// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gob import ( "bytes" "encoding" "math" "reflect" "unsafe" ) const uint64Size = int(unsafe.Sizeof(uint64(0))) // encoderState is the global execution state of an instance of the encoder. // Field numbers are delta encoded and always increase. The field // number is initialized to -1 so 0 comes out as delta(1). A delta of // 0 terminates the structure. type encoderState struct { enc *Encoder b *bytes.Buffer sendZero bool // encoding an array element or map key/value pair; send zero values fieldnum int // the last field number written. buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. next *encoderState // for free list } func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState { e := enc.freeList if e == nil { e = new(encoderState) e.enc = enc } else { enc.freeList = e.next } e.sendZero = false e.fieldnum = 0 e.b = b return e } func (enc *Encoder) freeEncoderState(e *encoderState) { e.next = enc.freeList enc.freeList = e } // Unsigned integers have a two-state encoding. If the number is less // than 128 (0 through 0x7F), its value is written directly. // Otherwise the value is written in big-endian byte order preceded // by the byte length, negated. // encodeUint writes an encoded unsigned integer to state.b. func (state *encoderState) encodeUint(x uint64) { if x <= 0x7F { err := state.b.WriteByte(uint8(x)) if err != nil { error_(err) } return } i := uint64Size for x > 0 { state.buf[i] = uint8(x) x >>= 8 i-- } state.buf[i] = uint8(i - uint64Size) // = loop count, negated _, err := state.b.Write(state.buf[i : uint64Size+1]) if err != nil { error_(err) } } // encodeInt writes an encoded signed integer to state.w. // The low bit of the encoding says whether to bit complement the (other bits of the) // uint to recover the int. func (state *encoderState) encodeInt(i int64) { var x uint64 if i < 0 { x = uint64(^i<<1) | 1 } else { x = uint64(i << 1) } state.encodeUint(uint64(x)) } // encOp is the signature of an encoding operator for a given type. type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) // The 'instructions' of the encoding machine type encInstr struct { op encOp field int // field number indir int // how many pointer indirections to reach the value in the struct offset uintptr // offset in the structure of the field to encode } // update emits a field number and updates the state to record its value for delta encoding. // If the instruction pointer is nil, it does nothing func (state *encoderState) update(instr *encInstr) { if instr != nil { state.encodeUint(uint64(instr.field - state.fieldnum)) state.fieldnum = instr.field } } // Each encoder for a composite is responsible for handling any // indirections associated with the elements of the data structure. // If any pointer so reached is nil, no bytes are written. If the // data item is zero, no bytes are written. Single values - ints, // strings etc. - are indirected before calling their encoders. // Otherwise, the output (for a scalar) is the field number, as an // encoded integer, followed by the field data in its appropriate // format. // encIndirect dereferences p indir times and returns the result. func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { for ; indir > 0; indir-- { p = *(*unsafe.Pointer)(p) if p == nil { return unsafe.Pointer(nil) } } return p } // encBool encodes the bool with address p as an unsigned 0 or 1. func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { b := *(*bool)(p) if b || state.sendZero { state.update(i) if b { state.encodeUint(1) } else { state.encodeUint(0) } } } // encInt encodes the int with address p. func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeInt(v) } } // encUint encodes the uint with address p. func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeUint(v) } } // encInt8 encodes the int8 with address p. func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int8)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeInt(v) } } // encUint8 encodes the uint8 with address p. func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint8)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeUint(v) } } // encInt16 encodes the int16 with address p. func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int16)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeInt(v) } } // encUint16 encodes the uint16 with address p. func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint16)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeUint(v) } } // encInt32 encodes the int32 with address p. func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int32)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeInt(v) } } // encUint encodes the uint32 with address p. func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint32)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeUint(v) } } // encInt64 encodes the int64 with address p. func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { v := *(*int64)(p) if v != 0 || state.sendZero { state.update(i) state.encodeInt(v) } } // encInt64 encodes the uint64 with address p. func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { v := *(*uint64)(p) if v != 0 || state.sendZero { state.update(i) state.encodeUint(v) } } // encUintptr encodes the uintptr with address p. func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uintptr)(p)) if v != 0 || state.sendZero { state.update(i) state.encodeUint(v) } } // floatBits returns a uint64 holding the bits of a floating-point number. // Floating-point numbers are transmitted as uint64s holding the bits // of the underlying representation. They are sent byte-reversed, with // the exponent end coming out first, so integer floating point numbers // (for example) transmit more compactly. This routine does the // swizzling. func floatBits(f float64) uint64 { u := math.Float64bits(f) var v uint64 for i := 0; i < 8; i++ { v <<= 8 v |= u & 0xFF u >>= 8 } return v } // encFloat32 encodes the float32 with address p. func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { f := *(*float32)(p) if f != 0 || state.sendZero { v := floatBits(float64(f)) state.update(i) state.encodeUint(v) } } // encFloat64 encodes the float64 with address p. func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { f := *(*float64)(p) if f != 0 || state.sendZero { state.update(i) v := floatBits(f) state.encodeUint(v) } } // encComplex64 encodes the complex64 with address p. // Complex numbers are just a pair of floating-point numbers, real part first. func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) { c := *(*complex64)(p) if c != 0+0i || state.sendZero { rpart := floatBits(float64(real(c))) ipart := floatBits(float64(imag(c))) state.update(i) state.encodeUint(rpart) state.encodeUint(ipart) } } // encComplex128 encodes the complex128 with address p. func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { c := *(*complex128)(p) if c != 0+0i || state.sendZero { rpart := floatBits(real(c)) ipart := floatBits(imag(c)) state.update(i) state.encodeUint(rpart) state.encodeUint(ipart) } } // encUint8Array encodes the byte slice whose header has address p. // Byte arrays are encoded as an unsigned count followed by the raw bytes. func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { b := *(*[]byte)(p) if len(b) > 0 || state.sendZero { state.update(i) state.encodeUint(uint64(len(b))) state.b.Write(b) } } // encString encodes the string whose header has address p. // Strings are encoded as an unsigned count followed by the raw bytes. func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { s := *(*string)(p) if len(s) > 0 || state.sendZero { state.update(i) state.encodeUint(uint64(len(s))) state.b.WriteString(s) } } // encStructTerminator encodes the end of an encoded struct // as delta field number of 0. func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { state.encodeUint(0) } // Execution engine // encEngine an array of instructions indexed by field number of the encoding // data, typically a struct. It is executed top to bottom, walking the struct. type encEngine struct { instr []encInstr } const singletonField = 0 // encodeSingle encodes a single top-level non-struct value. func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { state := enc.newEncoderState(b) state.fieldnum = singletonField // There is no surrounding struct to frame the transmission, so we must // generate data even if the item is zero. To do this, set sendZero. state.sendZero = true instr := &engine.instr[singletonField] p := basep // offset will be zero if instr.indir > 0 { if p = encIndirect(p, instr.indir); p == nil { return } } instr.op(instr, state, p) enc.freeEncoderState(state) } // encodeStruct encodes a single struct value. func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { state := enc.newEncoderState(b) state.fieldnum = -1 for i := 0; i < len(engine.instr); i++ { instr := &engine.instr[i] p := unsafe.Pointer(uintptr(basep) + instr.offset) if instr.indir > 0 { if p = encIndirect(p, instr.indir); p == nil { continue } } instr.op(instr, state, p) } enc.freeEncoderState(state) } // encodeArray encodes the array whose 0th element is at p. func (enc *Encoder) encodeArray(b *bytes.Buffer, p unsafe.Pointer, op encOp, elemWid uintptr, elemIndir int, length int) { state := enc.newEncoderState(b) state.fieldnum = -1 state.sendZero = true state.encodeUint(uint64(length)) for i := 0; i < length; i++ { elemp := p if elemIndir > 0 { up := encIndirect(elemp, elemIndir) if up == nil { errorf("encodeArray: nil element") } elemp = up } op(nil, state, elemp) p = unsafe.Pointer(uintptr(p) + elemWid) } enc.freeEncoderState(state) } // encodeReflectValue is a helper for maps. It encodes the value v. func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { for i := 0; i < indir && v.IsValid(); i++ { v = reflect.Indirect(v) } if !v.IsValid() { errorf("encodeReflectValue: nil element") } op(nil, state, unsafeAddr(v)) } // encodeMap encodes a map as unsigned count followed by key:value pairs. // Because map internals are not exposed, we must use reflection rather than // addresses. func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { state := enc.newEncoderState(b) state.fieldnum = -1 state.sendZero = true keys := mv.MapKeys() state.encodeUint(uint64(len(keys))) for _, key := range keys { encodeReflectValue(state, key, keyOp, keyIndir) encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) } enc.freeEncoderState(state) } // encodeInterface encodes the interface value iv. // To send an interface, we send a string identifying the concrete type, followed // by the type identifier (which might require defining that type right now), followed // by the concrete value. A nil value gets sent as the empty string for the name, // followed by no value. func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { // Gobs can encode nil interface values but not typed interface // values holding nil pointers, since nil pointers point to no value. elem := iv.Elem() if elem.Kind() == reflect.Ptr && elem.IsNil() { errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) } state := enc.newEncoderState(b) state.fieldnum = -1 state.sendZero = true if iv.IsNil() { state.encodeUint(0) return } ut := userType(iv.Elem().Type()) registerLock.RLock() name, ok := concreteTypeToName[ut.base] registerLock.RUnlock() if !ok { errorf("type not registered for interface: %s", ut.base) } // Send the name. state.encodeUint(uint64(len(name))) _, err := state.b.WriteString(name) if err != nil { error_(err) } // Define the type id if necessary. enc.sendTypeDescriptor(enc.writer(), state, ut) // Send the type id. enc.sendTypeId(state, ut) // Encode the value into a new buffer. Any nested type definitions // should be written to b, before the encoded value. enc.pushWriter(b) data := new(bytes.Buffer) data.Write(spaceForLength) enc.encode(data, elem, ut) if enc.err != nil { error_(enc.err) } enc.popWriter() enc.writeMessage(b, data) if enc.err != nil { error_(err) } enc.freeEncoderState(state) } // isZero reports whether the value is the zero of its type. func isZero(val reflect.Value) bool { switch val.Kind() { case reflect.Array: for i := 0; i < val.Len(); i++ { if !isZero(val.Index(i)) { return false } } return true case reflect.Map, reflect.Slice, reflect.String: return val.Len() == 0 case reflect.Bool: return !val.Bool() case reflect.Complex64, reflect.Complex128: return val.Complex() == 0 case reflect.Chan, reflect.Func, reflect.Ptr: return val.IsNil() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return val.Int() == 0 case reflect.Float32, reflect.Float64: return val.Float() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return val.Uint() == 0 case reflect.Struct: for i := 0; i < val.NumField(); i++ { if !isZero(val.Field(i)) { return false } } return true } panic("unknown type in isZero " + val.Type().String()) } // encGobEncoder encodes a value that implements the GobEncoder interface. // The data is sent as a byte array. func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflect.Value) { // TODO: should we catch panics from the called method? var data []byte var err error // We know it's one of these. switch ut.externalEnc { case xGob: data, err = v.Interface().(GobEncoder).GobEncode() case xBinary: data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() case xText: data, err = v.Interface().(encoding.TextMarshaler).MarshalText() } if err != nil { error_(err) } state := enc.newEncoderState(b) state.fieldnum = -1 state.encodeUint(uint64(len(data))) state.b.Write(data) enc.freeEncoderState(state) } var encOpTable = [...]encOp{ reflect.Bool: encBool, reflect.Int: encInt, reflect.Int8: encInt8, reflect.Int16: encInt16, reflect.Int32: encInt32, reflect.Int64: encInt64, reflect.Uint: encUint, reflect.Uint8: encUint8, reflect.Uint16: encUint16, reflect.Uint32: encUint32, reflect.Uint64: encUint64, reflect.Uintptr: encUintptr, reflect.Float32: encFloat32, reflect.Float64: encFloat64, reflect.Complex64: encComplex64, reflect.Complex128: encComplex128, reflect.String: encString, } // encOpFor returns (a pointer to) the encoding op for the base type under rt and // the indirection count to reach it. func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) { ut := userType(rt) // If the type implements GobEncoder, we handle it without further processing. if ut.externalEnc != 0 { return enc.gobEncodeOpFor(ut) } // If this type is already in progress, it's a recursive type (e.g. map[string]*T). // Return the pointer to the op we're already building. if opPtr := inProgress[rt]; opPtr != nil { return opPtr, ut.indir } typ := ut.base indir := ut.indir k := typ.Kind() var op encOp if int(k) < len(encOpTable) { op = encOpTable[k] } if op == nil { inProgress[rt] = &op // Special cases switch t := typ; t.Kind() { case reflect.Slice: if t.Elem().Kind() == reflect.Uint8 { op = encUint8Array break } // Slices have a header; we decode it to find the underlying array. elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { slice := (*reflect.SliceHeader)(p) if !state.sendZero && slice.Len == 0 { return } state.update(i) state.enc.encodeArray(state.b, unsafe.Pointer(slice.Data), *elemOp, t.Elem().Size(), elemIndir, int(slice.Len)) } case reflect.Array: // True arrays have size in the type. elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { state.update(i) state.enc.encodeArray(state.b, p, *elemOp, t.Elem().Size(), elemIndir, t.Len()) } case reflect.Map: keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress) elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { // Maps cannot be accessed by moving addresses around the way // that slices etc. can. We must recover a full reflection value for // the iteration. v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() mv := reflect.Indirect(v) // We send zero-length (but non-nil) maps because the // receiver might want to use the map. (Maps don't use append.) if !state.sendZero && mv.IsNil() { return } state.update(i) state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) } case reflect.Struct: // Generate a closure that calls out to the engine for the nested type. enc.getEncEngine(userType(typ)) info := mustGetTypeInfo(typ) op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { state.update(i) // indirect through info to delay evaluation for recursive structs state.enc.encodeStruct(state.b, info.encoder, p) } case reflect.Interface: op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { // Interfaces transmit the name and contents of the concrete // value they contain. v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() iv := reflect.Indirect(v) if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { return } state.update(i) state.enc.encodeInterface(state.b, iv) } } } if op == nil { errorf("can't happen: encode type %s", rt) } return &op, indir } // gobEncodeOpFor returns the op for a type that is known to implement // GobEncoder. func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { rt := ut.user if ut.encIndir == -1 { rt = reflect.PtrTo(rt) } else if ut.encIndir > 0 { for i := int8(0); i < ut.encIndir; i++ { rt = rt.Elem() } } var op encOp op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { var v reflect.Value if ut.encIndir == -1 { // Need to climb up one level to turn value into pointer. v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem() } else { v = reflect.NewAt(rt, p).Elem() } if !state.sendZero && isZero(v) { return } state.update(i) state.enc.encodeGobEncoder(state.b, ut, v) } return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. } // compileEnc returns the engine to compile the type. func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine { srt := ut.base engine := new(encEngine) seen := make(map[reflect.Type]*encOp) rt := ut.base if ut.externalEnc != 0 { rt = ut.user } if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { f := srt.Field(fieldNum) if !isSent(&f) { continue } op, indir := enc.encOpFor(f.Type, seen) engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)}) wireFieldNum++ } if srt.NumField() > 0 && len(engine.instr) == 0 { errorf("type %s has no exported fields", rt) } engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0}) } else { engine.instr = make([]encInstr, 1) op, indir := enc.encOpFor(rt, seen) engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero } return engine } // getEncEngine returns the engine to compile the type. // typeLock must be held (or we're in initialization and guaranteed single-threaded). func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine { info, err1 := getTypeInfo(ut) if err1 != nil { error_(err1) } if info.encoder == nil { // Assign the encEngine now, so recursive types work correctly. But... info.encoder = new(encEngine) // ... if we fail to complete building the engine, don't cache the half-built machine. // Doing this here means we won't cache a type that is itself OK but // that contains a nested type that won't compile. The result is consistent // error behavior when Encode is called multiple times on the top-level type. ok := false defer func() { if !ok { info.encoder = nil } }() info.encoder = enc.compileEnc(ut) ok = true } return info.encoder } // lockAndGetEncEngine is a function that locks and compiles. // This lets us hold the lock only while compiling, not when encoding. func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine { typeLock.Lock() defer typeLock.Unlock() return enc.getEncEngine(ut) } func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) { defer catchError(&enc.err) engine := enc.lockAndGetEncEngine(ut) indir := ut.indir if ut.externalEnc != 0 { indir = int(ut.encIndir) } for i := 0; i < indir; i++ { value = reflect.Indirect(value) } if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { enc.encodeStruct(b, engine, unsafeAddr(value)) } else { enc.encodeSingle(b, engine, unsafeAddr(value)) } }