// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements printing of AST nodes; specifically // expressions, statements, declarations, and files. It uses // the print functionality implemented in printer.go. package printer import ( "bytes" "go/ast" "go/token" ) // Other formatting issues: // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) // when the comment spans multiple lines; if such a comment is just two lines, formatting is // not idempotent // - formatting of expression lists // - should use blank instead of tab to separate one-line function bodies from // the function header unless there is a group of consecutive one-liners // ---------------------------------------------------------------------------- // Common AST nodes. // Print as many newlines as necessary (but at least min and and at most // max newlines) to get to the current line. ws is printed before the first // line break. If newSection is set, the first line break is printed as // formfeed. Returns true if any line break was printed; returns false otherwise. // // TODO(gri): Reconsider signature (provide position instead of line) // func (p *printer) linebreak(line, min, max int, ws whiteSpace, newSection bool) (printedBreak bool) { n := line - p.pos.Line switch { case n < min: n = min case n > max: n = max } if n > 0 { p.print(ws) if newSection { p.print(formfeed) n-- printedBreak = true } } for ; n > 0; n-- { p.print(newline) printedBreak = true } return } // setComment sets g as the next comment if g != nil and if node comments // are enabled - this mode is used when printing source code fragments such // as exports only. It assumes that there are no other pending comments to // intersperse. func (p *printer) setComment(g *ast.CommentGroup) { if g == nil || !p.useNodeComments { return } if p.comments == nil { // initialize p.comments lazily p.comments = make([]*ast.CommentGroup, 1) } else if p.cindex < len(p.comments) { // for some reason there are pending comments; this // should never happen - handle gracefully and flush // all comments up to g, ignore anything after that p.flush(g.List[0].Pos(), false) } p.comments[0] = g p.cindex = 0 } type exprListMode uint const ( blankStart exprListMode = 1 << iota // print a blank before a non-empty list blankEnd // print a blank after a non-empty list commaSep // elements are separated by commas commaTerm // list is optionally terminated by a comma noIndent // no extra indentation in multi-line lists ) // Sets multiLine to true if the identifier list spans multiple lines. // If ident is set, a multi-line identifier list is indented after the // first linebreak encountered. func (p *printer) identList(list []*ast.Ident, indent bool, multiLine *bool) { // convert into an expression list so we can re-use exprList formatting xlist := make([]ast.Expr, len(list)) for i, x := range list { xlist[i] = x } mode := commaSep if !indent { mode |= noIndent } p.exprList(noPos, xlist, 1, mode, multiLine, noPos) } // Compute the key size of a key:value expression. // Returns 0 if the expression doesn't fit onto a single line. func (p *printer) keySize(pair *ast.KeyValueExpr) int { const infinity = 1e6 // larger than any source line if p.nodeSize(pair, infinity) <= infinity { // entire expression fits on one line - return key size return p.nodeSize(pair.Key, infinity) } return 0 } // Print a list of expressions. If the list spans multiple // source lines, the original line breaks are respected between // expressions. Sets multiLine to true if the list spans multiple // lines. // // TODO(gri) Consider rewriting this to be independent of []ast.Expr // so that we can use the algorithm for any kind of list // (e.g., pass list via a channel over which to range). func (p *printer) exprList(prev token.Position, list []ast.Expr, depth int, mode exprListMode, multiLine *bool, next token.Position) { if len(list) == 0 { return } if mode&blankStart != 0 { p.print(blank) } line := list[0].Pos().Line endLine := next.Line if endLine == 0 { // TODO(gri): endLine may be incorrect as it is really the beginning // of the last list entry. There may be only one, very long // entry in which case line == endLine. endLine = list[len(list)-1].Pos().Line } if prev.IsValid() && prev.Line == line && line == endLine { // all list entries on a single line for i, x := range list { if i > 0 { if mode&commaSep != 0 { p.print(token.COMMA) } p.print(blank) } p.expr0(x, depth, multiLine) } if mode&blankEnd != 0 { p.print(blank) } return } // list entries span multiple lines; // use source code positions to guide line breaks // don't add extra indentation if noIndent is set; // i.e., pretend that the first line is already indented ws := ignore if mode&noIndent == 0 { ws = indent } // the first linebreak is always a formfeed since this section must not // depend on any previous formatting prevBreak := -1 // index of last expression that was followed by a linebreak if prev.IsValid() && prev.Line < line && p.linebreak(line, 1, 2, ws, true) { ws = ignore *multiLine = true prevBreak = 0 } // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line size := 0 // print all list elements for i, x := range list { prevLine := line line = x.Pos().Line // determine if the next linebreak, if any, needs to use formfeed: // in general, use the entire node size to make the decision; for // key:value expressions, use the key size // TODO(gri) for a better result, should probably incorporate both // the key and the node size into the decision process useFF := true // determine size prevSize := size const infinity = 1e6 // larger than any source line size = p.nodeSize(x, infinity) pair, isPair := x.(*ast.KeyValueExpr) if size <= infinity { // x fits on a single line if isPair { size = p.nodeSize(pair.Key, infinity) // size <= infinity } } else { size = 0 } // if the previous line and the current line had single- // line-expressions and the key sizes are small or the // the ratio between the key sizes does not exceed a // threshold, align columns and do not use formfeed if prevSize > 0 && size > 0 { const smallSize = 20 if prevSize <= smallSize && size <= smallSize { useFF = false } else { const r = 4 // threshold ratio := float(size) / float(prevSize) useFF = ratio <= 1/r || r <= ratio } } if i > 0 { if mode&commaSep != 0 { p.print(token.COMMA) } if prevLine < line && prevLine > 0 && line > 0 { // lines are broken using newlines so comments remain aligned // unless forceFF is set or there are multiple expressions on // the same line in which case formfeed is used // broken with a formfeed if p.linebreak(line, 1, 2, ws, useFF || prevBreak+1 < i) { ws = ignore *multiLine = true prevBreak = i } } else { p.print(blank) } } if isPair && size > 0 && len(list) > 1 { // we have a key:value expression that fits onto one line and // is in a list with more then one entry: use a column for the // key such that consecutive entries can align if possible p.expr(pair.Key, multiLine) p.print(pair.Colon, token.COLON, vtab) p.expr(pair.Value, multiLine) } else { p.expr0(x, depth, multiLine) } } if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { // print a terminating comma if the next token is on a new line p.print(token.COMMA) if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } p.print(formfeed) // terminating comma needs a line break to look good return } if mode&blankEnd != 0 { p.print(blank) } if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } } // Sets multiLine to true if the the parameter list spans multiple lines. func (p *printer) parameters(fields *ast.FieldList, multiLine *bool) { p.print(fields.Opening, token.LPAREN) if len(fields.List) > 0 { for i, par := range fields.List { if i > 0 { p.print(token.COMMA, blank) } if len(par.Names) > 0 { p.identList(par.Names, false, multiLine) p.print(blank) } p.expr(par.Type, multiLine) } } p.print(fields.Closing, token.RPAREN) } // Sets multiLine to true if the signature spans multiple lines. func (p *printer) signature(params, result *ast.FieldList, multiLine *bool) { p.parameters(params, multiLine) n := result.NumFields() if n > 0 { p.print(blank) if n == 1 && result.List[0].Names == nil { // single anonymous result; no ()'s p.expr(result.List[0].Type, multiLine) return } p.parameters(result, multiLine) } } func identListSize(list []*ast.Ident, maxSize int) (size int) { for i, x := range list { if i > 0 { size += 2 // ", " } size += len(x.Name()) if size >= maxSize { break } } return } func (p *printer) isOneLineFieldList(list []*ast.Field) bool { if len(list) != 1 { return false // allow only one field } f := list[0] if f.Tag != nil || f.Comment != nil { return false // don't allow tags or comments } // only name(s) and type const maxSize = 30 // adjust as appropriate, this is an approximate value namesSize := identListSize(f.Names, maxSize) if namesSize > 0 { namesSize = 1 // blank between names and types } typeSize := p.nodeSize(f.Type, maxSize) return namesSize+typeSize <= maxSize } func (p *printer) setLineComment(text string) { p.setComment(&ast.CommentGroup{[]*ast.Comment{&ast.Comment{noPos, []byte(text)}}}) } func (p *printer) fieldList(fields *ast.FieldList, isIncomplete bool, ctxt exprContext) { lbrace := fields.Opening list := fields.List rbrace := fields.Closing if !isIncomplete && !p.commentBefore(rbrace) { // possibly a one-line struct/interface if len(list) == 0 { // no blank between keyword and {} in this case p.print(lbrace, token.LBRACE, rbrace, token.RBRACE) return } else if ctxt&(compositeLit|structType) == compositeLit|structType && p.isOneLineFieldList(list) { // for now ignore interfaces // small enough - print on one line // (don't use identList and ignore source line breaks) p.print(lbrace, token.LBRACE, blank) f := list[0] for i, x := range f.Names { if i > 0 { p.print(token.COMMA, blank) } p.expr(x, ignoreMultiLine) } if len(f.Names) > 0 { p.print(blank) } p.expr(f.Type, ignoreMultiLine) p.print(blank, rbrace, token.RBRACE) return } } // at least one entry or incomplete p.print(blank, lbrace, token.LBRACE, indent, formfeed) if ctxt&structType != 0 { sep := vtab if len(list) == 1 { sep = blank } var ml bool for i, f := range list { if i > 0 { p.linebreak(f.Pos().Line, 1, 2, ignore, ml) } ml = false extraTabs := 0 p.setComment(f.Doc) if len(f.Names) > 0 { // named fields p.identList(f.Names, false, &ml) p.print(sep) p.expr(f.Type, &ml) extraTabs = 1 } else { // anonymous field p.expr(f.Type, &ml) extraTabs = 2 } if f.Tag != nil { if len(f.Names) > 0 && sep == vtab { p.print(sep) } p.print(sep) p.expr(f.Tag, &ml) extraTabs = 0 } if f.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(sep) } p.setComment(f.Comment) } } if isIncomplete { if len(list) > 0 { p.print(formfeed) } p.flush(rbrace, false) // make sure we don't loose the last line comment p.setLineComment("// contains unexported fields") } } else { // interface var ml bool for i, f := range list { if i > 0 { p.linebreak(f.Pos().Line, 1, 2, ignore, ml) } ml = false p.setComment(f.Doc) if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { // method p.expr(f.Names[0], &ml) p.signature(ftyp.Params, ftyp.Results, &ml) } else { // embedded interface p.expr(f.Type, &ml) } p.setComment(f.Comment) } if isIncomplete { if len(list) > 0 { p.print(formfeed) } p.flush(rbrace, false) // make sure we don't loose the last line comment p.setLineComment("// contains unexported methods") } } p.print(unindent, formfeed, rbrace, token.RBRACE) } // ---------------------------------------------------------------------------- // Expressions // exprContext describes the syntactic environment in which an expression node is printed. type exprContext uint const ( compositeLit = 1 << iota structType ) func walkBinary(e *ast.BinaryExpr) (has5, has6 bool, maxProblem int) { switch e.Op.Precedence() { case 5: has5 = true case 6: has6 = true } switch l := e.X.(type) { case *ast.BinaryExpr: if l.Op.Precedence() < e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h5, h6, mp := walkBinary(l) has5 = has5 || h5 has6 = has6 || h6 if maxProblem < mp { maxProblem = mp } } switch r := e.Y.(type) { case *ast.BinaryExpr: if r.Op.Precedence() <= e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h5, h6, mp := walkBinary(r) has5 = has5 || h5 has6 = has6 || h6 if maxProblem < mp { maxProblem = mp } case *ast.StarExpr: if e.Op.String() == "/" { maxProblem = 6 } case *ast.UnaryExpr: switch e.Op.String() + r.Op.String() { case "/*": maxProblem = 6 case "++", "--": if maxProblem < 5 { maxProblem = 5 } } } return } func cutoff(e *ast.BinaryExpr, depth int) int { has5, has6, maxProblem := walkBinary(e) if maxProblem > 0 { return maxProblem + 1 } if has5 && has6 { if depth == 1 { return 6 } return 5 } if depth == 1 { return 7 } return 5 } func diffPrec(expr ast.Expr, prec int) int { x, ok := expr.(*ast.BinaryExpr) if !ok || prec != x.Op.Precedence() { return 1 } return 0 } func reduceDepth(depth int) int { depth-- if depth < 1 { depth = 1 } return depth } // Format the binary expression: decide the cutoff and then format. // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. // (Algorithm suggestion by Russ Cox.) // // The precedences are: // 6 * / % << >> & &^ // 5 + - | ^ // 4 == != < <= > >= // 3 <- // 2 && // 1 || // // The only decision is whether there will be spaces around levels 5 and 6. // There are never spaces at level 7 (unary), and always spaces at levels 4 and below. // // To choose the cutoff, look at the whole expression but excluding primary // expressions (function calls, parenthesized exprs), and apply these rules: // // 1) If there is a binary operator with a right side unary operand // that would clash without a space, the cutoff must be (in order): // // &^ 7 // /* 7 // ++ 6 // -- 6 // // 2) If there is a mix of level 6 and level 5 operators, then the cutoff // is 6 (use spaces to distinguish precedence) in Normal mode // and 5 (never use spaces) in Compact mode. // // 3) If there are no level 5 operators or no level 6 operators, then the // cutoff is 7 (always use spaces) in Normal mode // and 5 (never use spaces) in Compact mode. // // Sets multiLine to true if the binary expression spans multiple lines. func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int, multiLine *bool) { prec := x.Op.Precedence() if prec < prec1 { // parenthesis needed // Note: The parser inserts an ast.ParenExpr node; thus this case // can only occur if the AST is created in a different way. p.print(token.LPAREN) p.expr0(x, reduceDepth(depth), multiLine) // parentheses undo one level of depth p.print(token.RPAREN) return } printBlank := prec < cutoff ws := indent p.expr1(x.X, prec, depth+diffPrec(x.X, prec), 0, multiLine) if printBlank { p.print(blank) } xline := p.pos.Line // before the operator (it may be on the next line!) yline := x.Y.Pos().Line p.print(x.OpPos, x.Op) if xline != yline && xline > 0 && yline > 0 { // at least one line break, but respect an extra empty line // in the source if p.linebreak(yline, 1, 2, ws, true) { ws = ignore *multiLine = true printBlank = false // no blank after line break } } if printBlank { p.print(blank) } p.expr1(x.Y, prec+1, depth+1, 0, multiLine) if ws == ignore { p.print(unindent) } } func isBinary(expr ast.Expr) bool { _, ok := expr.(*ast.BinaryExpr) return ok } // Sets multiLine to true if the expression spans multiple lines. func (p *printer) expr1(expr ast.Expr, prec1, depth int, ctxt exprContext, multiLine *bool) { p.print(expr.Pos()) switch x := expr.(type) { case *ast.BadExpr: p.print("BadExpr") case *ast.Ident: p.print(x) case *ast.BinaryExpr: if depth < 1 { p.internalError("depth < 1:", depth) depth = 1 } p.binaryExpr(x, prec1, cutoff(x, depth), depth, multiLine) case *ast.KeyValueExpr: p.expr(x.Key, multiLine) p.print(x.Colon, token.COLON, blank) p.expr(x.Value, multiLine) case *ast.StarExpr: const prec = token.UnaryPrec if prec < prec1 { // parenthesis needed p.print(token.LPAREN) p.print(token.MUL) p.expr(x.X, multiLine) p.print(token.RPAREN) } else { // no parenthesis needed p.print(token.MUL) p.expr(x.X, multiLine) } case *ast.UnaryExpr: const prec = token.UnaryPrec if prec < prec1 { // parenthesis needed p.print(token.LPAREN) p.expr(x, multiLine) p.print(token.RPAREN) } else { // no parenthesis needed p.print(x.Op) if x.Op == token.RANGE { // TODO(gri) Remove this code if it cannot be reached. p.print(blank) } p.expr1(x.X, prec, depth, 0, multiLine) } case *ast.BasicLit: p.print(x) case *ast.FuncLit: p.expr(x.Type, multiLine) p.funcBody(x.Body, distance(x.Type.Pos(), p.pos), true, multiLine) case *ast.ParenExpr: p.print(token.LPAREN) p.expr0(x.X, reduceDepth(depth), multiLine) // parentheses undo one level of depth p.print(x.Rparen, token.RPAREN) case *ast.SelectorExpr: p.expr1(x.X, token.HighestPrec, depth, 0, multiLine) p.print(token.PERIOD) p.expr1(x.Sel, token.HighestPrec, depth, 0, multiLine) case *ast.TypeAssertExpr: p.expr1(x.X, token.HighestPrec, depth, 0, multiLine) p.print(token.PERIOD, token.LPAREN) if x.Type != nil { p.expr(x.Type, multiLine) } else { p.print(token.TYPE) } p.print(token.RPAREN) case *ast.IndexExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1, 0, multiLine) p.print(token.LBRACK) p.expr0(x.Index, depth+1, multiLine) p.print(token.RBRACK) case *ast.SliceExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1, 0, multiLine) p.print(token.LBRACK) p.expr0(x.Index, depth+1, multiLine) // blanks around ":" if both sides exist and either side is a binary expression if depth <= 1 && x.End != nil && (isBinary(x.Index) || isBinary(x.End)) { p.print(blank, token.COLON, blank) } else { p.print(token.COLON) } if x.End != nil { p.expr0(x.End, depth+1, multiLine) } p.print(token.RBRACK) case *ast.CallExpr: if len(x.Args) > 1 { depth++ } p.expr1(x.Fun, token.HighestPrec, depth, 0, multiLine) p.print(x.Lparen, token.LPAREN) p.exprList(x.Lparen, x.Args, depth, commaSep|commaTerm, multiLine, x.Rparen) p.print(x.Rparen, token.RPAREN) case *ast.CompositeLit: p.expr1(x.Type, token.HighestPrec, depth, compositeLit, multiLine) p.print(x.Lbrace, token.LBRACE) p.exprList(x.Lbrace, x.Elts, 1, commaSep|commaTerm, multiLine, x.Rbrace) p.print(x.Rbrace, token.RBRACE) case *ast.Ellipsis: p.print(token.ELLIPSIS) if x.Elt != nil { p.expr(x.Elt, multiLine) } case *ast.ArrayType: p.print(token.LBRACK) if x.Len != nil { p.expr(x.Len, multiLine) } p.print(token.RBRACK) p.expr(x.Elt, multiLine) case *ast.StructType: p.print(token.STRUCT) p.fieldList(x.Fields, x.Incomplete, ctxt|structType) case *ast.FuncType: p.print(token.FUNC) p.signature(x.Params, x.Results, multiLine) case *ast.InterfaceType: p.print(token.INTERFACE) p.fieldList(x.Methods, x.Incomplete, ctxt) case *ast.MapType: p.print(token.MAP, token.LBRACK) p.expr(x.Key, multiLine) p.print(token.RBRACK) p.expr(x.Value, multiLine) case *ast.ChanType: switch x.Dir { case ast.SEND | ast.RECV: p.print(token.CHAN) case ast.RECV: p.print(token.ARROW, token.CHAN) case ast.SEND: p.print(token.CHAN, token.ARROW) } p.print(blank) p.expr(x.Value, multiLine) default: panic("unreachable") } return } func (p *printer) expr0(x ast.Expr, depth int, multiLine *bool) { p.expr1(x, token.LowestPrec, depth, 0, multiLine) } // Sets multiLine to true if the expression spans multiple lines. func (p *printer) expr(x ast.Expr, multiLine *bool) { const depth = 1 p.expr1(x, token.LowestPrec, depth, 0, multiLine) } // ---------------------------------------------------------------------------- // Statements const maxStmtNewlines = 2 // maximum number of newlines between statements // Print the statement list indented, but without a newline after the last statement. // Extra line breaks between statements in the source are respected but at most one // empty line is printed between statements. func (p *printer) stmtList(list []ast.Stmt, _indent int) { // TODO(gri): fix _indent code if _indent > 0 { p.print(indent) } var multiLine bool for i, s := range list { // _indent == 0 only for lists of switch/select case clauses; // in those cases each clause is a new section p.linebreak(s.Pos().Line, 1, maxStmtNewlines, ignore, i == 0 || _indent == 0 || multiLine) multiLine = false p.stmt(s, &multiLine) } if _indent > 0 { p.print(unindent) } } // block prints an *ast.BlockStmt; it always spans at least two lines. func (p *printer) block(s *ast.BlockStmt, indent int) { p.print(s.Pos(), token.LBRACE) p.stmtList(s.List, indent) p.linebreak(s.Rbrace.Line, 1, maxStmtNewlines, ignore, true) p.print(s.Rbrace, token.RBRACE) } // TODO(gri): Decide if this should be used more broadly. The printing code // knows when to insert parentheses for precedence reasons, but // need to be careful to keep them around type expressions. func stripParens(x ast.Expr) ast.Expr { if px, hasParens := x.(*ast.ParenExpr); hasParens { return stripParens(px.X) } return x } func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { p.print(blank) needsBlank := false if init == nil && post == nil { // no semicolons required if expr != nil { p.expr(stripParens(expr), ignoreMultiLine) needsBlank = true } } else { // all semicolons required // (they are not separators, print them explicitly) if init != nil { p.stmt(init, ignoreMultiLine) } p.print(token.SEMICOLON, blank) if expr != nil { p.expr(stripParens(expr), ignoreMultiLine) needsBlank = true } if isForStmt { p.print(token.SEMICOLON, blank) needsBlank = false if post != nil { p.stmt(post, ignoreMultiLine) needsBlank = true } } } if needsBlank { p.print(blank) } } // Sets multiLine to true if the statements spans multiple lines. func (p *printer) stmt(stmt ast.Stmt, multiLine *bool) { p.print(stmt.Pos()) switch s := stmt.(type) { case *ast.BadStmt: p.print("BadStmt") case *ast.DeclStmt: p.decl(s.Decl, inStmtList, multiLine) case *ast.EmptyStmt: // nothing to do case *ast.LabeledStmt: // a "correcting" unindent immediately following a line break // is applied before the line break if there is no comment // between (see writeWhitespace) p.print(unindent) p.expr(s.Label, multiLine) p.print(token.COLON, vtab, indent) p.linebreak(s.Stmt.Pos().Line, 0, 1, ignore, true) p.stmt(s.Stmt, multiLine) case *ast.ExprStmt: const depth = 1 p.expr0(s.X, depth, multiLine) case *ast.IncDecStmt: const depth = 1 p.expr0(s.X, depth+1, multiLine) p.print(s.Tok) case *ast.AssignStmt: var depth = 1 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { depth++ } p.exprList(s.Pos(), s.Lhs, depth, commaSep, multiLine, s.TokPos) p.print(blank, s.TokPos, s.Tok) p.exprList(s.TokPos, s.Rhs, depth, blankStart|commaSep, multiLine, noPos) case *ast.GoStmt: p.print(token.GO, blank) p.expr(s.Call, multiLine) case *ast.DeferStmt: p.print(token.DEFER, blank) p.expr(s.Call, multiLine) case *ast.ReturnStmt: p.print(token.RETURN) if s.Results != nil { p.exprList(s.Pos(), s.Results, 1, blankStart|commaSep, multiLine, noPos) } case *ast.BranchStmt: p.print(s.Tok) if s.Label != nil { p.print(blank) p.expr(s.Label, multiLine) } case *ast.BlockStmt: p.block(s, 1) *multiLine = true case *ast.IfStmt: p.print(token.IF) p.controlClause(false, s.Init, s.Cond, nil) p.block(s.Body, 1) *multiLine = true if s.Else != nil { p.print(blank, token.ELSE, blank) switch s.Else.(type) { case *ast.BlockStmt, *ast.IfStmt: p.stmt(s.Else, ignoreMultiLine) default: p.print(token.LBRACE, indent, formfeed) p.stmt(s.Else, ignoreMultiLine) p.print(unindent, formfeed, token.RBRACE) } } case *ast.CaseClause: if s.Values != nil { p.print(token.CASE) p.exprList(s.Pos(), s.Values, 1, blankStart|commaSep, multiLine, s.Colon) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1) case *ast.SwitchStmt: p.print(token.SWITCH) p.controlClause(false, s.Init, s.Tag, nil) p.block(s.Body, 0) *multiLine = true case *ast.TypeCaseClause: if s.Types != nil { p.print(token.CASE) p.exprList(s.Pos(), s.Types, 1, blankStart|commaSep, multiLine, s.Colon) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1) case *ast.TypeSwitchStmt: p.print(token.SWITCH) if s.Init != nil { p.print(blank) p.stmt(s.Init, ignoreMultiLine) p.print(token.SEMICOLON) } p.print(blank) p.stmt(s.Assign, ignoreMultiLine) p.print(blank) p.block(s.Body, 0) *multiLine = true case *ast.CommClause: if s.Rhs != nil { p.print(token.CASE, blank) if s.Lhs != nil { p.expr(s.Lhs, multiLine) p.print(blank, s.Tok, blank) } p.expr(s.Rhs, multiLine) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1) case *ast.SelectStmt: p.print(token.SELECT, blank) p.block(s.Body, 0) *multiLine = true case *ast.ForStmt: p.print(token.FOR) p.controlClause(true, s.Init, s.Cond, s.Post) p.block(s.Body, 1) *multiLine = true case *ast.RangeStmt: p.print(token.FOR, blank) p.expr(s.Key, multiLine) if s.Value != nil { p.print(token.COMMA, blank) p.expr(s.Value, multiLine) } p.print(blank, s.TokPos, s.Tok, blank, token.RANGE, blank) p.expr(stripParens(s.X), multiLine) p.print(blank) p.block(s.Body, 1) *multiLine = true default: panic("unreachable") } return } // ---------------------------------------------------------------------------- // Declarations type declContext uint const ( atTop declContext = iota inGroup inStmtList ) // The parameter n is the number of specs in the group; context specifies // the surroundings of the declaration. Separating semicolons are printed // depending on the context. If indent is set, a multi-line identifier lists // in the spec are indented when the first linebreak is encountered. Sets // multiLine to true if the spec spans multiple lines. // func (p *printer) spec(spec ast.Spec, n int, context declContext, indent bool, multiLine *bool) { switch s := spec.(type) { case *ast.ImportSpec: p.setComment(s.Doc) if s.Name != nil { p.expr(s.Name, multiLine) p.print(blank) } p.expr(s.Path, multiLine) p.setComment(s.Comment) case *ast.ValueSpec: p.setComment(s.Doc) p.identList(s.Names, indent, multiLine) // always present if n == 1 { if s.Type != nil { p.print(blank) p.expr(s.Type, multiLine) } if s.Values != nil { p.print(blank, token.ASSIGN) p.exprList(noPos, s.Values, 1, blankStart|commaSep, multiLine, noPos) } p.setComment(s.Comment) } else { extraTabs := 3 if s.Type != nil { p.print(vtab) p.expr(s.Type, multiLine) extraTabs-- } if s.Values != nil { p.print(vtab, token.ASSIGN) p.exprList(noPos, s.Values, 1, blankStart|commaSep, multiLine, noPos) extraTabs-- } if s.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(vtab) } p.setComment(s.Comment) } } case *ast.TypeSpec: p.setComment(s.Doc) p.expr(s.Name, multiLine) if n == 1 { p.print(blank) } else { p.print(vtab) } p.expr(s.Type, multiLine) p.setComment(s.Comment) default: panic("unreachable") } } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) genDecl(d *ast.GenDecl, context declContext, multiLine *bool) { p.setComment(d.Doc) p.print(d.Pos(), d.Tok, blank) if d.Lparen.IsValid() { // group of parenthesized declarations p.print(d.Lparen, token.LPAREN) if len(d.Specs) > 0 { p.print(indent, formfeed) var ml bool for i, s := range d.Specs { if i > 0 { p.linebreak(s.Pos().Line, 1, 2, ignore, ml) } ml = false p.spec(s, len(d.Specs), inGroup, false, &ml) } p.print(unindent, formfeed) *multiLine = true } p.print(d.Rparen, token.RPAREN) } else { // single declaration p.spec(d.Specs[0], 1, context, true, multiLine) } } // nodeSize determines the size of n in chars after formatting. // The result is <= maxSize if the node fits on one line with at // most maxSize chars and the formatted output doesn't contain // any control chars. Otherwise, the result is > maxSize. // func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { size = maxSize + 1 // assume n doesn't fit // nodeSize computation must be indendent of particular // style so that we always get the same decision; print // in RawFormat cfg := Config{Mode: RawFormat} var buf bytes.Buffer if _, err := cfg.Fprint(&buf, n); err != nil { return } if buf.Len() <= maxSize { for _, ch := range buf.Bytes() { if ch < ' ' { return } } size = buf.Len() // n fits } return } func (p *printer) isOneLineFunc(b *ast.BlockStmt, headerSize int) bool { const maxSize = 90 // adjust as appropriate, this is an approximate value bodySize := 0 switch { case len(b.List) > 1 || p.commentBefore(b.Rbrace): return false // too many statements or there is a comment - all bets are off case len(b.List) == 1: bodySize = p.nodeSize(b.List[0], maxSize) } // require both headers and overall size to be not "too large" return headerSize <= maxSize/2 && headerSize+bodySize <= maxSize } // Sets multiLine to true if the function body spans multiple lines. func (p *printer) funcBody(b *ast.BlockStmt, headerSize int, isLit bool, multiLine *bool) { if b == nil { return } if p.isOneLineFunc(b, headerSize) { sep := vtab if isLit { sep = blank } if len(b.List) > 0 { p.print(sep, b.Pos(), token.LBRACE, blank) p.stmt(b.List[0], ignoreMultiLine) p.print(blank, b.Rbrace, token.RBRACE) } else { p.print(sep, b.Pos(), token.LBRACE, b.Rbrace, token.RBRACE) } return } p.print(blank) p.block(b, 1) *multiLine = true } // distance returns the column difference between from and to if both // are on the same line; if they are on different lines (or unknown) // the result is infinity (1<<30). func distance(from, to token.Position) int { if from.IsValid() && to.IsValid() && from.Line == to.Line { return to.Column - from.Column } return 1 << 30 } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) funcDecl(d *ast.FuncDecl, multiLine *bool) { p.setComment(d.Doc) p.print(d.Pos(), token.FUNC, blank) if d.Recv != nil { p.parameters(d.Recv, multiLine) // method: print receiver p.print(blank) } p.expr(d.Name, multiLine) p.signature(d.Type.Params, d.Type.Results, multiLine) p.funcBody(d.Body, distance(d.Pos(), p.pos), false, multiLine) } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) decl(decl ast.Decl, context declContext, multiLine *bool) { switch d := decl.(type) { case *ast.BadDecl: p.print(d.Pos(), "BadDecl") case *ast.GenDecl: p.genDecl(d, context, multiLine) case *ast.FuncDecl: p.funcDecl(d, multiLine) default: panic("unreachable") } } // ---------------------------------------------------------------------------- // Files const maxDeclNewlines = 3 // maximum number of newlines between declarations func declToken(decl ast.Decl) (tok token.Token) { tok = token.ILLEGAL switch d := decl.(type) { case *ast.GenDecl: tok = d.Tok case *ast.FuncDecl: tok = token.FUNC } return } func (p *printer) file(src *ast.File) { p.setComment(src.Doc) p.print(src.Pos(), token.PACKAGE, blank) p.expr(src.Name, ignoreMultiLine) if len(src.Decls) > 0 { tok := token.ILLEGAL for _, d := range src.Decls { prev := tok tok = declToken(d) // if the declaration token changed (e.g., from CONST to TYPE) // print an empty line between top-level declarations min := 1 if prev != tok { min = 2 } p.linebreak(d.Pos().Line, min, maxDeclNewlines, ignore, false) p.decl(d, atTop, ignoreMultiLine) } } p.print(newline) }