// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package des import ( "encoding/binary" ) func cryptBlock(subkeys []uint64, dst, src []byte, decrypt bool) { b := binary.BigEndian.Uint64(src) b = permuteBlock(b, initialPermutation[:]) left, right := uint32(b>>32), uint32(b) var subkey uint64 for i := 0; i < 16; i++ { if decrypt { subkey = subkeys[15-i] } else { subkey = subkeys[i] } left, right = right, left^feistel(right, subkey) } // switch left & right and perform final permutation preOutput := (uint64(right) << 32) | uint64(left) binary.BigEndian.PutUint64(dst, permuteBlock(preOutput, finalPermutation[:])) } // Encrypt one block from src into dst, using the subkeys. func encryptBlock(subkeys []uint64, dst, src []byte) { cryptBlock(subkeys, dst, src, false) } // Decrypt one block from src into dst, using the subkeys. func decryptBlock(subkeys []uint64, dst, src []byte) { cryptBlock(subkeys, dst, src, true) } // DES Feistel function func feistel(right uint32, key uint64) (result uint32) { sBoxLocations := key ^ permuteBlock(uint64(right), expansionFunction[:]) var sBoxResult uint32 for i := uint8(0); i < 8; i++ { sBoxLocation := uint8(sBoxLocations>>42) & 0x3f sBoxLocations <<= 6 // row determined by 1st and 6th bit row := (sBoxLocation & 0x1) | ((sBoxLocation & 0x20) >> 4) // column is middle four bits column := (sBoxLocation >> 1) & 0xf sBoxResult |= uint32(sBoxes[i][row][column]) << (4 * (7 - i)) } return uint32(permuteBlock(uint64(sBoxResult), permutationFunction[:])) } // general purpose function to perform DES block permutations func permuteBlock(src uint64, permutation []uint8) (block uint64) { for position, n := range permutation { bit := (src >> n) & 1 block |= bit << uint((len(permutation)-1)-position) } return } // creates 16 28-bit blocks rotated according // to the rotation schedule func ksRotate(in uint32) (out []uint32) { out = make([]uint32, 16) last := in for i := 0; i < 16; i++ { // 28-bit circular left shift left := (last << (4 + ksRotations[i])) >> 4 right := (last << 4) >> (32 - ksRotations[i]) out[i] = left | right last = out[i] } return } // creates 16 56-bit subkeys from the original key func (c *Cipher) generateSubkeys(keyBytes []byte) { // apply PC1 permutation to key key := binary.BigEndian.Uint64(keyBytes) permutedKey := permuteBlock(key, permutedChoice1[:]) // rotate halves of permuted key according to the rotation schedule leftRotations := ksRotate(uint32(permutedKey >> 28)) rightRotations := ksRotate(uint32(permutedKey<<4) >> 4) // generate subkeys for i := 0; i < 16; i++ { // combine halves to form 56-bit input to PC2 pc2Input := uint64(leftRotations[i])<<28 | uint64(rightRotations[i]) // apply PC2 permutation to 7 byte input c.subkeys[i] = permuteBlock(pc2Input, permutedChoice2[:]) } }