// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd linux nacl netbsd openbsd solaris package net import ( "io" "os" "runtime" "sync/atomic" "syscall" "time" ) // Network file descriptor. type netFD struct { // locking/lifetime of sysfd + serialize access to Read and Write methods fdmu fdMutex // immutable until Close sysfd int family int sotype int isConnected bool net string laddr Addr raddr Addr // wait server pd pollDesc } func sysInit() { } func dial(network string, ra Addr, dialer func(time.Time) (Conn, error), deadline time.Time) (Conn, error) { return dialer(deadline) } func newFD(sysfd, family, sotype int, net string) (*netFD, error) { return &netFD{sysfd: sysfd, family: family, sotype: sotype, net: net}, nil } func (fd *netFD) init() error { if err := fd.pd.Init(fd); err != nil { return err } return nil } func (fd *netFD) setAddr(laddr, raddr Addr) { fd.laddr = laddr fd.raddr = raddr runtime.SetFinalizer(fd, (*netFD).Close) } func (fd *netFD) name() string { var ls, rs string if fd.laddr != nil { ls = fd.laddr.String() } if fd.raddr != nil { rs = fd.raddr.String() } return fd.net + ":" + ls + "->" + rs } func (fd *netFD) connect(la, ra syscall.Sockaddr, deadline time.Time) error { // Do not need to call fd.writeLock here, // because fd is not yet accessible to user, // so no concurrent operations are possible. switch err := syscall.Connect(fd.sysfd, ra); err { case syscall.EINPROGRESS, syscall.EALREADY, syscall.EINTR: case nil, syscall.EISCONN: if !deadline.IsZero() && deadline.Before(time.Now()) { return errTimeout } if err := fd.init(); err != nil { return err } return nil case syscall.EINVAL: // On Solaris we can see EINVAL if the socket has // already been accepted and closed by the server. // Treat this as a successful connection--writes to // the socket will see EOF. For details and a test // case in C see http://golang.org/issue/6828. if runtime.GOOS == "solaris" { return nil } fallthrough default: return err } if err := fd.init(); err != nil { return err } if !deadline.IsZero() { fd.setWriteDeadline(deadline) defer fd.setWriteDeadline(noDeadline) } for { // Performing multiple connect system calls on a // non-blocking socket under Unix variants does not // necessarily result in earlier errors being // returned. Instead, once runtime-integrated network // poller tells us that the socket is ready, get the // SO_ERROR socket option to see if the connection // succeeded or failed. See issue 7474 for further // details. if err := fd.pd.WaitWrite(); err != nil { return err } nerr, err := syscall.GetsockoptInt(fd.sysfd, syscall.SOL_SOCKET, syscall.SO_ERROR) if err != nil { return err } switch err := syscall.Errno(nerr); err { case syscall.EINPROGRESS, syscall.EALREADY, syscall.EINTR: case syscall.Errno(0), syscall.EISCONN: return nil default: return err } } } func (fd *netFD) destroy() { // Poller may want to unregister fd in readiness notification mechanism, // so this must be executed before closesocket. fd.pd.Close() closesocket(fd.sysfd) fd.sysfd = -1 runtime.SetFinalizer(fd, nil) } // Add a reference to this fd. // Returns an error if the fd cannot be used. func (fd *netFD) incref() error { if !fd.fdmu.Incref() { return errClosing } return nil } // Remove a reference to this FD and close if we've been asked to do so // (and there are no references left). func (fd *netFD) decref() { if fd.fdmu.Decref() { fd.destroy() } } // Add a reference to this fd and lock for reading. // Returns an error if the fd cannot be used. func (fd *netFD) readLock() error { if !fd.fdmu.RWLock(true) { return errClosing } return nil } // Unlock for reading and remove a reference to this FD. func (fd *netFD) readUnlock() { if fd.fdmu.RWUnlock(true) { fd.destroy() } } // Add a reference to this fd and lock for writing. // Returns an error if the fd cannot be used. func (fd *netFD) writeLock() error { if !fd.fdmu.RWLock(false) { return errClosing } return nil } // Unlock for writing and remove a reference to this FD. func (fd *netFD) writeUnlock() { if fd.fdmu.RWUnlock(false) { fd.destroy() } } func (fd *netFD) Close() error { fd.pd.Lock() // needed for both fd.incref(true) and pollDesc.Evict if !fd.fdmu.IncrefAndClose() { fd.pd.Unlock() return errClosing } // Unblock any I/O. Once it all unblocks and returns, // so that it cannot be referring to fd.sysfd anymore, // the final decref will close fd.sysfd. This should happen // fairly quickly, since all the I/O is non-blocking, and any // attempts to block in the pollDesc will return errClosing. doWakeup := fd.pd.Evict() fd.pd.Unlock() fd.decref() if doWakeup { fd.pd.Wakeup() } return nil } func (fd *netFD) shutdown(how int) error { if err := fd.incref(); err != nil { return err } defer fd.decref() err := syscall.Shutdown(fd.sysfd, how) if err != nil { return &OpError{"shutdown", fd.net, fd.laddr, err} } return nil } func (fd *netFD) closeRead() error { return fd.shutdown(syscall.SHUT_RD) } func (fd *netFD) closeWrite() error { return fd.shutdown(syscall.SHUT_WR) } func (fd *netFD) Read(p []byte) (n int, err error) { if err := fd.readLock(); err != nil { return 0, err } defer fd.readUnlock() if err := fd.pd.PrepareRead(); err != nil { return 0, &OpError{"read", fd.net, fd.raddr, err} } for { n, err = syscall.Read(int(fd.sysfd), p) if err != nil { n = 0 if err == syscall.EAGAIN { if err = fd.pd.WaitRead(); err == nil { continue } } } err = chkReadErr(n, err, fd) break } if err != nil && err != io.EOF { err = &OpError{"read", fd.net, fd.raddr, err} } return } func (fd *netFD) readFrom(p []byte) (n int, sa syscall.Sockaddr, err error) { if err := fd.readLock(); err != nil { return 0, nil, err } defer fd.readUnlock() if err := fd.pd.PrepareRead(); err != nil { return 0, nil, &OpError{"read", fd.net, fd.laddr, err} } for { n, sa, err = syscall.Recvfrom(fd.sysfd, p, 0) if err != nil { n = 0 if err == syscall.EAGAIN { if err = fd.pd.WaitRead(); err == nil { continue } } } err = chkReadErr(n, err, fd) break } if err != nil && err != io.EOF { err = &OpError{"read", fd.net, fd.laddr, err} } return } func (fd *netFD) readMsg(p []byte, oob []byte) (n, oobn, flags int, sa syscall.Sockaddr, err error) { if err := fd.readLock(); err != nil { return 0, 0, 0, nil, err } defer fd.readUnlock() if err := fd.pd.PrepareRead(); err != nil { return 0, 0, 0, nil, &OpError{"read", fd.net, fd.laddr, err} } for { n, oobn, flags, sa, err = syscall.Recvmsg(fd.sysfd, p, oob, 0) if err != nil { // TODO(dfc) should n and oobn be set to 0 if err == syscall.EAGAIN { if err = fd.pd.WaitRead(); err == nil { continue } } } err = chkReadErr(n, err, fd) break } if err != nil && err != io.EOF { err = &OpError{"read", fd.net, fd.laddr, err} } return } func chkReadErr(n int, err error, fd *netFD) error { if n == 0 && err == nil && fd.sotype != syscall.SOCK_DGRAM && fd.sotype != syscall.SOCK_RAW { return io.EOF } return err } func (fd *netFD) Write(p []byte) (nn int, err error) { if err := fd.writeLock(); err != nil { return 0, err } defer fd.writeUnlock() if err := fd.pd.PrepareWrite(); err != nil { return 0, &OpError{"write", fd.net, fd.raddr, err} } for { var n int n, err = syscall.Write(int(fd.sysfd), p[nn:]) if n > 0 { nn += n } if nn == len(p) { break } if err == syscall.EAGAIN { if err = fd.pd.WaitWrite(); err == nil { continue } } if err != nil { n = 0 break } if n == 0 { err = io.ErrUnexpectedEOF break } } if err != nil { err = &OpError{"write", fd.net, fd.raddr, err} } return nn, err } func (fd *netFD) writeTo(p []byte, sa syscall.Sockaddr) (n int, err error) { if err := fd.writeLock(); err != nil { return 0, err } defer fd.writeUnlock() if err := fd.pd.PrepareWrite(); err != nil { return 0, &OpError{"write", fd.net, fd.raddr, err} } for { err = syscall.Sendto(fd.sysfd, p, 0, sa) if err == syscall.EAGAIN { if err = fd.pd.WaitWrite(); err == nil { continue } } break } if err == nil { n = len(p) } else { err = &OpError{"write", fd.net, fd.raddr, err} } return } func (fd *netFD) writeMsg(p []byte, oob []byte, sa syscall.Sockaddr) (n int, oobn int, err error) { if err := fd.writeLock(); err != nil { return 0, 0, err } defer fd.writeUnlock() if err := fd.pd.PrepareWrite(); err != nil { return 0, 0, &OpError{"write", fd.net, fd.raddr, err} } for { n, err = syscall.SendmsgN(fd.sysfd, p, oob, sa, 0) if err == syscall.EAGAIN { if err = fd.pd.WaitWrite(); err == nil { continue } } break } if err == nil { oobn = len(oob) } else { err = &OpError{"write", fd.net, fd.raddr, err} } return } func (fd *netFD) accept() (netfd *netFD, err error) { if err := fd.readLock(); err != nil { return nil, err } defer fd.readUnlock() var s int var rsa syscall.Sockaddr if err = fd.pd.PrepareRead(); err != nil { return nil, &OpError{"accept", fd.net, fd.laddr, err} } for { s, rsa, err = accept(fd.sysfd) if err != nil { if err == syscall.EAGAIN { if err = fd.pd.WaitRead(); err == nil { continue } } else if err == syscall.ECONNABORTED { // This means that a socket on the listen queue was closed // before we Accept()ed it; it's a silly error, so try again. continue } return nil, &OpError{"accept", fd.net, fd.laddr, err} } break } if netfd, err = newFD(s, fd.family, fd.sotype, fd.net); err != nil { closesocket(s) return nil, err } if err = netfd.init(); err != nil { fd.Close() return nil, err } lsa, _ := syscall.Getsockname(netfd.sysfd) netfd.setAddr(netfd.addrFunc()(lsa), netfd.addrFunc()(rsa)) return netfd, nil } // tryDupCloexec indicates whether F_DUPFD_CLOEXEC should be used. // If the kernel doesn't support it, this is set to 0. var tryDupCloexec = int32(1) func dupCloseOnExec(fd int) (newfd int, err error) { if atomic.LoadInt32(&tryDupCloexec) == 1 { r0, _, e1 := syscall.Syscall(syscall.SYS_FCNTL, uintptr(fd), syscall.F_DUPFD_CLOEXEC, 0) if runtime.GOOS == "darwin" && e1 == syscall.EBADF { // On OS X 10.6 and below (but we only support // >= 10.6), F_DUPFD_CLOEXEC is unsupported // and fcntl there falls back (undocumented) // to doing an ioctl instead, returning EBADF // in this case because fd is not of the // expected device fd type. Treat it as // EINVAL instead, so we fall back to the // normal dup path. // TODO: only do this on 10.6 if we can detect 10.6 // cheaply. e1 = syscall.EINVAL } switch e1 { case 0: return int(r0), nil case syscall.EINVAL: // Old kernel. Fall back to the portable way // from now on. atomic.StoreInt32(&tryDupCloexec, 0) default: return -1, e1 } } return dupCloseOnExecOld(fd) } // dupCloseOnExecUnixOld is the traditional way to dup an fd and // set its O_CLOEXEC bit, using two system calls. func dupCloseOnExecOld(fd int) (newfd int, err error) { syscall.ForkLock.RLock() defer syscall.ForkLock.RUnlock() newfd, err = syscall.Dup(fd) if err != nil { return -1, err } syscall.CloseOnExec(newfd) return } func (fd *netFD) dup() (f *os.File, err error) { ns, err := dupCloseOnExec(fd.sysfd) if err != nil { return nil, &OpError{"dup", fd.net, fd.laddr, err} } // We want blocking mode for the new fd, hence the double negative. // This also puts the old fd into blocking mode, meaning that // I/O will block the thread instead of letting us use the epoll server. // Everything will still work, just with more threads. if err = syscall.SetNonblock(ns, false); err != nil { return nil, &OpError{"setnonblock", fd.net, fd.laddr, err} } return os.NewFile(uintptr(ns), fd.name()), nil } func closesocket(s int) error { return syscall.Close(s) } func skipRawSocketTests() (skip bool, skipmsg string, err error) { if os.Getuid() != 0 { return true, "skipping test; must be root", nil } return false, "", nil }