repeated closure (**, ++, etc.)"); export var ErrBareClosure = os.NewError("closure applies to nothing"); export var ErrBadBackslash = os.NewError("illegal backslash escape"); // An instruction executed by the NFA type instr interface { Type() int; // the type of this instruction: cCHAR, cANY, etc. Next() instr; // the instruction to execute after this one SetNext(i instr); Index() int; SetIndex(i int); Print(); } // Fields and methods common to all instructions type iCommon struct { next instr; index int; } func (c *iCommon) Next() instr { return c.next } func (c *iCommon) SetNext(i instr) { c.next = i } func (c *iCommon) Index() int { return c.index } func (c *iCommon) SetIndex(i int) { c.index = i } type regExp struct { expr string; // the original expression ch chan<- *regExp; // reply channel when we're done error *os.Error; // compile- or run-time error; nil if OK inst *array.Array; start instr; nbra int; // number of brackets in expression, for subexpressions } const ( cSTART // beginning of program = iota; cEND; // end of program: success cBOT; // '^' beginning of text cEOT; // '$' end of text cCHAR; // 'a' regular character cCHARCLASS; // [a-z] character class cANY; // '.' any character cBRA; // '(' parenthesized expression cEBRA; // ')'; end of '(' parenthesized expression cALT; // '|' alternation cNOP; // do nothing; makes it easy to link without patching ) // --- START start of program type iStart struct { iCommon } func (start *iStart) Type() int { return cSTART } func (start *iStart) Print() { print("start") } // --- END end of program type iEnd struct { iCommon } func (end *iEnd) Type() int { return cEND } func (end *iEnd) Print() { print("end") } // --- BOT beginning of text type iBot struct { iCommon } func (bot *iBot) Type() int { return cBOT } func (bot *iBot) Print() { print("bot") } // --- EOT end of text type iEot struct { iCommon } func (eot *iEot) Type() int { return cEOT } func (eot *iEot) Print() { print("eot") } // --- CHAR a regular character type iChar struct { iCommon; char int; } func (char *iChar) Type() int { return cCHAR } func (char *iChar) Print() { print("char ", string(char.char)) } func newChar(char int) *iChar { c := new(iChar); c.char = char; return c; } // --- CHARCLASS [a-z] type iCharClass struct { iCommon; char int; negate bool; // is character class negated? ([^a-z]) // array of int, stored pairwise: [a-z] is (a,z); x is (x,x): ranges *array.IntArray; } func (cclass *iCharClass) Type() int { return cCHARCLASS } func (cclass *iCharClass) Print() { print("charclass"); if cclass.negate { print(" (negated)"); } for i := 0; i < cclass.ranges.Len(); i += 2 { l := cclass.ranges.At(i); r := cclass.ranges.At(i+1); if l == r { print(" [", string(l), "]"); } else { print(" [", string(l), "-", string(r), "]"); } } } func (cclass *iCharClass) AddRange(a, b int) { // range is a through b inclusive cclass.ranges.Push(a); cclass.ranges.Push(b); } func (cclass *iCharClass) Matches(c int) bool { for i := 0; i < cclass.ranges.Len(); i = i+2 { min := cclass.ranges.At(i); max := cclass.ranges.At(i+1); if min <= c && c <= max { return !cclass.negate } } return cclass.negate } func newCharClass() *iCharClass { c := new(iCharClass); c.ranges = array.NewIntArray(0); return c; } // --- ANY any character type iAny struct { iCommon } func (any *iAny) Type() int { return cANY } func (any *iAny) Print() { print("any") } // --- BRA parenthesized expression type iBra struct { iCommon; n int; // subexpression number } func (bra *iBra) Type() int { return cBRA } func (bra *iBra) Print() { print("bra", bra.n); } // --- EBRA end of parenthesized expression type iEbra struct { iCommon; n int; // subexpression number } func (ebra *iEbra) Type() int { return cEBRA } func (ebra *iEbra) Print() { print("ebra ", ebra.n); } // --- ALT alternation type iAlt struct { iCommon; left instr; // other branch } func (alt *iAlt) Type() int { return cALT } func (alt *iAlt) Print() { print("alt(", alt.left.Index(), ")"); } // --- NOP no operation type iNop struct { iCommon } func (nop *iNop) Type() int { return cNOP } func (nop *iNop) Print() { print("nop") } // report error and exit compiling/executing goroutine func (re *regExp) Error(err *os.Error) { re.error = err; re.ch <- re; sys.goexit(); } func (re *regExp) Add(i instr) instr { i.SetIndex(re.inst.Len()); re.inst.Push(i); return i; } type parser struct { re *regExp; nlpar int; // number of unclosed lpars pos int; ch int; } const endOfFile = -1 func (p *parser) c() int { return p.ch; } func (p *parser) nextc() int { if p.pos >= len(p.re.expr) { p.ch = endOfFile } else { c, w := sys.stringtorune(p.re.expr, p.pos); p.ch = c; p.pos += w; } return p.ch; } func newParser(re *regExp) *parser { p := new(parser); p.re = re; p.nextc(); // load p.ch return p; } /* Grammar: regexp: concatenation { '|' concatenation } concatenation: { closure } closure: term [ '*' | '+' | '?' ] term: '^' '$' '.' character '[' [ '^' ] character-ranges ']' '(' regexp ')' */ func (p *parser) Regexp() (start, end instr) var iNULL instr func special(c int) bool { s := `\.+*?()|[]`; for i := 0; i < len(s); i++ { if c == int(s[i]) { return true } } return false } func specialcclass(c int) bool { s := `\-[]`; for i := 0; i < len(s); i++ { if c == int(s[i]) { return true } } return false } func (p *parser) CharClass() instr { cc := newCharClass(); p.re.Add(cc); if p.c() == '^' { cc.negate = true; p.nextc(); } left := -1; for { switch c := p.c(); c { case ']', endOfFile: if left >= 0 { p.re.Error(ErrBadRange); } return cc; case '-': // do this before backslash processing p.re.Error(ErrBadRange); case '\\': c = p.nextc(); switch { case c == endOfFile: p.re.Error(ErrExtraneousBackslash); case c == 'n': c = '\n'; case specialcclass(c): // c is as delivered default: p.re.Error(ErrBadBackslash); } fallthrough; default: p.nextc(); switch { case left < 0: // first of pair if p.c() == '-' { // range p.nextc(); left = c; } else { // single char cc.AddRange(c, c); } case left <= c: // second of pair cc.AddRange(left, c); left = -1; default: p.re.Error(ErrBadRange); } } } return iNULL } func (p *parser) Term() (start, end instr) { switch c := p.c(); c { case '|', endOfFile: return iNULL, iNULL; case '*', '+': p.re.Error(ErrBareClosure); case ')': if p.nlpar == 0 { p.re.Error(ErrUnmatchedRpar); } return iNULL, iNULL; case ']': p.re.Error(ErrUnmatchedRbkt); case '^': p.nextc(); start = p.re.Add(new(iBot)); return start, start; case '$': p.nextc(); start = p.re.Add(new(iEot)); return start, start; case '.': p.nextc(); start = p.re.Add(new(iAny)); return start, start; case '[': p.nextc(); start = p.CharClass(); if p.c() != ']' { p.re.Error(ErrUnmatchedLbkt); } p.nextc(); return start, start; case '(': p.nextc(); p.nlpar++; p.re.nbra++; // increment first so first subexpr is \1 nbra := p.re.nbra; start, end = p.Regexp(); if p.c() != ')' { p.re.Error(ErrUnmatchedLpar); } p.nlpar--; p.nextc(); bra := new(iBra); p.re.Add(bra); ebra := new(iEbra); p.re.Add(ebra); bra.n = nbra; ebra.n = nbra; if start == iNULL { if end == iNULL { p.re.Error(ErrInternal) } start = ebra } else { end.SetNext(ebra); } bra.SetNext(start); return bra, ebra; case '\\': c = p.nextc(); switch { case c == endOfFile: p.re.Error(ErrExtraneousBackslash); case c == 'n': c = '\n'; case special(c): // c is as delivered default: p.re.Error(ErrBadBackslash); } fallthrough; default: p.nextc(); start = newChar(c); p.re.Add(start); return start, start } panic("unreachable"); } func (p *parser) Closure() (start, end instr) { start, end = p.Term(); if start == iNULL { return } switch p.c() { case '*': // (start,end)*: alt := new(iAlt); p.re.Add(alt); end.SetNext(alt); // after end, do alt alt.left = start; // alternate brach: return to start start = alt; // alt becomes new (start, end) end = alt; case '+': // (start,end)+: alt := new(iAlt); p.re.Add(alt); end.SetNext(alt); // after end, do alt alt.left = start; // alternate brach: return to start end = alt; // start is unchanged; end is alt case '?': // (start,end)?: alt := new(iAlt); p.re.Add(alt); nop := new(iNop); p.re.Add(nop); alt.left = start; // alternate branch is start alt.next = nop; // follow on to nop end.SetNext(nop); // after end, go to nop start = alt; // start is now alt end = nop; // end is nop pointed to by both branches default: return } switch p.nextc() { case '*', '+', '?': p.re.Error(ErrBadClosure); } return } func (p *parser) Concatenation() (start, end instr) { start, end = iNULL, iNULL; for { nstart, nend := p.Closure(); switch { case nstart == iNULL: // end of this concatenation if start == iNULL { // this is the empty string nop := p.re.Add(new(iNop)); return nop, nop; } return; case start == iNULL: // this is first element of concatenation start, end = nstart, nend; default: end.SetNext(nstart); end = nend; } } panic("unreachable"); } func (p *parser) Regexp() (start, end instr) { start, end = p.Concatenation(); for { switch p.c() { default: return; case '|': p.nextc(); nstart, nend := p.Concatenation(); alt := new(iAlt); p.re.Add(alt); alt.left = start; alt.next = nstart; nop := new(iNop); p.re.Add(nop); end.SetNext(nop); nend.SetNext(nop); start, end = alt, nop; } } panic("unreachable"); } func UnNop(i instr) instr { for i.Type() == cNOP { i = i.Next() } return i } func (re *regExp) EliminateNops() { for i := 0; i < re.inst.Len(); i++ { inst := re.inst.At(i).(instr); if inst.Type() == cEND { continue } inst.SetNext(UnNop(inst.Next())); if inst.Type() == cALT { alt := inst.(*iAlt); alt.left = UnNop(alt.left); } } } func (re *regExp) Dump() { for i := 0; i < re.inst.Len(); i++ { inst := re.inst.At(i).(instr); print(inst.Index(), ": "); inst.Print(); if inst.Type() != cEND { print(" -> ", inst.Next().Index()) } print("\n"); } } func (re *regExp) DoParse() { p := newParser(re); start := new(iStart); re.Add(start); s, e := p.Regexp(); start.next = s; re.start = start; e.SetNext(re.Add(new(iEnd))); if debug { re.Dump(); println(); } re.EliminateNops(); if debug { re.Dump(); println(); } } func Compiler(str string, ch chan *regExp) { re := new(regExp); re.expr = str; re.inst = array.New(0); re.ch = ch; re.DoParse(); ch <- re; } // Public interface has only execute functionality export type Regexp interface { Execute(s string) []int; Match(s string) bool; MatchStrings(s string) []string; } // Compile in separate goroutine; wait for result export func Compile(str string) (regexp Regexp, error *os.Error) { ch := make(chan *regExp); go Compiler(str, ch); re := <-ch; return re, re.error } type state struct { inst instr; // next instruction to execute match []int; // pairs of bracketing submatches. 0th is start,end } // Append new state to to-do list. Leftmost-longest wins so avoid // adding a state that's already active. func addState(s []state, inst instr, match []int) []state { index := inst.Index(); l := len(s); pos := match[0]; // TODO: Once the state is a vector and we can do insert, have inputs always // go in order correctly and this "earlier" test is never necessary, for i := 0; i < l; i++ { if s[i].inst.Index() == index && // same instruction s[i].match[0] < pos { // earlier match already going; lefmost wins return s } } if l == cap(s) { s1 := make([]state, 2*l)[0:l]; for i := 0; i < l; i++ { s1[i] = s[i]; } s = s1; } s = s[0:l+1]; s[l].inst = inst; s[l].match = match; return s; } func (re *regExp) DoExecute(str string, pos int) []int { var s [2][]state; // TODO: use a vector when state values (not ptrs) can be vector elements s[0] = make([]state, 10)[0:0]; s[1] = make([]state, 10)[0:0]; in, out := 0, 1; var final state; found := false; for pos <= len(str) { if !found { // prime the pump if we haven't seen a match yet match := make([]int, 2*(re.nbra+1)); for i := 0; i < len(match); i++ { match[i] = -1; // no match seen; catches cases like "a(b)?c" on "ac" } match[0] = pos; s[out] = addState(s[out], re.start.Next(), match); } in, out = out, in; // old out state is new in state s[out] = s[out][0:0]; // clear out state if len(s[in]) == 0 { // machine has completed break; } charwidth := 1; c := endOfFile; if pos < len(str) { c, charwidth = sys.stringtorune(str, pos); } for i := 0; i < len(s[in]); i++ { st := s[in][i]; switch s[in][i].inst.Type() { case cBOT: if pos == 0 { s[in] = addState(s[in], st.inst.Next(), st.match) } case cEOT: if pos == len(str) { s[in] = addState(s[in], st.inst.Next(), st.match) } case cCHAR: if c == st.inst.(*iChar).char { s[out] = addState(s[out], st.inst.Next(), st.match) } case cCHARCLASS: if st.inst.(*iCharClass).Matches(c) { s[out] = addState(s[out], st.inst.Next(), st.match) } case cANY: if c != endOfFile { s[out] = addState(s[out], st.inst.Next(), st.match) } case cBRA: n := st.inst.(*iBra).n; st.match[2*n] = pos; s[in] = addState(s[in], st.inst.Next(), st.match); case cEBRA: n := st.inst.(*iEbra).n; st.match[2*n+1] = pos; s[in] = addState(s[in], st.inst.Next(), st.match); case cALT: s[in] = addState(s[in], st.inst.(*iAlt).left, st.match); // give other branch a copy of this match vector s1 := make([]int, 2*(re.nbra+1)); for i := 0; i < len(s1); i++ { s1[i] = st.match[i] } s[in] = addState(s[in], st.inst.Next(), s1); case cEND: // choose leftmost longest if !found || // first st.match[0] < final.match[0] || // leftmost (st.match[0] == final.match[0] && pos > final.match[1]) { // longest final = st; final.match[1] = pos; } found = true; default: st.inst.Print(); panic("unknown instruction in execute"); } } pos += charwidth; } return final.match; } func (re *regExp) Execute(s string) []int { return re.DoExecute(s, 0) } func (re *regExp) Match(s string) bool { return len(re.DoExecute(s, 0)) > 0 } func (re *regExp) MatchStrings(s string) []string { r := re.DoExecute(s, 0); if r == nil { return nil } a := make([]string, len(r)/2); for i := 0; i < len(r); i += 2 { a[i/2] = s[r[i] : r[i+1]] } return a } // Exported function for simple boolean check. Anything more fancy // needs a call to Compile. export func Match(pattern string, s string) (matched bool, error *os.Error) { re, err := Compile(pattern); if err != nil { return false, err } return re.Match(s), nil }