// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // A parser for "old" Go source files using the old semicolon syntax. // Input may be provided in a variety of forms (see the various Parse* // functions); the output is an abstract syntax tree (AST) representing // the Go source. The oldParser is invoked through one of the Parse* // functions. // // NOTE: This package is deprecated and will be removed once all Go code // has been converted to using the new syntax and after a reasonable // grace period. // package oldParser import ( "container/vector" "fmt" "go/ast" "go/scanner" "go/token" ) // noPos is used when there is no corresponding source position for a token. var noPos token.Position // The mode parameter to the Parse* functions is a set of flags (or 0). // They control the amount of source code parsed and other optional // parser functionality. // const ( PackageClauseOnly uint = 1 << iota // parsing stops after package clause ImportsOnly // parsing stops after import declarations ParseComments // parse comments and add them to AST Trace // print a trace of parsed productions ) // The parser structure holds the parser's internal state. type parser struct { scanner.ErrorVector scanner scanner.Scanner // Tracing/debugging mode uint // parsing mode trace bool // == (mode & Trace != 0) indent uint // indentation used for tracing output // Comments comments *ast.CommentGroup // list of collected comments lastComment *ast.CommentGroup // last comment in the comments list leadComment *ast.CommentGroup // the last lead comment lineComment *ast.CommentGroup // the last line comment // Next token pos token.Position // token position tok token.Token // one token look-ahead lit []byte // token literal // Non-syntactic parser control optSemi bool // true if semicolon separator is optional in statement list exprLev int // < 0: in control clause, >= 0: in expression // Scopes pkgScope *ast.Scope fileScope *ast.Scope topScope *ast.Scope } // scannerMode returns the scanner mode bits given the parser's mode bits. func scannerMode(mode uint) uint { if mode&ParseComments != 0 { return scanner.ScanComments } return 0 } func (p *parser) init(filename string, src []byte, mode uint) { p.scanner.Init(filename, src, p, scannerMode(mode)) p.mode = mode p.trace = mode&Trace != 0 // for convenience (p.trace is used frequently) p.next() } // ---------------------------------------------------------------------------- // Parsing support func (p *parser) printTrace(a ...) { const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " + ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " const n = uint(len(dots)) fmt.Printf("%5d:%3d: ", p.pos.Line, p.pos.Column) i := 2 * p.indent for ; i > n; i -= n { fmt.Print(dots) } fmt.Print(dots[0:i]) fmt.Println(a) } func trace(p *parser, msg string) *parser { p.printTrace(msg, "(") p.indent++ return p } // Usage pattern: defer un(trace(p, "...")); func un(p *parser) { p.indent-- p.printTrace(")") } // Advance to the next token. func (p *parser) next0() { // Because of one-token look-ahead, print the previous token // when tracing as it provides a more readable output. The // very first token (p.pos.Line == 0) is not initialized (it // is token.ILLEGAL), so don't print it . if p.trace && p.pos.Line > 0 { s := p.tok.String() switch { case p.tok.IsLiteral(): p.printTrace(s, string(p.lit)) case p.tok.IsOperator(), p.tok.IsKeyword(): p.printTrace("\"" + s + "\"") default: p.printTrace(s) } } p.pos, p.tok, p.lit = p.scanner.Scan() p.optSemi = false } // Consume a comment and return it and the line on which it ends. func (p *parser) consumeComment() (comment *ast.Comment, endline int) { // /*-style comments may end on a different line than where they start. // Scan the comment for '\n' chars and adjust endline accordingly. endline = p.pos.Line if p.lit[1] == '*' { for _, b := range p.lit { if b == '\n' { endline++ } } } comment = &ast.Comment{p.pos, p.lit} p.next0() return } // Consume a group of adjacent comments, add it to the parser's // comments list, and return the line of which the last comment // in the group ends. An empty line or non-comment token terminates // a comment group. // func (p *parser) consumeCommentGroup() int { list := new(vector.Vector) endline := p.pos.Line for p.tok == token.COMMENT && endline+1 >= p.pos.Line { var comment *ast.Comment comment, endline = p.consumeComment() list.Push(comment) } // convert list group := make([]*ast.Comment, list.Len()) for i := 0; i < list.Len(); i++ { group[i] = list.At(i).(*ast.Comment) } // add comment group to the comments list g := &ast.CommentGroup{group, nil} if p.lastComment != nil { p.lastComment.Next = g } else { p.comments = g } p.lastComment = g return endline } // Advance to the next non-comment token. In the process, collect // any comment groups encountered, and remember the last lead and // and line comments. // // A lead comment is a comment group that starts and ends in a // line without any other tokens and that is followed by a non-comment // token on the line immediately after the comment group. // // A line comment is a comment group that follows a non-comment // token on the same line, and that has no tokens after it on the line // where it ends. // // Lead and line comments may be considered documentation that is // stored in the AST. // func (p *parser) next() { p.leadComment = nil p.lineComment = nil line := p.pos.Line // current line p.next0() if p.tok == token.COMMENT { if p.pos.Line == line { // The comment is on same line as previous token; it // cannot be a lead comment but may be a line comment. endline := p.consumeCommentGroup() if p.pos.Line != endline { // The next token is on a different line, thus // the last comment group is a line comment. p.lineComment = p.lastComment } } // consume successor comments, if any endline := -1 for p.tok == token.COMMENT { endline = p.consumeCommentGroup() } if endline >= 0 && endline+1 == p.pos.Line { // The next token is following on the line immediately after the // comment group, thus the last comment group is a lead comment. p.leadComment = p.lastComment } } } func (p *parser) errorExpected(pos token.Position, msg string) { msg = "expected " + msg if pos.Offset == p.pos.Offset { // the error happened at the current position; // make the error message more specific msg += ", found '" + p.tok.String() + "'" if p.tok.IsLiteral() { msg += " " + string(p.lit) } } p.Error(pos, msg) } func (p *parser) expect(tok token.Token) token.Position { pos := p.pos if p.tok != tok { p.errorExpected(pos, "'"+tok.String()+"'") } p.next() // make progress in any case return pos } // ---------------------------------------------------------------------------- // Common productions func (p *parser) parseIdent() *ast.Ident { obj := ast.NewObj(ast.Err, p.pos, "") if p.tok == token.IDENT { obj.Name = string(p.lit) p.next() } else { p.expect(token.IDENT) // use expect() error handling } return &ast.Ident{obj.Pos, obj} } func (p *parser) parseIdentList() []*ast.Ident { if p.trace { defer un(trace(p, "IdentList")) } list := new(vector.Vector) list.Push(p.parseIdent()) for p.tok == token.COMMA { p.next() list.Push(p.parseIdent()) } // convert vector idents := make([]*ast.Ident, list.Len()) for i := 0; i < list.Len(); i++ { idents[i] = list.At(i).(*ast.Ident) } return idents } func (p *parser) parseExprList() []ast.Expr { if p.trace { defer un(trace(p, "ExpressionList")) } list := new(vector.Vector) list.Push(p.parseExpr()) for p.tok == token.COMMA { p.next() list.Push(p.parseExpr()) } // convert list exprs := make([]ast.Expr, list.Len()) for i := 0; i < list.Len(); i++ { exprs[i] = list.At(i).(ast.Expr) } return exprs } // ---------------------------------------------------------------------------- // Types func (p *parser) parseType() ast.Expr { if p.trace { defer un(trace(p, "Type")) } typ := p.tryType() if typ == nil { p.errorExpected(p.pos, "type") p.next() // make progress return &ast.BadExpr{p.pos} } return typ } func (p *parser) parseQualifiedIdent() ast.Expr { if p.trace { defer un(trace(p, "QualifiedIdent")) } var x ast.Expr = p.parseIdent() if p.tok == token.PERIOD { // first identifier is a package identifier p.next() sel := p.parseIdent() x = &ast.SelectorExpr{x, sel} } return x } func (p *parser) parseTypeName() ast.Expr { if p.trace { defer un(trace(p, "TypeName")) } return p.parseQualifiedIdent() } func (p *parser) parseArrayType(ellipsisOk bool) ast.Expr { if p.trace { defer un(trace(p, "ArrayType")) } lbrack := p.expect(token.LBRACK) var len ast.Expr if ellipsisOk && p.tok == token.ELLIPSIS { len = &ast.Ellipsis{p.pos, nil} p.next() } else if p.tok != token.RBRACK { len = p.parseExpr() } p.expect(token.RBRACK) elt := p.parseType() return &ast.ArrayType{lbrack, len, elt} } func (p *parser) makeIdentList(list *vector.Vector) []*ast.Ident { idents := make([]*ast.Ident, list.Len()) for i := 0; i < list.Len(); i++ { ident, isIdent := list.At(i).(*ast.Ident) if !isIdent { pos := list.At(i).(ast.Expr).Pos() p.errorExpected(pos, "identifier") idents[i] = &ast.Ident{pos, ast.NewObj(ast.Err, pos, "")} } idents[i] = ident } return idents } func (p *parser) parseFieldDecl() *ast.Field { if p.trace { defer un(trace(p, "FieldDecl")) } doc := p.leadComment // a list of identifiers looks like a list of type names list := new(vector.Vector) for { // TODO(gri): do not allow ()'s here list.Push(p.parseType()) if p.tok == token.COMMA { p.next() } else { break } } // if we had a list of identifiers, it must be followed by a type typ := p.tryType() // optional tag var tag []*ast.BasicLit if p.tok == token.STRING { tag = p.parseStringList(nil) } // analyze case var idents []*ast.Ident if typ != nil { // IdentifierList Type idents = p.makeIdentList(list) } else { // Type (anonymous field) if list.Len() == 1 { // TODO(gri): check that this looks like a type typ = list.At(0).(ast.Expr) } else { p.errorExpected(p.pos, "anonymous field") typ = &ast.BadExpr{p.pos} } } return &ast.Field{doc, idents, typ, tag, nil} } func (p *parser) parseStructType() *ast.StructType { if p.trace { defer un(trace(p, "StructType")) } pos := p.expect(token.STRUCT) lbrace := p.expect(token.LBRACE) list := new(vector.Vector) for p.tok == token.IDENT || p.tok == token.MUL { f := p.parseFieldDecl() if p.tok != token.RBRACE { p.expect(token.SEMICOLON) } f.Comment = p.lineComment list.Push(f) } rbrace := p.expect(token.RBRACE) p.optSemi = true // convert vector fields := make([]*ast.Field, list.Len()) for i := list.Len() - 1; i >= 0; i-- { fields[i] = list.At(i).(*ast.Field) } return &ast.StructType{pos, lbrace, fields, rbrace, false} } func (p *parser) parsePointerType() *ast.StarExpr { if p.trace { defer un(trace(p, "PointerType")) } star := p.expect(token.MUL) base := p.parseType() return &ast.StarExpr{star, base} } func (p *parser) tryParameterType(ellipsisOk bool) ast.Expr { if ellipsisOk && p.tok == token.ELLIPSIS { pos := p.pos p.next() typ := p.tryType() if p.tok != token.RPAREN { p.Error(pos, "can use '...' for last parameter only") } return &ast.Ellipsis{pos, typ} } return p.tryType() } func (p *parser) parseParameterType(ellipsisOk bool) ast.Expr { typ := p.tryParameterType(ellipsisOk) if typ == nil { p.errorExpected(p.pos, "type") p.next() // make progress typ = &ast.BadExpr{p.pos} } return typ } func (p *parser) parseParameterDecl(ellipsisOk bool) (*vector.Vector, ast.Expr) { if p.trace { defer un(trace(p, "ParameterDecl")) } // a list of identifiers looks like a list of type names list := new(vector.Vector) for { // TODO(gri): do not allow ()'s here list.Push(p.parseParameterType(ellipsisOk)) if p.tok == token.COMMA { p.next() } else { break } } // if we had a list of identifiers, it must be followed by a type typ := p.tryParameterType(ellipsisOk) return list, typ } func (p *parser) parseParameterList(ellipsisOk bool) []*ast.Field { if p.trace { defer un(trace(p, "ParameterList")) } list, typ := p.parseParameterDecl(ellipsisOk) if typ != nil { // IdentifierList Type idents := p.makeIdentList(list) list.Resize(0, 0) list.Push(&ast.Field{nil, idents, typ, nil, nil}) for p.tok == token.COMMA { p.next() idents := p.parseIdentList() typ := p.parseParameterType(ellipsisOk) list.Push(&ast.Field{nil, idents, typ, nil, nil}) } } else { // Type { "," Type } (anonymous parameters) // convert list of types into list of *Param for i := 0; i < list.Len(); i++ { list.Set(i, &ast.Field{Type: list.At(i).(ast.Expr)}) } } // convert list params := make([]*ast.Field, list.Len()) for i := 0; i < list.Len(); i++ { params[i] = list.At(i).(*ast.Field) } return params } func (p *parser) parseParameters(ellipsisOk bool) []*ast.Field { if p.trace { defer un(trace(p, "Parameters")) } var params []*ast.Field p.expect(token.LPAREN) if p.tok != token.RPAREN { params = p.parseParameterList(ellipsisOk) } p.expect(token.RPAREN) return params } func (p *parser) parseResult() []*ast.Field { if p.trace { defer un(trace(p, "Result")) } var results []*ast.Field if p.tok == token.LPAREN { results = p.parseParameters(false) } else if p.tok != token.FUNC { typ := p.tryType() if typ != nil { results = make([]*ast.Field, 1) results[0] = &ast.Field{Type: typ} } } return results } func (p *parser) parseSignature() (params []*ast.Field, results []*ast.Field) { if p.trace { defer un(trace(p, "Signature")) } params = p.parseParameters(true) results = p.parseResult() return } func (p *parser) parseFuncType() *ast.FuncType { if p.trace { defer un(trace(p, "FuncType")) } pos := p.expect(token.FUNC) params, results := p.parseSignature() return &ast.FuncType{pos, params, results} } func (p *parser) parseMethodSpec() *ast.Field { if p.trace { defer un(trace(p, "MethodSpec")) } doc := p.leadComment var idents []*ast.Ident var typ ast.Expr x := p.parseQualifiedIdent() if ident, isIdent := x.(*ast.Ident); isIdent && p.tok == token.LPAREN { // method idents = []*ast.Ident{ident} params, results := p.parseSignature() typ = &ast.FuncType{noPos, params, results} } else { // embedded interface typ = x } return &ast.Field{doc, idents, typ, nil, nil} } func (p *parser) parseInterfaceType() *ast.InterfaceType { if p.trace { defer un(trace(p, "InterfaceType")) } pos := p.expect(token.INTERFACE) lbrace := p.expect(token.LBRACE) list := new(vector.Vector) for p.tok == token.IDENT { m := p.parseMethodSpec() if p.tok != token.RBRACE { p.expect(token.SEMICOLON) } m.Comment = p.lineComment list.Push(m) } rbrace := p.expect(token.RBRACE) p.optSemi = true // convert vector methods := make([]*ast.Field, list.Len()) for i := list.Len() - 1; i >= 0; i-- { methods[i] = list.At(i).(*ast.Field) } return &ast.InterfaceType{pos, lbrace, methods, rbrace, false} } func (p *parser) parseMapType() *ast.MapType { if p.trace { defer un(trace(p, "MapType")) } pos := p.expect(token.MAP) p.expect(token.LBRACK) key := p.parseType() p.expect(token.RBRACK) value := p.parseType() return &ast.MapType{pos, key, value} } func (p *parser) parseChanType() *ast.ChanType { if p.trace { defer un(trace(p, "ChanType")) } pos := p.pos dir := ast.SEND | ast.RECV if p.tok == token.CHAN { p.next() if p.tok == token.ARROW { p.next() dir = ast.SEND } } else { p.expect(token.ARROW) p.expect(token.CHAN) dir = ast.RECV } value := p.parseType() return &ast.ChanType{pos, dir, value} } func (p *parser) tryRawType(ellipsisOk bool) ast.Expr { switch p.tok { case token.IDENT: return p.parseTypeName() case token.LBRACK: return p.parseArrayType(ellipsisOk) case token.STRUCT: return p.parseStructType() case token.MUL: return p.parsePointerType() case token.FUNC: return p.parseFuncType() case token.INTERFACE: return p.parseInterfaceType() case token.MAP: return p.parseMapType() case token.CHAN, token.ARROW: return p.parseChanType() case token.LPAREN: lparen := p.pos p.next() typ := p.parseType() rparen := p.expect(token.RPAREN) return &ast.ParenExpr{lparen, typ, rparen} } // no type found return nil } func (p *parser) tryType() ast.Expr { return p.tryRawType(false) } // ---------------------------------------------------------------------------- // Blocks func makeStmtList(list *vector.Vector) []ast.Stmt { stats := make([]ast.Stmt, list.Len()) for i := 0; i < list.Len(); i++ { stats[i] = list.At(i).(ast.Stmt) } return stats } func (p *parser) parseStmtList() []ast.Stmt { if p.trace { defer un(trace(p, "StatementList")) } list := new(vector.Vector) expectSemi := false for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF { if expectSemi { p.expect(token.SEMICOLON) expectSemi = false } list.Push(p.parseStmt()) if p.tok == token.SEMICOLON { p.next() } else if p.optSemi { p.optSemi = false // "consume" optional semicolon } else { expectSemi = true } } return makeStmtList(list) } func (p *parser) parseBlockStmt(idents []*ast.Ident) *ast.BlockStmt { if p.trace { defer un(trace(p, "BlockStmt")) } lbrace := p.expect(token.LBRACE) list := p.parseStmtList() rbrace := p.expect(token.RBRACE) p.optSemi = true return &ast.BlockStmt{lbrace, list, rbrace} } // ---------------------------------------------------------------------------- // Expressions func (p *parser) parseStringList(x *ast.BasicLit) []*ast.BasicLit { if p.trace { defer un(trace(p, "StringList")) } list := new(vector.Vector) if x != nil { list.Push(x) } for p.tok == token.STRING { list.Push(&ast.BasicLit{p.pos, token.STRING, p.lit}) p.next() } // convert list strings := make([]*ast.BasicLit, list.Len()) for i := 0; i < list.Len(); i++ { strings[i] = list.At(i).(*ast.BasicLit) } return strings } func (p *parser) parseFuncTypeOrLit() ast.Expr { if p.trace { defer un(trace(p, "FuncTypeOrLit")) } typ := p.parseFuncType() if p.tok != token.LBRACE { // function type only return typ } p.exprLev++ body := p.parseBlockStmt(nil) p.optSemi = false // function body requires separating ";" p.exprLev-- return &ast.FuncLit{typ, body} } // parseOperand may return an expression or a raw type (incl. array // types of the form [...]T. Callers must verify the result. // func (p *parser) parseOperand() ast.Expr { if p.trace { defer un(trace(p, "Operand")) } switch p.tok { case token.IDENT: return p.parseIdent() case token.INT, token.FLOAT, token.CHAR, token.STRING: x := &ast.BasicLit{p.pos, p.tok, p.lit} p.next() if p.tok == token.STRING && p.tok == token.STRING { return &ast.StringList{p.parseStringList(x)} } return x case token.LPAREN: lparen := p.pos p.next() p.exprLev++ x := p.parseExpr() p.exprLev-- rparen := p.expect(token.RPAREN) return &ast.ParenExpr{lparen, x, rparen} case token.FUNC: return p.parseFuncTypeOrLit() default: t := p.tryRawType(true) // could be type for composite literal or conversion if t != nil { return t } } p.errorExpected(p.pos, "operand") p.next() // make progress return &ast.BadExpr{p.pos} } func (p *parser) parseSelectorOrTypeAssertion(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "SelectorOrTypeAssertion")) } p.expect(token.PERIOD) if p.tok == token.IDENT { // selector sel := p.parseIdent() return &ast.SelectorExpr{x, sel} } // type assertion p.expect(token.LPAREN) var typ ast.Expr if p.tok == token.TYPE { // type switch: typ == nil p.next() } else { typ = p.parseType() } p.expect(token.RPAREN) return &ast.TypeAssertExpr{x, typ} } func (p *parser) parseIndexOrSlice(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "IndexOrSlice")) } p.expect(token.LBRACK) p.exprLev++ index := p.parseExpr() if p.tok == token.COLON { p.next() var end ast.Expr if p.tok != token.RBRACK { end = p.parseExpr() } x = &ast.SliceExpr{x, index, end} } else { x = &ast.IndexExpr{x, index} } p.exprLev-- p.expect(token.RBRACK) return x } func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr { if p.trace { defer un(trace(p, "CallOrConversion")) } lparen := p.expect(token.LPAREN) p.exprLev++ var args []ast.Expr if p.tok != token.RPAREN { args = p.parseExprList() } p.exprLev-- rparen := p.expect(token.RPAREN) return &ast.CallExpr{fun, lparen, args, rparen} } func (p *parser) parseElement() ast.Expr { if p.trace { defer un(trace(p, "Element")) } x := p.parseExpr() if p.tok == token.COLON { colon := p.pos p.next() x = &ast.KeyValueExpr{x, colon, p.parseExpr()} } return x } func (p *parser) parseElementList() []ast.Expr { if p.trace { defer un(trace(p, "ElementList")) } list := new(vector.Vector) for p.tok != token.RBRACE && p.tok != token.EOF { list.Push(p.parseElement()) if p.tok == token.COMMA { p.next() } else { break } } // convert list elts := make([]ast.Expr, list.Len()) for i := 0; i < list.Len(); i++ { elts[i] = list.At(i).(ast.Expr) } return elts } func (p *parser) parseCompositeLit(typ ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "CompositeLit")) } lbrace := p.expect(token.LBRACE) var elts []ast.Expr if p.tok != token.RBRACE { elts = p.parseElementList() } rbrace := p.expect(token.RBRACE) return &ast.CompositeLit{typ, lbrace, elts, rbrace} } // TODO(gri): Consider different approach to checking syntax after parsing: // Provide a arguments (set of flags) to parsing functions // restricting what they are supposed to accept depending // on context. // checkExpr checks that x is an expression (and not a type). func (p *parser) checkExpr(x ast.Expr) ast.Expr { // TODO(gri): should provide predicate in AST nodes switch t := x.(type) { case *ast.BadExpr: case *ast.Ident: case *ast.BasicLit: case *ast.StringList: case *ast.FuncLit: case *ast.CompositeLit: case *ast.ParenExpr: case *ast.SelectorExpr: case *ast.IndexExpr: case *ast.SliceExpr: case *ast.TypeAssertExpr: if t.Type == nil { // the form X.(type) is only allowed in type switch expressions p.errorExpected(x.Pos(), "expression") x = &ast.BadExpr{x.Pos()} } case *ast.CallExpr: case *ast.StarExpr: case *ast.UnaryExpr: if t.Op == token.RANGE { // the range operator is only allowed at the top of a for statement p.errorExpected(x.Pos(), "expression") x = &ast.BadExpr{x.Pos()} } case *ast.BinaryExpr: default: // all other nodes are not proper expressions p.errorExpected(x.Pos(), "expression") x = &ast.BadExpr{x.Pos()} } return x } // isTypeName returns true iff x is type name. func isTypeName(x ast.Expr) bool { // TODO(gri): should provide predicate in AST nodes switch t := x.(type) { case *ast.BadExpr: case *ast.Ident: case *ast.ParenExpr: return isTypeName(t.X) // TODO(gri): should (TypeName) be illegal? case *ast.SelectorExpr: return isTypeName(t.X) default: return false // all other nodes are not type names } return true } // isCompositeLitType returns true iff x is a legal composite literal type. func isCompositeLitType(x ast.Expr) bool { // TODO(gri): should provide predicate in AST nodes switch t := x.(type) { case *ast.BadExpr: case *ast.Ident: case *ast.ParenExpr: return isCompositeLitType(t.X) case *ast.SelectorExpr: return isTypeName(t.X) case *ast.ArrayType: case *ast.StructType: case *ast.MapType: default: return false // all other nodes are not legal composite literal types } return true } // checkExprOrType checks that x is an expression or a type // (and not a raw type such as [...]T). // func (p *parser) checkExprOrType(x ast.Expr) ast.Expr { // TODO(gri): should provide predicate in AST nodes switch t := x.(type) { case *ast.UnaryExpr: if t.Op == token.RANGE { // the range operator is only allowed at the top of a for statement p.errorExpected(x.Pos(), "expression") x = &ast.BadExpr{x.Pos()} } case *ast.ArrayType: if len, isEllipsis := t.Len.(*ast.Ellipsis); isEllipsis { p.Error(len.Pos(), "expected array length, found '...'") x = &ast.BadExpr{x.Pos()} } } // all other nodes are expressions or types return x } func (p *parser) parsePrimaryExpr() ast.Expr { if p.trace { defer un(trace(p, "PrimaryExpr")) } x := p.parseOperand() L: for { switch p.tok { case token.PERIOD: x = p.parseSelectorOrTypeAssertion(p.checkExpr(x)) case token.LBRACK: x = p.parseIndexOrSlice(p.checkExpr(x)) case token.LPAREN: x = p.parseCallOrConversion(p.checkExprOrType(x)) case token.LBRACE: if isCompositeLitType(x) && (p.exprLev >= 0 || !isTypeName(x)) { x = p.parseCompositeLit(x) } else { break L } default: break L } } return x } func (p *parser) parseUnaryExpr() ast.Expr { if p.trace { defer un(trace(p, "UnaryExpr")) } switch p.tok { case token.ADD, token.SUB, token.NOT, token.XOR, token.ARROW, token.AND, token.RANGE: pos, op := p.pos, p.tok p.next() x := p.parseUnaryExpr() return &ast.UnaryExpr{pos, op, p.checkExpr(x)} case token.MUL: // unary "*" expression or pointer type pos := p.pos p.next() x := p.parseUnaryExpr() return &ast.StarExpr{pos, p.checkExprOrType(x)} } return p.parsePrimaryExpr() } func (p *parser) parseBinaryExpr(prec1 int) ast.Expr { if p.trace { defer un(trace(p, "BinaryExpr")) } x := p.parseUnaryExpr() for prec := p.tok.Precedence(); prec >= prec1; prec-- { for p.tok.Precedence() == prec { pos, op := p.pos, p.tok p.next() y := p.parseBinaryExpr(prec + 1) x = &ast.BinaryExpr{p.checkExpr(x), pos, op, p.checkExpr(y)} } } return x } // TODO(gri): parseExpr may return a type or even a raw type ([..]int) - // should reject when a type/raw type is obviously not allowed func (p *parser) parseExpr() ast.Expr { if p.trace { defer un(trace(p, "Expression")) } return p.parseBinaryExpr(token.LowestPrec + 1) } // ---------------------------------------------------------------------------- // Statements func (p *parser) parseSimpleStmt(labelOk bool) ast.Stmt { if p.trace { defer un(trace(p, "SimpleStmt")) } x := p.parseExprList() switch p.tok { case token.COLON: // labeled statement p.next() if labelOk && len(x) == 1 { if label, isIdent := x[0].(*ast.Ident); isIdent { return &ast.LabeledStmt{label, p.parseStmt()} } } p.Error(x[0].Pos(), "illegal label declaration") return &ast.BadStmt{x[0].Pos()} case token.DEFINE, token.ASSIGN, token.ADD_ASSIGN, token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN, token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN, token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN, token.AND_NOT_ASSIGN: // assignment statement pos, tok := p.pos, p.tok p.next() y := p.parseExprList() return &ast.AssignStmt{x, pos, tok, y} } if len(x) > 1 { p.Error(x[0].Pos(), "only one expression allowed") // continue with first expression } if p.tok == token.INC || p.tok == token.DEC { // increment or decrement s := &ast.IncDecStmt{x[0], p.tok} p.next() // consume "++" or "--" return s } // expression return &ast.ExprStmt{x[0]} } func (p *parser) parseCallExpr() *ast.CallExpr { x := p.parseExpr() if call, isCall := x.(*ast.CallExpr); isCall { return call } p.errorExpected(x.Pos(), "function/method call") return nil } func (p *parser) parseGoStmt() ast.Stmt { if p.trace { defer un(trace(p, "GoStmt")) } pos := p.expect(token.GO) call := p.parseCallExpr() if call != nil { return &ast.GoStmt{pos, call} } return &ast.BadStmt{pos} } func (p *parser) parseDeferStmt() ast.Stmt { if p.trace { defer un(trace(p, "DeferStmt")) } pos := p.expect(token.DEFER) call := p.parseCallExpr() if call != nil { return &ast.DeferStmt{pos, call} } return &ast.BadStmt{pos} } func (p *parser) parseReturnStmt() *ast.ReturnStmt { if p.trace { defer un(trace(p, "ReturnStmt")) } pos := p.pos p.expect(token.RETURN) var x []ast.Expr if p.tok != token.SEMICOLON && p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE { x = p.parseExprList() } return &ast.ReturnStmt{pos, x} } func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt { if p.trace { defer un(trace(p, "BranchStmt")) } s := &ast.BranchStmt{p.pos, tok, nil} p.expect(tok) if tok != token.FALLTHROUGH && p.tok == token.IDENT { s.Label = p.parseIdent() } return s } func (p *parser) makeExpr(s ast.Stmt) ast.Expr { if s == nil { return nil } if es, isExpr := s.(*ast.ExprStmt); isExpr { return p.checkExpr(es.X) } p.Error(s.Pos(), "expected condition, found simple statement") return &ast.BadExpr{s.Pos()} } func (p *parser) parseControlClause(isForStmt bool) (s1, s2, s3 ast.Stmt) { if p.tok != token.LBRACE { prevLev := p.exprLev p.exprLev = -1 if p.tok != token.SEMICOLON { s1 = p.parseSimpleStmt(false) } if p.tok == token.SEMICOLON { p.next() if p.tok != token.LBRACE && p.tok != token.SEMICOLON { s2 = p.parseSimpleStmt(false) } if isForStmt { // for statements have a 3rd section p.expect(token.SEMICOLON) if p.tok != token.LBRACE { s3 = p.parseSimpleStmt(false) } } } else { s1, s2 = nil, s1 } p.exprLev = prevLev } return s1, s2, s3 } func (p *parser) parseIfStmt() *ast.IfStmt { if p.trace { defer un(trace(p, "IfStmt")) } pos := p.expect(token.IF) s1, s2, _ := p.parseControlClause(false) body := p.parseBlockStmt(nil) var else_ ast.Stmt if p.tok == token.ELSE { p.next() else_ = p.parseStmt() } return &ast.IfStmt{pos, s1, p.makeExpr(s2), body, else_} } func (p *parser) parseCaseClause() *ast.CaseClause { if p.trace { defer un(trace(p, "CaseClause")) } // SwitchCase pos := p.pos var x []ast.Expr if p.tok == token.CASE { p.next() x = p.parseExprList() } else { p.expect(token.DEFAULT) } colon := p.expect(token.COLON) body := p.parseStmtList() return &ast.CaseClause{pos, x, colon, body} } func (p *parser) parseTypeList() []ast.Expr { if p.trace { defer un(trace(p, "TypeList")) } list := new(vector.Vector) list.Push(p.parseType()) for p.tok == token.COMMA { p.next() list.Push(p.parseType()) } // convert list exprs := make([]ast.Expr, list.Len()) for i := 0; i < list.Len(); i++ { exprs[i] = list.At(i).(ast.Expr) } return exprs } func (p *parser) parseTypeCaseClause() *ast.TypeCaseClause { if p.trace { defer un(trace(p, "TypeCaseClause")) } // TypeSwitchCase pos := p.pos var types []ast.Expr if p.tok == token.CASE { p.next() types = p.parseTypeList() } else { p.expect(token.DEFAULT) } colon := p.expect(token.COLON) body := p.parseStmtList() return &ast.TypeCaseClause{pos, types, colon, body} } func isExprSwitch(s ast.Stmt) bool { if s == nil { return true } if e, ok := s.(*ast.ExprStmt); ok { if a, ok := e.X.(*ast.TypeAssertExpr); ok { return a.Type != nil // regular type assertion } return true } return false } func (p *parser) parseSwitchStmt() ast.Stmt { if p.trace { defer un(trace(p, "SwitchStmt")) } pos := p.expect(token.SWITCH) s1, s2, _ := p.parseControlClause(false) if isExprSwitch(s2) { lbrace := p.expect(token.LBRACE) cases := new(vector.Vector) for p.tok == token.CASE || p.tok == token.DEFAULT { cases.Push(p.parseCaseClause()) } rbrace := p.expect(token.RBRACE) p.optSemi = true body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace} return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body} } // type switch // TODO(gri): do all the checks! lbrace := p.expect(token.LBRACE) cases := new(vector.Vector) for p.tok == token.CASE || p.tok == token.DEFAULT { cases.Push(p.parseTypeCaseClause()) } rbrace := p.expect(token.RBRACE) p.optSemi = true body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace} return &ast.TypeSwitchStmt{pos, s1, s2, body} } func (p *parser) parseCommClause() *ast.CommClause { if p.trace { defer un(trace(p, "CommClause")) } // CommCase pos := p.pos var tok token.Token var lhs, rhs ast.Expr if p.tok == token.CASE { p.next() if p.tok == token.ARROW { // RecvExpr without assignment rhs = p.parseExpr() } else { // SendExpr or RecvExpr rhs = p.parseExpr() if p.tok == token.ASSIGN || p.tok == token.DEFINE { // RecvExpr with assignment tok = p.tok p.next() lhs = rhs if p.tok == token.ARROW { rhs = p.parseExpr() } else { p.expect(token.ARROW) // use expect() error handling } } // else SendExpr } } else { p.expect(token.DEFAULT) } colon := p.expect(token.COLON) body := p.parseStmtList() return &ast.CommClause{pos, tok, lhs, rhs, colon, body} } func (p *parser) parseSelectStmt() *ast.SelectStmt { if p.trace { defer un(trace(p, "SelectStmt")) } pos := p.expect(token.SELECT) lbrace := p.expect(token.LBRACE) cases := new(vector.Vector) for p.tok == token.CASE || p.tok == token.DEFAULT { cases.Push(p.parseCommClause()) } rbrace := p.expect(token.RBRACE) p.optSemi = true body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace} return &ast.SelectStmt{pos, body} } func (p *parser) parseForStmt() ast.Stmt { if p.trace { defer un(trace(p, "ForStmt")) } pos := p.expect(token.FOR) s1, s2, s3 := p.parseControlClause(true) body := p.parseBlockStmt(nil) if as, isAssign := s2.(*ast.AssignStmt); isAssign { // possibly a for statement with a range clause; check assignment operator if as.Tok != token.ASSIGN && as.Tok != token.DEFINE { p.errorExpected(as.TokPos, "'=' or ':='") return &ast.BadStmt{pos} } // check lhs var key, value ast.Expr switch len(as.Lhs) { case 2: value = as.Lhs[1] fallthrough case 1: key = as.Lhs[0] default: p.errorExpected(as.Lhs[0].Pos(), "1 or 2 expressions") return &ast.BadStmt{pos} } // check rhs if len(as.Rhs) != 1 { p.errorExpected(as.Rhs[0].Pos(), "1 expressions") return &ast.BadStmt{pos} } if rhs, isUnary := as.Rhs[0].(*ast.UnaryExpr); isUnary && rhs.Op == token.RANGE { // rhs is range expression; check lhs return &ast.RangeStmt{pos, key, value, as.TokPos, as.Tok, rhs.X, body} } else { p.errorExpected(s2.Pos(), "range clause") return &ast.BadStmt{pos} } } else { // regular for statement return &ast.ForStmt{pos, s1, p.makeExpr(s2), s3, body} } panic() // unreachable return nil } func (p *parser) parseStmt() ast.Stmt { if p.trace { defer un(trace(p, "Statement")) } switch p.tok { case token.CONST, token.TYPE, token.VAR: decl, _ := p.parseDecl(false) // do not consume trailing semicolon return &ast.DeclStmt{decl} case // tokens that may start a top-level expression token.IDENT, token.INT, token.FLOAT, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operand token.LBRACK, token.STRUCT, // composite type token.MUL, token.AND, token.ARROW, token.ADD, token.SUB, token.XOR: // unary operators return p.parseSimpleStmt(true) case token.GO: return p.parseGoStmt() case token.DEFER: return p.parseDeferStmt() case token.RETURN: return p.parseReturnStmt() case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH: return p.parseBranchStmt(p.tok) case token.LBRACE: return p.parseBlockStmt(nil) case token.IF: return p.parseIfStmt() case token.SWITCH: return p.parseSwitchStmt() case token.SELECT: return p.parseSelectStmt() case token.FOR: return p.parseForStmt() case token.SEMICOLON, token.RBRACE: // don't consume the ";", it is the separator following the empty statement return &ast.EmptyStmt{p.pos} } // no statement found p.errorExpected(p.pos, "statement") p.next() // make progress return &ast.BadStmt{p.pos} } // ---------------------------------------------------------------------------- // Declarations type parseSpecFunction func(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) // Consume semicolon if there is one and getSemi is set, and get any line comment. // Return the comment if any and indicate if a semicolon was consumed. // func (p *parser) parseComment(getSemi bool) (comment *ast.CommentGroup, gotSemi bool) { if getSemi && p.tok == token.SEMICOLON { p.next() gotSemi = true } return p.lineComment, gotSemi } func parseImportSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) { if p.trace { defer un(trace(p, "ImportSpec")) } var ident *ast.Ident if p.tok == token.PERIOD { ident = &ast.Ident{p.pos, ast.NewObj(ast.Err, p.pos, ".")} p.next() } else if p.tok == token.IDENT { ident = p.parseIdent() } var path []*ast.BasicLit if p.tok == token.STRING { path = p.parseStringList(nil) } else { p.expect(token.STRING) // use expect() error handling } comment, gotSemi := p.parseComment(getSemi) return &ast.ImportSpec{doc, ident, path, comment}, gotSemi } func parseConstSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) { if p.trace { defer un(trace(p, "ConstSpec")) } idents := p.parseIdentList() typ := p.tryType() var values []ast.Expr if typ != nil || p.tok == token.ASSIGN { p.expect(token.ASSIGN) values = p.parseExprList() } comment, gotSemi := p.parseComment(getSemi) return &ast.ValueSpec{doc, idents, typ, values, comment}, gotSemi } func parseTypeSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) { if p.trace { defer un(trace(p, "TypeSpec")) } ident := p.parseIdent() typ := p.parseType() comment, gotSemi := p.parseComment(getSemi) return &ast.TypeSpec{doc, ident, typ, comment}, gotSemi } func parseVarSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) { if p.trace { defer un(trace(p, "VarSpec")) } idents := p.parseIdentList() typ := p.tryType() var values []ast.Expr if typ == nil || p.tok == token.ASSIGN { p.expect(token.ASSIGN) values = p.parseExprList() } comment, gotSemi := p.parseComment(getSemi) return &ast.ValueSpec{doc, idents, typ, values, comment}, gotSemi } func (p *parser) parseGenDecl(keyword token.Token, f parseSpecFunction, getSemi bool) (decl *ast.GenDecl, gotSemi bool) { if p.trace { defer un(trace(p, keyword.String()+"Decl")) } doc := p.leadComment pos := p.expect(keyword) var lparen, rparen token.Position list := new(vector.Vector) if p.tok == token.LPAREN { lparen = p.pos p.next() for p.tok != token.RPAREN && p.tok != token.EOF { doc := p.leadComment spec, semi := f(p, doc, true) // consume semicolon if any list.Push(spec) if !semi { break } } rparen = p.expect(token.RPAREN) if getSemi && p.tok == token.SEMICOLON { p.next() gotSemi = true } else { p.optSemi = true } } else { spec, semi := f(p, nil, getSemi) list.Push(spec) gotSemi = semi } // convert vector specs := make([]ast.Spec, list.Len()) for i := 0; i < list.Len(); i++ { specs[i] = list.At(i).(ast.Spec) } return &ast.GenDecl{doc, pos, keyword, lparen, specs, rparen}, gotSemi } func (p *parser) parseReceiver() *ast.Field { if p.trace { defer un(trace(p, "Receiver")) } pos := p.pos par := p.parseParameters(false) // must have exactly one receiver if len(par) != 1 || len(par) == 1 && len(par[0].Names) > 1 { p.errorExpected(pos, "exactly one receiver") return &ast.Field{Type: &ast.BadExpr{noPos}} } recv := par[0] // recv type must be TypeName or *TypeName base := recv.Type if ptr, isPtr := base.(*ast.StarExpr); isPtr { base = ptr.X } if !isTypeName(base) { p.errorExpected(base.Pos(), "type name") } return recv } func (p *parser) parseFunctionDecl() *ast.FuncDecl { if p.trace { defer un(trace(p, "FunctionDecl")) } doc := p.leadComment pos := p.expect(token.FUNC) var recv *ast.Field if p.tok == token.LPAREN { recv = p.parseReceiver() } ident := p.parseIdent() params, results := p.parseSignature() var body *ast.BlockStmt if p.tok == token.LBRACE { body = p.parseBlockStmt(nil) } return &ast.FuncDecl{doc, recv, ident, &ast.FuncType{pos, params, results}, body} } func (p *parser) parseDecl(getSemi bool) (decl ast.Decl, gotSemi bool) { if p.trace { defer un(trace(p, "Declaration")) } var f parseSpecFunction switch p.tok { case token.CONST: f = parseConstSpec case token.TYPE: f = parseTypeSpec case token.VAR: f = parseVarSpec case token.FUNC: decl = p.parseFunctionDecl() _, gotSemi := p.parseComment(getSemi) return decl, gotSemi default: pos := p.pos p.errorExpected(pos, "declaration") decl = &ast.BadDecl{pos} gotSemi = getSemi && p.tok == token.SEMICOLON p.next() // make progress in any case return decl, gotSemi } return p.parseGenDecl(p.tok, f, getSemi) } func (p *parser) parseDeclList() []ast.Decl { if p.trace { defer un(trace(p, "DeclList")) } list := new(vector.Vector) for p.tok != token.EOF { decl, _ := p.parseDecl(true) // consume optional semicolon list.Push(decl) } // convert vector decls := make([]ast.Decl, list.Len()) for i := 0; i < list.Len(); i++ { decls[i] = list.At(i).(ast.Decl) } return decls } // ---------------------------------------------------------------------------- // Source files func (p *parser) parseFile() *ast.File { if p.trace { defer un(trace(p, "File")) } // package clause doc := p.leadComment pos := p.expect(token.PACKAGE) ident := p.parseIdent() // Common error: semicolon after package clause. // Accept and report it for better error synchronization. if p.tok == token.SEMICOLON { p.Error(p.pos, "expected declaration, found ';'") p.next() } var decls []ast.Decl // Don't bother parsing the rest if we had errors already. // Likely not a Go source file at all. if p.ErrorCount() == 0 && p.mode&PackageClauseOnly == 0 { // import decls list := new(vector.Vector) for p.tok == token.IMPORT { decl, _ := p.parseGenDecl(token.IMPORT, parseImportSpec, true) // consume optional semicolon list.Push(decl) } if p.mode&ImportsOnly == 0 { // rest of package body for p.tok != token.EOF { decl, _ := p.parseDecl(true) // consume optional semicolon list.Push(decl) } } // convert declaration list decls = make([]ast.Decl, list.Len()) for i := 0; i < list.Len(); i++ { decls[i] = list.At(i).(ast.Decl) } } return &ast.File{doc, pos, ident, decls, p.comments} }