// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "textflag.h" // The method is based on a paper by Naoki Shibata: "Efficient evaluation // methods of elementary functions suitable for SIMD computation", Proc. // of International Supercomputing Conference 2010 (ISC'10), pp. 25 -- 32 // (May 2010). The paper is available at // http://www.springerlink.com/content/340228x165742104/ // // The original code and the constants below are from the author's // implementation available at http://freshmeat.net/projects/sleef. // The README file says, "The software is in public domain. // You can use the software without any obligation." // // This code is a simplified version of the original. #define PosOne 0x3FF0000000000000 #define PosInf 0x7FF0000000000000 #define NaN 0x7FF8000000000001 #define PI4A 0.7853981554508209228515625 // pi/4 split into three parts #define PI4B 0.794662735614792836713604629039764404296875e-8 #define PI4C 0.306161699786838294306516483068750264552437361480769e-16 #define M4PI 1.273239544735162542821171882678754627704620361328125 // 4/pi #define T0 1.0 #define T1 -8.33333333333333333333333e-02 // (-1.0/12) #define T2 2.77777777777777777777778e-03 // (+1.0/360) #define T3 -4.96031746031746031746032e-05 // (-1.0/20160) #define T4 5.51146384479717813051146e-07 // (+1.0/1814400) // func Sincos(d float64) (sin, cos float64) TEXT ·Sincos(SB),NOSPLIT,$0 // test for special cases MOVQ $~(1<<63), DX // sign bit mask MOVQ x+0(FP), BX ANDQ BX, DX JEQ isZero MOVQ $PosInf, AX CMPQ AX, DX JLE isInfOrNaN // Reduce argument MOVQ BX, X7 // x7= d MOVQ DX, X0 // x0= |d| MOVSD $M4PI, X2 MULSD X0, X2 CVTTSD2SQ X2, BX // bx= q MOVQ $1, AX ANDQ BX, AX ADDQ BX, AX CVTSQ2SD AX, X2 MOVSD $PI4A, X3 MULSD X2, X3 SUBSD X3, X0 MOVSD $PI4B, X3 MULSD X2, X3 SUBSD X3, X0 MOVSD $PI4C, X3 MULSD X2, X3 SUBSD X3, X0 MULSD $0.125, X0 // x0= x, x7= d, bx= q // Evaluate Taylor series MULSD X0, X0 MOVSD $T4, X2 MULSD X0, X2 ADDSD $T3, X2 MULSD X0, X2 ADDSD $T2, X2 MULSD X0, X2 ADDSD $T1, X2 MULSD X0, X2 ADDSD $T0, X2 MULSD X2, X0 // x0= x, x7= d, bx= q // Apply double angle formula MOVSD $4.0, X2 SUBSD X0, X2 MULSD X2, X0 MOVSD $4.0, X2 SUBSD X0, X2 MULSD X2, X0 MOVSD $4.0, X2 SUBSD X0, X2 MULSD X2, X0 MULSD $0.5, X0 // x0= x, x7= d, bx= q // sin = sqrt((2 - x) * x) MOVSD $2.0, X2 SUBSD X0, X2 MULSD X0, X2 SQRTSD X2, X2 // x0= x, x2= z, x7= d, bx= q // cos = 1 - x MOVSD $1.0, X1 SUBSD X0, X1 // x1= x, x2= z, x7= d, bx= q // if ((q + 1) & 2) != 0 { sin, cos = cos, sin } MOVQ $1, DX ADDQ BX, DX ANDQ $2, DX SHRQ $1, DX SUBQ $1, DX MOVQ DX, X3 // sin = (y & z) | (^y & x) MOVAPD X2, X0 ANDPD X3, X0 // x0= sin MOVAPD X3, X4 ANDNPD X1, X4 ORPD X4, X0 // x0= sin, x1= x, x2= z, x3= y, x7= d, bx= q // cos = (y & x) | (^y & z) ANDPD X3, X1 // x1= cos ANDNPD X2, X3 ORPD X3, X1 // x0= sin, x1= cos, x7= d, bx= q // if ((q & 4) != 0) != (d < 0) { sin = -sin } MOVQ BX, AX MOVQ $61, CX SHLQ CX, AX MOVQ AX, X3 XORPD X7, X3 MOVQ $(1<<63), AX MOVQ AX, X2 // x2= -0.0 ANDPD X2, X3 ORPD X3, X0 // x0= sin, x1= cos, x2= -0.0, bx= q // if ((q + 2) & 4) != 0 { cos = -cos } MOVQ $2, AX ADDQ AX, BX MOVQ $61, CX SHLQ CX, BX MOVQ BX, X3 ANDPD X2, X3 ORPD X3, X1 // x0= sin, x1= cos // return (sin, cos) MOVSD X0, sin+8(FP) MOVSD X1, cos+16(FP) RET isZero: // return (±0.0, 1.0) MOVQ BX, sin+8(FP) MOVQ $PosOne, AX MOVQ AX, cos+16(FP) RET isInfOrNaN: // return (NaN, NaN) MOVQ $NaN, AX MOVQ AX, sin+8(FP) MOVQ AX, cos+16(FP) RET