// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // A package of simple functions to manipulate arrays of bytes. // Analagous to the facilities of the strings package. package bytes import ( "unicode"; "utf8"; ) // Compare returns an integer comparing the two byte arrays lexicographically. // The result will be 0 if a==b, -1 if a < b, and +1 if a > b func Compare(a, b []byte) int { for i := 0; i < len(a) && i < len(b); i++ { switch { case a[i] > b[i]: return 1 case a[i] < b[i]: return -1 } } switch { case len(a) < len(b): return -1 case len(a) > len(b): return 1 } return 0 } // Equal returns a boolean reporting whether a == b. func Equal(a, b []byte) bool { if len(a) != len(b) { return false } for i := 0; i < len(a); i++ { if a[i] != b[i] { return false } } return true } // Copy copies bytes from src to dst, // stopping when either all of src has been copied // or all of dst has been filled. // It returns the number of bytes copied. func Copy(dst, src []byte) int { if len(src) > len(dst) { src = src[0:len(dst)]; } for i, x := range src { dst[i] = x } return len(src) } // explode splits s into an array of UTF-8 sequences, one per Unicode character (still arrays of bytes), // up to a maximum of n byte arrays. Invalid UTF-8 sequences are chopped into individual bytes. func explode(s []byte, n int) [][]byte { if n <= 0 { n = len(s); } a := make([][]byte, n); var size int; na := 0; for len(s) > 0 { if na+1 >= n { a[na] = s; na++; break } _, size = utf8.DecodeRune(s); a[na] = s[0:size]; s = s[size:len(s)]; na++; } return a[0:na] } // Count counts the number of non-overlapping instances of sep in s. func Count(s, sep []byte) int { if len(sep) == 0 { return utf8.RuneCount(s)+1 } c := sep[0]; n := 0; for i := 0; i+len(sep) <= len(s); i++ { if s[i] == c && (len(sep) == 1 || Equal(s[i:i+len(sep)], sep)) { n++; i += len(sep)-1 } } return n } // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. func Index(s, sep []byte) int { n := len(sep); if n == 0 { return 0 } c := sep[0]; for i := 0; i+n <= len(s); i++ { if s[i] == c && (n == 1 || Equal(s[i:i+n], sep)) { return i } } return -1 } // Split splits the array s around each instance of sep, returning an array of subarrays of s. // If sep is empty, Split splits s after each UTF-8 sequence. // If n > 0, split Splits s into at most n subarrays; the last subarray will contain an unsplit remainder. func Split(s, sep []byte, n int) [][]byte { if len(sep) == 0 { return explode(s, n) } if n <= 0 { n = Count(s, sep) + 1; } c := sep[0]; start := 0; a := make([][]byte, n); na := 0; for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ { if s[i] == c && (len(sep) == 1 || Equal(s[i:i+len(sep)], sep)) { a[na] = s[start:i]; na++; start = i+len(sep); i += len(sep)-1; } } a[na] = s[start:len(s)]; return a[0:na+1] } // Join concatenates the elements of a to create a single byte array. The separator // sep is placed between elements in the resulting array. func Join(a [][]byte, sep []byte) []byte { if len(a) == 0 { return []byte{} } if len(a) == 1 { return a[0] } n := len(sep) * (len(a)-1); for i := 0; i < len(a); i++ { n += len(a[i]) } b := make([]byte, n); bp := 0; for i := 0; i < len(a); i++ { s := a[i]; for j := 0; j < len(s); j++ { b[bp] = s[j]; bp++ } if i + 1 < len(a) { s = sep; for j := 0; j < len(s); j++ { b[bp] = s[j]; bp++ } } } return b } // HasPrefix tests whether the byte array s begins with prefix. func HasPrefix(s, prefix []byte) bool { return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix) } // HasSuffix tests whether the byte array s ends with suffix. func HasSuffix(s, suffix []byte) bool { return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):len(s)], suffix) } // Map returns a copy of the byte array s with all its characters modified // according to the mapping function. func Map(mapping func(rune int) int, s []byte) []byte { // In the worst case, the array can grow when mapped, making // things unpleasant. But it's so rare we barge in assuming it's // fine. It could also shrink but that falls out naturally. maxbytes := len(s); // length of b nbytes := 0; // number of bytes encoded in b b := make([]byte, maxbytes); for i := 0; i < len(s); { wid := 1; rune := int(s[i]); if rune < utf8.RuneSelf { rune = mapping(rune); } else { rune, wid = utf8.DecodeRune(s[i:len(s)]); } rune = mapping(rune); if nbytes + utf8.RuneLen(rune) > maxbytes { // Grow the buffer. maxbytes = maxbytes*2 + utf8.UTFMax; nb := make([]byte, maxbytes); for i, c := range b[0:nbytes] { nb[i] = c } b = nb; } nbytes += utf8.EncodeRune(rune, b[nbytes:maxbytes]); i += wid; } return b[0:nbytes]; } // ToUpper returns a copy of the byte array s with all Unicode letters mapped to their upper case. func ToUpper(s []byte) []byte { return Map(unicode.ToUpper, s) } // ToUpper returns a copy of the byte array s with all Unicode letters mapped to their lower case. func ToLower(s []byte) []byte { return Map(unicode.ToLower, s) } // ToTitle returns a copy of the byte array s with all Unicode letters mapped to their title case. func Title(s []byte) []byte { return Map(unicode.ToTitle, s) } // Trim returns a slice of the string s, with all leading and trailing white space // removed, as defined by Unicode. func TrimSpace(s []byte) []byte { start, end := 0, len(s); for start < end { wid := 1; rune := int(s[start]); if rune >= utf8.RuneSelf { rune, wid = utf8.DecodeRune(s[start:end]) } if !unicode.IsSpace(rune) { break; } start += wid; } for start < end { wid := 1; rune := int(s[end-1]); if rune >= utf8.RuneSelf { // Back up carefully looking for beginning of rune. Mustn't pass start. for wid = 2; start <= end-wid && !utf8.RuneStart(s[end-wid]); wid++ { } if start > end-wid { // invalid UTF-8 sequence; stop processing return s[start:end] } rune, wid = utf8.DecodeRune(s[end-wid:end]); } if !unicode.IsSpace(rune) { break; } end -= wid; } return s[start:end]; } // How big to make a byte array when growing. // Heuristic: Scale by 50% to give n log n time. func resize(n int) int { if n < 16 { n = 16 } return n + n/2; } // Add appends the contents of t to the end of s and returns the result. // If s has enough capacity, it is extended in place; otherwise a // new array is allocated and returned. func Add(s, t []byte) []byte { lens := len(s); lent := len(t); if lens + lent <= cap(s) { s = s[0:lens+lent]; } else { news := make([]byte, lens+lent, resize(lens+lent)); Copy(news, s); s = news; } Copy(s[lens:lens+lent], t); return s; } // AddByte appends byte b to the end of s and returns the result. // If s has enough capacity, it is extended in place; otherwise a // new array is allocated and returned. func AddByte(s []byte, t byte) []byte { lens := len(s); if lens + 1 <= cap(s) { s = s[0:lens+1]; } else { news := make([]byte, lens+1, resize(lens+1)); Copy(news, s); s = news; } s[lens] = t; return s; }