// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package base32 implements base32 encoding as specified by RFC 4648. package base32 import ( "bytes" "io" "strconv" "strings" ) /* * Encodings */ // An Encoding is a radix 32 encoding/decoding scheme, defined by a // 32-character alphabet. The most common is the "base32" encoding // introduced for SASL GSSAPI and standardized in RFC 4648. // The alternate "base32hex" encoding is used in DNSSEC. type Encoding struct { encode string decodeMap [256]byte } const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" // NewEncoding returns a new Encoding defined by the given alphabet, // which must be a 32-byte string. func NewEncoding(encoder string) *Encoding { e := new(Encoding) e.encode = encoder for i := 0; i < len(e.decodeMap); i++ { e.decodeMap[i] = 0xFF } for i := 0; i < len(encoder); i++ { e.decodeMap[encoder[i]] = byte(i) } return e } // StdEncoding is the standard base32 encoding, as defined in // RFC 4648. var StdEncoding = NewEncoding(encodeStd) // HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648. // It is typically used in DNS. var HexEncoding = NewEncoding(encodeHex) var removeNewlinesMapper = func(r rune) rune { if r == '\r' || r == '\n' { return -1 } return r } /* * Encoder */ // Encode encodes src using the encoding enc, writing // EncodedLen(len(src)) bytes to dst. // // The encoding pads the output to a multiple of 8 bytes, // so Encode is not appropriate for use on individual blocks // of a large data stream. Use NewEncoder() instead. func (enc *Encoding) Encode(dst, src []byte) { if len(src) == 0 { return } for len(src) > 0 { dst[0] = 0 dst[1] = 0 dst[2] = 0 dst[3] = 0 dst[4] = 0 dst[5] = 0 dst[6] = 0 dst[7] = 0 // Unpack 8x 5-bit source blocks into a 5 byte // destination quantum switch len(src) { default: dst[7] |= src[4] & 0x1F dst[6] |= src[4] >> 5 fallthrough case 4: dst[6] |= (src[3] << 3) & 0x1F dst[5] |= (src[3] >> 2) & 0x1F dst[4] |= src[3] >> 7 fallthrough case 3: dst[4] |= (src[2] << 1) & 0x1F dst[3] |= (src[2] >> 4) & 0x1F fallthrough case 2: dst[3] |= (src[1] << 4) & 0x1F dst[2] |= (src[1] >> 1) & 0x1F dst[1] |= (src[1] >> 6) & 0x1F fallthrough case 1: dst[1] |= (src[0] << 2) & 0x1F dst[0] |= src[0] >> 3 } // Encode 5-bit blocks using the base32 alphabet for j := 0; j < 8; j++ { dst[j] = enc.encode[dst[j]] } // Pad the final quantum if len(src) < 5 { dst[7] = '=' if len(src) < 4 { dst[6] = '=' dst[5] = '=' if len(src) < 3 { dst[4] = '=' if len(src) < 2 { dst[3] = '=' dst[2] = '=' } } } break } src = src[5:] dst = dst[8:] } } // EncodeToString returns the base32 encoding of src. func (enc *Encoding) EncodeToString(src []byte) string { buf := make([]byte, enc.EncodedLen(len(src))) enc.Encode(buf, src) return string(buf) } type encoder struct { err error enc *Encoding w io.Writer buf [5]byte // buffered data waiting to be encoded nbuf int // number of bytes in buf out [1024]byte // output buffer } func (e *encoder) Write(p []byte) (n int, err error) { if e.err != nil { return 0, e.err } // Leading fringe. if e.nbuf > 0 { var i int for i = 0; i < len(p) && e.nbuf < 5; i++ { e.buf[e.nbuf] = p[i] e.nbuf++ } n += i p = p[i:] if e.nbuf < 5 { return } e.enc.Encode(e.out[0:], e.buf[0:]) if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { return n, e.err } e.nbuf = 0 } // Large interior chunks. for len(p) >= 5 { nn := len(e.out) / 8 * 5 if nn > len(p) { nn = len(p) nn -= nn % 5 } e.enc.Encode(e.out[0:], p[0:nn]) if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { return n, e.err } n += nn p = p[nn:] } // Trailing fringe. for i := 0; i < len(p); i++ { e.buf[i] = p[i] } e.nbuf = len(p) n += len(p) return } // Close flushes any pending output from the encoder. // It is an error to call Write after calling Close. func (e *encoder) Close() error { // If there's anything left in the buffer, flush it out if e.err == nil && e.nbuf > 0 { e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) e.nbuf = 0 _, e.err = e.w.Write(e.out[0:8]) } return e.err } // NewEncoder returns a new base32 stream encoder. Data written to // the returned writer will be encoded using enc and then written to w. // Base32 encodings operate in 5-byte blocks; when finished // writing, the caller must Close the returned encoder to flush any // partially written blocks. func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { return &encoder{enc: enc, w: w} } // EncodedLen returns the length in bytes of the base32 encoding // of an input buffer of length n. func (enc *Encoding) EncodedLen(n int) int { return (n + 4) / 5 * 8 } /* * Decoder */ type CorruptInputError int64 func (e CorruptInputError) Error() string { return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) } // decode is like Decode but returns an additional 'end' value, which // indicates if end-of-message padding was encountered and thus any // additional data is an error. This method assumes that src has been // stripped of all supported whitespace ('\r' and '\n'). func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { olen := len(src) for len(src) > 0 && !end { // Decode quantum using the base32 alphabet var dbuf [8]byte dlen := 8 for j := 0; j < 8; { if len(src) == 0 { return n, false, CorruptInputError(olen - len(src) - j) } in := src[0] src = src[1:] if in == '=' && j >= 2 && len(src) < 8 { // We've reached the end and there's padding if len(src)+j < 8-1 { // not enough padding return n, false, CorruptInputError(olen) } for k := 0; k < 8-1-j; k++ { if len(src) > k && src[k] != '=' { // incorrect padding return n, false, CorruptInputError(olen - len(src) + k - 1) } } dlen, end = j, true // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing // the five valid padding lengths, and Section 9 "Illustrations and // Examples" for an illustration for how the 1st, 3rd and 6th base32 // src bytes do not yield enough information to decode a dst byte. if dlen == 1 || dlen == 3 || dlen == 6 { return n, false, CorruptInputError(olen - len(src) - 1) } break } dbuf[j] = enc.decodeMap[in] if dbuf[j] == 0xFF { return n, false, CorruptInputError(olen - len(src) - 1) } j++ } // Pack 8x 5-bit source blocks into 5 byte destination // quantum switch dlen { case 8: dst[4] = dbuf[6]<<5 | dbuf[7] fallthrough case 7: dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 fallthrough case 5: dst[2] = dbuf[3]<<4 | dbuf[4]>>1 fallthrough case 4: dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 fallthrough case 2: dst[0] = dbuf[0]<<3 | dbuf[1]>>2 } dst = dst[5:] switch dlen { case 2: n += 1 case 4: n += 2 case 5: n += 3 case 7: n += 4 case 8: n += 5 } } return n, end, nil } // Decode decodes src using the encoding enc. It writes at most // DecodedLen(len(src)) bytes to dst and returns the number of bytes // written. If src contains invalid base32 data, it will return the // number of bytes successfully written and CorruptInputError. // New line characters (\r and \n) are ignored. func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { src = bytes.Map(removeNewlinesMapper, src) n, _, err = enc.decode(dst, src) return } // DecodeString returns the bytes represented by the base32 string s. func (enc *Encoding) DecodeString(s string) ([]byte, error) { s = strings.Map(removeNewlinesMapper, s) dbuf := make([]byte, enc.DecodedLen(len(s))) n, err := enc.Decode(dbuf, []byte(s)) return dbuf[:n], err } type decoder struct { err error enc *Encoding r io.Reader end bool // saw end of message buf [1024]byte // leftover input nbuf int out []byte // leftover decoded output outbuf [1024 / 8 * 5]byte } func (d *decoder) Read(p []byte) (n int, err error) { if d.err != nil { return 0, d.err } // Use leftover decoded output from last read. if len(d.out) > 0 { n = copy(p, d.out) d.out = d.out[n:] return n, nil } // Read a chunk. nn := len(p) / 5 * 8 if nn < 8 { nn = 8 } if nn > len(d.buf) { nn = len(d.buf) } nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf) d.nbuf += nn if d.nbuf < 8 { return 0, d.err } // Decode chunk into p, or d.out and then p if p is too small. nr := d.nbuf / 8 * 8 nw := d.nbuf / 8 * 5 if nw > len(p) { nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) d.out = d.outbuf[0:nw] n = copy(p, d.out) d.out = d.out[n:] } else { n, d.end, d.err = d.enc.decode(p, d.buf[0:nr]) } d.nbuf -= nr for i := 0; i < d.nbuf; i++ { d.buf[i] = d.buf[i+nr] } if d.err == nil { d.err = err } return n, d.err } type newlineFilteringReader struct { wrapped io.Reader } func (r *newlineFilteringReader) Read(p []byte) (int, error) { n, err := r.wrapped.Read(p) for n > 0 { offset := 0 for i, b := range p[0:n] { if b != '\r' && b != '\n' { if i != offset { p[offset] = b } offset++ } } if offset > 0 { return offset, err } // Previous buffer entirely whitespace, read again n, err = r.wrapped.Read(p) } return n, err } // NewDecoder constructs a new base32 stream decoder. func NewDecoder(enc *Encoding, r io.Reader) io.Reader { return &decoder{enc: enc, r: &newlineFilteringReader{r}} } // DecodedLen returns the maximum length in bytes of the decoded data // corresponding to n bytes of base32-encoded data. func (enc *Encoding) DecodedLen(n int) int { return n / 8 * 5 }