// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements printing of AST nodes; specifically // expressions, statements, declarations, and files. It uses // the print functionality implemented in printer.go. package printer import ( "bytes" "go/ast" "go/token" ) // Other formatting issues: // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) // when the comment spans multiple lines; if such a comment is just two lines, formatting is // not idempotent // - formatting of expression lists // - should use blank instead of tab to separate one-line function bodies from // the function header unless there is a group of consecutive one-liners // ---------------------------------------------------------------------------- // Common AST nodes. // Print as many newlines as necessary (but at least min newlines) to get to // the current line. ws is printed before the first line break. If newSection // is set, the first line break is printed as formfeed. Returns true if any // line break was printed; returns false otherwise. // // TODO(gri): linebreak may add too many lines if the next statement at "line" // is preceded by comments because the computation of n assumes // the current position before the comment and the target position // after the comment. Thus, after interspersing such comments, the // space taken up by them is not considered to reduce the number of // linebreaks. At the moment there is no easy way to know about // future (not yet interspersed) comments in this function. // func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (printedBreak bool) { n := p.nlines(line-p.pos.Line, min) if n > 0 { p.print(ws) if newSection { p.print(formfeed) n-- } for ; n > 0; n-- { p.print(newline) } printedBreak = true } return } // setComment sets g as the next comment if g != nil and if node comments // are enabled - this mode is used when printing source code fragments such // as exports only. It assumes that there are no other pending comments to // intersperse. func (p *printer) setComment(g *ast.CommentGroup) { if g == nil || !p.useNodeComments { return } if p.comments == nil { // initialize p.comments lazily p.comments = make([]*ast.CommentGroup, 1) } else if p.cindex < len(p.comments) { // for some reason there are pending comments; this // should never happen - handle gracefully and flush // all comments up to g, ignore anything after that p.flush(p.fset.Position(g.List[0].Pos()), token.ILLEGAL) } p.comments[0] = g p.cindex = 0 } type exprListMode uint const ( blankStart exprListMode = 1 << iota // print a blank before a non-empty list blankEnd // print a blank after a non-empty list commaSep // elements are separated by commas commaTerm // list is optionally terminated by a comma noIndent // no extra indentation in multi-line lists periodSep // elements are separated by periods ) // Sets multiLine to true if the identifier list spans multiple lines. // If indent is set, a multi-line identifier list is indented after the // first linebreak encountered. func (p *printer) identList(list []*ast.Ident, indent bool, multiLine *bool) { // convert into an expression list so we can re-use exprList formatting xlist := make([]ast.Expr, len(list)) for i, x := range list { xlist[i] = x } mode := commaSep if !indent { mode |= noIndent } p.exprList(token.NoPos, xlist, 1, mode, multiLine, token.NoPos) } // Print a list of expressions. If the list spans multiple // source lines, the original line breaks are respected between // expressions. Sets multiLine to true if the list spans multiple // lines. // // TODO(gri) Consider rewriting this to be independent of []ast.Expr // so that we can use the algorithm for any kind of list // (e.g., pass list via a channel over which to range). func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, multiLine *bool, next0 token.Pos) { if len(list) == 0 { return } if mode&blankStart != 0 { p.print(blank) } prev := p.fset.Position(prev0) next := p.fset.Position(next0) line := p.fset.Position(list[0].Pos()).Line endLine := p.fset.Position(list[len(list)-1].End()).Line if prev.IsValid() && prev.Line == line && line == endLine { // all list entries on a single line for i, x := range list { if i > 0 { if mode&commaSep != 0 { p.print(token.COMMA) } p.print(blank) } p.expr0(x, depth, multiLine) } if mode&blankEnd != 0 { p.print(blank) } return } // list entries span multiple lines; // use source code positions to guide line breaks // don't add extra indentation if noIndent is set; // i.e., pretend that the first line is already indented ws := ignore if mode&noIndent == 0 { ws = indent } // the first linebreak is always a formfeed since this section must not // depend on any previous formatting prevBreak := -1 // index of last expression that was followed by a linebreak if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) { ws = ignore *multiLine = true prevBreak = 0 } // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line size := 0 // print all list elements for i, x := range list { prevLine := line line = p.fset.Position(x.Pos()).Line // determine if the next linebreak, if any, needs to use formfeed: // in general, use the entire node size to make the decision; for // key:value expressions, use the key size // TODO(gri) for a better result, should probably incorporate both // the key and the node size into the decision process useFF := true // determine element size: all bets are off if we don't have // position information for the previous and next token (likely // generated code - simply ignore the size in this case by setting // it to 0) prevSize := size const infinity = 1e6 // larger than any source line size = p.nodeSize(x, infinity) pair, isPair := x.(*ast.KeyValueExpr) if size <= infinity && prev.IsValid() && next.IsValid() { // x fits on a single line if isPair { size = p.nodeSize(pair.Key, infinity) // size <= infinity } } else { // size too large or we don't have good layout information size = 0 } // if the previous line and the current line had single- // line-expressions and the key sizes are small or the // the ratio between the key sizes does not exceed a // threshold, align columns and do not use formfeed if prevSize > 0 && size > 0 { const smallSize = 20 if prevSize <= smallSize && size <= smallSize { useFF = false } else { const r = 4 // threshold ratio := float64(size) / float64(prevSize) useFF = ratio <= 1/r || r <= ratio } } if i > 0 { switch { case mode&commaSep != 0: p.print(token.COMMA) case mode&periodSep != 0: p.print(token.PERIOD) } needsBlank := mode&periodSep == 0 // period-separated list elements don't need a blank if prevLine < line && prevLine > 0 && line > 0 { // lines are broken using newlines so comments remain aligned // unless forceFF is set or there are multiple expressions on // the same line in which case formfeed is used if p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) { ws = ignore *multiLine = true prevBreak = i needsBlank = false // we got a line break instead } } if needsBlank { p.print(blank) } } if isPair && size > 0 && len(list) > 1 { // we have a key:value expression that fits onto one line and // is in a list with more then one entry: use a column for the // key such that consecutive entries can align if possible p.expr(pair.Key, multiLine) p.print(pair.Colon, token.COLON, vtab) p.expr(pair.Value, multiLine) } else { p.expr0(x, depth, multiLine) } } if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { // print a terminating comma if the next token is on a new line p.print(token.COMMA) if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } p.print(formfeed) // terminating comma needs a line break to look good return } if mode&blankEnd != 0 { p.print(blank) } if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } } // Sets multiLine to true if the the parameter list spans multiple lines. func (p *printer) parameters(fields *ast.FieldList, multiLine *bool) { p.print(fields.Opening, token.LPAREN) if len(fields.List) > 0 { var prevLine, line int for i, par := range fields.List { if i > 0 { p.print(token.COMMA) if len(par.Names) > 0 { line = p.fset.Position(par.Names[0].Pos()).Line } else { line = p.fset.Position(par.Type.Pos()).Line } if 0 < prevLine && prevLine < line && p.linebreak(line, 0, ignore, true) { *multiLine = true } else { p.print(blank) } } if len(par.Names) > 0 { p.identList(par.Names, false, multiLine) p.print(blank) } p.expr(par.Type, multiLine) prevLine = p.fset.Position(par.Type.Pos()).Line } } p.print(fields.Closing, token.RPAREN) } // Sets multiLine to true if the signature spans multiple lines. func (p *printer) signature(params, result *ast.FieldList, multiLine *bool) { p.parameters(params, multiLine) n := result.NumFields() if n > 0 { p.print(blank) if n == 1 && result.List[0].Names == nil { // single anonymous result; no ()'s p.expr(result.List[0].Type, multiLine) return } p.parameters(result, multiLine) } } func identListSize(list []*ast.Ident, maxSize int) (size int) { for i, x := range list { if i > 0 { size += 2 // ", " } size += len(x.Name) if size >= maxSize { break } } return } func (p *printer) isOneLineFieldList(list []*ast.Field) bool { if len(list) != 1 { return false // allow only one field } f := list[0] if f.Tag != nil || f.Comment != nil { return false // don't allow tags or comments } // only name(s) and type const maxSize = 30 // adjust as appropriate, this is an approximate value namesSize := identListSize(f.Names, maxSize) if namesSize > 0 { namesSize = 1 // blank between names and types } typeSize := p.nodeSize(f.Type, maxSize) return namesSize+typeSize <= maxSize } func (p *printer) setLineComment(text string) { p.setComment(&ast.CommentGroup{[]*ast.Comment{&ast.Comment{token.NoPos, text}}}) } func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) { lbrace := fields.Opening list := fields.List rbrace := fields.Closing srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.fset.Position(lbrace).Line == p.fset.Position(rbrace).Line if !isIncomplete && !p.commentBefore(p.fset.Position(rbrace)) && srcIsOneLine { // possibly a one-line struct/interface if len(list) == 0 { // no blank between keyword and {} in this case p.print(lbrace, token.LBRACE, rbrace, token.RBRACE) return } else if isStruct && p.isOneLineFieldList(list) { // for now ignore interfaces // small enough - print on one line // (don't use identList and ignore source line breaks) p.print(lbrace, token.LBRACE, blank) f := list[0] for i, x := range f.Names { if i > 0 { p.print(token.COMMA, blank) } p.expr(x, ignoreMultiLine) } if len(f.Names) > 0 { p.print(blank) } p.expr(f.Type, ignoreMultiLine) p.print(blank, rbrace, token.RBRACE) return } } // at least one entry or incomplete p.print(blank, lbrace, token.LBRACE, indent, formfeed) if isStruct { sep := vtab if len(list) == 1 { sep = blank } var ml bool for i, f := range list { if i > 0 { p.linebreak(p.fset.Position(f.Pos()).Line, 1, ignore, ml) } ml = false extraTabs := 0 p.setComment(f.Doc) if len(f.Names) > 0 { // named fields p.identList(f.Names, false, &ml) p.print(sep) p.expr(f.Type, &ml) extraTabs = 1 } else { // anonymous field p.expr(f.Type, &ml) extraTabs = 2 } if f.Tag != nil { if len(f.Names) > 0 && sep == vtab { p.print(sep) } p.print(sep) p.expr(f.Tag, &ml) extraTabs = 0 } if f.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(sep) } p.setComment(f.Comment) } } if isIncomplete { if len(list) > 0 { p.print(formfeed) } p.flush(p.fset.Position(rbrace), token.RBRACE) // make sure we don't lose the last line comment p.setLineComment("// contains filtered or unexported fields") } } else { // interface var ml bool for i, f := range list { if i > 0 { p.linebreak(p.fset.Position(f.Pos()).Line, 1, ignore, ml) } ml = false p.setComment(f.Doc) if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { // method p.expr(f.Names[0], &ml) p.signature(ftyp.Params, ftyp.Results, &ml) } else { // embedded interface p.expr(f.Type, &ml) } p.setComment(f.Comment) } if isIncomplete { if len(list) > 0 { p.print(formfeed) } p.flush(p.fset.Position(rbrace), token.RBRACE) // make sure we don't lose the last line comment p.setLineComment("// contains filtered or unexported methods") } } p.print(unindent, formfeed, rbrace, token.RBRACE) } // ---------------------------------------------------------------------------- // Expressions func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) { switch e.Op.Precedence() { case 4: has4 = true case 5: has5 = true } switch l := e.X.(type) { case *ast.BinaryExpr: if l.Op.Precedence() < e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h4, h5, mp := walkBinary(l) has4 = has4 || h4 has5 = has5 || h5 if maxProblem < mp { maxProblem = mp } } switch r := e.Y.(type) { case *ast.BinaryExpr: if r.Op.Precedence() <= e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h4, h5, mp := walkBinary(r) has4 = has4 || h4 has5 = has5 || h5 if maxProblem < mp { maxProblem = mp } case *ast.StarExpr: if e.Op == token.QUO { // `*/` maxProblem = 5 } case *ast.UnaryExpr: switch e.Op.String() + r.Op.String() { case "/*", "&&", "&^": maxProblem = 5 case "++", "--": if maxProblem < 4 { maxProblem = 4 } } } return } func cutoff(e *ast.BinaryExpr, depth int) int { has4, has5, maxProblem := walkBinary(e) if maxProblem > 0 { return maxProblem + 1 } if has4 && has5 { if depth == 1 { return 5 } return 4 } if depth == 1 { return 6 } return 4 } func diffPrec(expr ast.Expr, prec int) int { x, ok := expr.(*ast.BinaryExpr) if !ok || prec != x.Op.Precedence() { return 1 } return 0 } func reduceDepth(depth int) int { depth-- if depth < 1 { depth = 1 } return depth } // Format the binary expression: decide the cutoff and then format. // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. // (Algorithm suggestion by Russ Cox.) // // The precedences are: // 5 * / % << >> & &^ // 4 + - | ^ // 3 == != < <= > >= // 2 && // 1 || // // The only decision is whether there will be spaces around levels 4 and 5. // There are never spaces at level 6 (unary), and always spaces at levels 3 and below. // // To choose the cutoff, look at the whole expression but excluding primary // expressions (function calls, parenthesized exprs), and apply these rules: // // 1) If there is a binary operator with a right side unary operand // that would clash without a space, the cutoff must be (in order): // // /* 6 // && 6 // &^ 6 // ++ 5 // -- 5 // // (Comparison operators always have spaces around them.) // // 2) If there is a mix of level 5 and level 4 operators, then the cutoff // is 5 (use spaces to distinguish precedence) in Normal mode // and 4 (never use spaces) in Compact mode. // // 3) If there are no level 4 operators or no level 5 operators, then the // cutoff is 6 (always use spaces) in Normal mode // and 4 (never use spaces) in Compact mode. // // Sets multiLine to true if the binary expression spans multiple lines. func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int, multiLine *bool) { prec := x.Op.Precedence() if prec < prec1 { // parenthesis needed // Note: The parser inserts an ast.ParenExpr node; thus this case // can only occur if the AST is created in a different way. p.print(token.LPAREN) p.expr0(x, reduceDepth(depth), multiLine) // parentheses undo one level of depth p.print(token.RPAREN) return } printBlank := prec < cutoff ws := indent p.expr1(x.X, prec, depth+diffPrec(x.X, prec), multiLine) if printBlank { p.print(blank) } xline := p.pos.Line // before the operator (it may be on the next line!) yline := p.fset.Position(x.Y.Pos()).Line p.print(x.OpPos, x.Op) if xline != yline && xline > 0 && yline > 0 { // at least one line break, but respect an extra empty line // in the source if p.linebreak(yline, 1, ws, true) { ws = ignore *multiLine = true printBlank = false // no blank after line break } } if printBlank { p.print(blank) } p.expr1(x.Y, prec+1, depth+1, multiLine) if ws == ignore { p.print(unindent) } } func isBinary(expr ast.Expr) bool { _, ok := expr.(*ast.BinaryExpr) return ok } // If the expression contains one or more selector expressions, splits it into // two expressions at the rightmost period. Writes entire expr to suffix when // selector isn't found. Rewrites AST nodes for calls, index expressions and // type assertions, all of which may be found in selector chains, to make them // parts of the chain. func splitSelector(expr ast.Expr) (body, suffix ast.Expr) { switch x := expr.(type) { case *ast.SelectorExpr: body, suffix = x.X, x.Sel return case *ast.CallExpr: body, suffix = splitSelector(x.Fun) if body != nil { suffix = &ast.CallExpr{suffix, x.Lparen, x.Args, x.Ellipsis, x.Rparen} return } case *ast.IndexExpr: body, suffix = splitSelector(x.X) if body != nil { suffix = &ast.IndexExpr{suffix, x.Lbrack, x.Index, x.Rbrack} return } case *ast.SliceExpr: body, suffix = splitSelector(x.X) if body != nil { suffix = &ast.SliceExpr{suffix, x.Lbrack, x.Low, x.High, x.Rbrack} return } case *ast.TypeAssertExpr: body, suffix = splitSelector(x.X) if body != nil { suffix = &ast.TypeAssertExpr{suffix, x.Type} return } } suffix = expr return } // Convert an expression into an expression list split at the periods of // selector expressions. func selectorExprList(expr ast.Expr) (list []ast.Expr) { // split expression for expr != nil { var suffix ast.Expr expr, suffix = splitSelector(expr) list = append(list, suffix) } // reverse list for i, j := 0, len(list)-1; i < j; i, j = i+1, j-1 { list[i], list[j] = list[j], list[i] } return } // Sets multiLine to true if the expression spans multiple lines. func (p *printer) expr1(expr ast.Expr, prec1, depth int, multiLine *bool) { p.print(expr.Pos()) switch x := expr.(type) { case *ast.BadExpr: p.print("BadExpr") case *ast.Ident: p.print(x) case *ast.BinaryExpr: if depth < 1 { p.internalError("depth < 1:", depth) depth = 1 } p.binaryExpr(x, prec1, cutoff(x, depth), depth, multiLine) case *ast.KeyValueExpr: p.expr(x.Key, multiLine) p.print(x.Colon, token.COLON, blank) p.expr(x.Value, multiLine) case *ast.StarExpr: const prec = token.UnaryPrec if prec < prec1 { // parenthesis needed p.print(token.LPAREN) p.print(token.MUL) p.expr(x.X, multiLine) p.print(token.RPAREN) } else { // no parenthesis needed p.print(token.MUL) p.expr(x.X, multiLine) } case *ast.UnaryExpr: const prec = token.UnaryPrec if prec < prec1 { // parenthesis needed p.print(token.LPAREN) p.expr(x, multiLine) p.print(token.RPAREN) } else { // no parenthesis needed p.print(x.Op) if x.Op == token.RANGE { // TODO(gri) Remove this code if it cannot be reached. p.print(blank) } p.expr1(x.X, prec, depth, multiLine) } case *ast.BasicLit: p.print(x) case *ast.FuncLit: p.expr(x.Type, multiLine) p.funcBody(x.Body, p.distance(x.Type.Pos(), p.pos), true, multiLine) case *ast.ParenExpr: if _, hasParens := x.X.(*ast.ParenExpr); hasParens { // don't print parentheses around an already parenthesized expression // TODO(gri) consider making this more general and incorporate precedence levels p.expr0(x.X, reduceDepth(depth), multiLine) // parentheses undo one level of depth } else { p.print(token.LPAREN) p.expr0(x.X, reduceDepth(depth), multiLine) // parentheses undo one level of depth p.print(x.Rparen, token.RPAREN) } case *ast.SelectorExpr: parts := selectorExprList(expr) p.exprList(token.NoPos, parts, depth, periodSep, multiLine, token.NoPos) case *ast.TypeAssertExpr: p.expr1(x.X, token.HighestPrec, depth, multiLine) p.print(token.PERIOD, token.LPAREN) if x.Type != nil { p.expr(x.Type, multiLine) } else { p.print(token.TYPE) } p.print(token.RPAREN) case *ast.IndexExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1, multiLine) p.print(x.Lbrack, token.LBRACK) p.expr0(x.Index, depth+1, multiLine) p.print(x.Rbrack, token.RBRACK) case *ast.SliceExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1, multiLine) p.print(x.Lbrack, token.LBRACK) if x.Low != nil { p.expr0(x.Low, depth+1, multiLine) } // blanks around ":" if both sides exist and either side is a binary expression if depth <= 1 && x.Low != nil && x.High != nil && (isBinary(x.Low) || isBinary(x.High)) { p.print(blank, token.COLON, blank) } else { p.print(token.COLON) } if x.High != nil { p.expr0(x.High, depth+1, multiLine) } p.print(x.Rbrack, token.RBRACK) case *ast.CallExpr: if len(x.Args) > 1 { depth++ } p.expr1(x.Fun, token.HighestPrec, depth, multiLine) p.print(x.Lparen, token.LPAREN) p.exprList(x.Lparen, x.Args, depth, commaSep|commaTerm, multiLine, x.Rparen) if x.Ellipsis.IsValid() { p.print(x.Ellipsis, token.ELLIPSIS) } p.print(x.Rparen, token.RPAREN) case *ast.CompositeLit: // composite literal elements that are composite literals themselves may have the type omitted if x.Type != nil { p.expr1(x.Type, token.HighestPrec, depth, multiLine) } p.print(x.Lbrace, token.LBRACE) p.exprList(x.Lbrace, x.Elts, 1, commaSep|commaTerm, multiLine, x.Rbrace) // do not insert extra line breaks because of comments before // the closing '}' as it might break the code if there is no // trailing ',' p.print(noExtraLinebreak, x.Rbrace, token.RBRACE, noExtraLinebreak) case *ast.Ellipsis: p.print(token.ELLIPSIS) if x.Elt != nil { p.expr(x.Elt, multiLine) } case *ast.ArrayType: p.print(token.LBRACK) if x.Len != nil { p.expr(x.Len, multiLine) } p.print(token.RBRACK) p.expr(x.Elt, multiLine) case *ast.StructType: p.print(token.STRUCT) p.fieldList(x.Fields, true, x.Incomplete) case *ast.FuncType: p.print(token.FUNC) p.signature(x.Params, x.Results, multiLine) case *ast.InterfaceType: p.print(token.INTERFACE) p.fieldList(x.Methods, false, x.Incomplete) case *ast.MapType: p.print(token.MAP, token.LBRACK) p.expr(x.Key, multiLine) p.print(token.RBRACK) p.expr(x.Value, multiLine) case *ast.ChanType: switch x.Dir { case ast.SEND | ast.RECV: p.print(token.CHAN) case ast.RECV: p.print(token.ARROW, token.CHAN) case ast.SEND: p.print(token.CHAN, token.ARROW) } p.print(blank) p.expr(x.Value, multiLine) default: panic("unreachable") } return } func (p *printer) expr0(x ast.Expr, depth int, multiLine *bool) { p.expr1(x, token.LowestPrec, depth, multiLine) } // Sets multiLine to true if the expression spans multiple lines. func (p *printer) expr(x ast.Expr, multiLine *bool) { const depth = 1 p.expr1(x, token.LowestPrec, depth, multiLine) } // ---------------------------------------------------------------------------- // Statements // Print the statement list indented, but without a newline after the last statement. // Extra line breaks between statements in the source are respected but at most one // empty line is printed between statements. func (p *printer) stmtList(list []ast.Stmt, _indent int, nextIsRBrace bool) { // TODO(gri): fix _indent code if _indent > 0 { p.print(indent) } var multiLine bool for i, s := range list { // _indent == 0 only for lists of switch/select case clauses; // in those cases each clause is a new section p.linebreak(p.fset.Position(s.Pos()).Line, 1, ignore, i == 0 || _indent == 0 || multiLine) multiLine = false p.stmt(s, nextIsRBrace && i == len(list)-1, &multiLine) } if _indent > 0 { p.print(unindent) } } // block prints an *ast.BlockStmt; it always spans at least two lines. func (p *printer) block(s *ast.BlockStmt, indent int) { p.print(s.Pos(), token.LBRACE) p.stmtList(s.List, indent, true) p.linebreak(p.fset.Position(s.Rbrace).Line, 1, ignore, true) p.print(s.Rbrace, token.RBRACE) } func isTypeName(x ast.Expr) bool { switch t := x.(type) { case *ast.Ident: return true case *ast.SelectorExpr: return isTypeName(t.X) } return false } func stripParens(x ast.Expr) ast.Expr { if px, strip := x.(*ast.ParenExpr); strip { // parentheses must not be stripped if there are any // unparenthesized composite literals starting with // a type name ast.Inspect(px.X, func(node ast.Node) bool { switch x := node.(type) { case *ast.ParenExpr: // parentheses protect enclosed composite literals return false case *ast.CompositeLit: if isTypeName(x.Type) { strip = false // do not strip parentheses } return false } // in all other cases, keep inspecting return true }) if strip { return stripParens(px.X) } } return x } func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { p.print(blank) needsBlank := false if init == nil && post == nil { // no semicolons required if expr != nil { p.expr(stripParens(expr), ignoreMultiLine) needsBlank = true } } else { // all semicolons required // (they are not separators, print them explicitly) if init != nil { p.stmt(init, false, ignoreMultiLine) } p.print(token.SEMICOLON, blank) if expr != nil { p.expr(stripParens(expr), ignoreMultiLine) needsBlank = true } if isForStmt { p.print(token.SEMICOLON, blank) needsBlank = false if post != nil { p.stmt(post, false, ignoreMultiLine) needsBlank = true } } } if needsBlank { p.print(blank) } } // Sets multiLine to true if the statements spans multiple lines. func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool, multiLine *bool) { p.print(stmt.Pos()) switch s := stmt.(type) { case *ast.BadStmt: p.print("BadStmt") case *ast.DeclStmt: p.decl(s.Decl, multiLine) case *ast.EmptyStmt: // nothing to do case *ast.LabeledStmt: // a "correcting" unindent immediately following a line break // is applied before the line break if there is no comment // between (see writeWhitespace) p.print(unindent) p.expr(s.Label, multiLine) p.print(s.Colon, token.COLON, indent) if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty { if !nextIsRBrace { p.print(newline, e.Pos(), token.SEMICOLON) break } } else { p.linebreak(p.fset.Position(s.Stmt.Pos()).Line, 1, ignore, true) } p.stmt(s.Stmt, nextIsRBrace, multiLine) case *ast.ExprStmt: const depth = 1 p.expr0(s.X, depth, multiLine) case *ast.SendStmt: const depth = 1 p.expr0(s.Chan, depth, multiLine) p.print(blank, s.Arrow, token.ARROW, blank) p.expr0(s.Value, depth, multiLine) case *ast.IncDecStmt: const depth = 1 p.expr0(s.X, depth+1, multiLine) p.print(s.TokPos, s.Tok) case *ast.AssignStmt: var depth = 1 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { depth++ } p.exprList(s.Pos(), s.Lhs, depth, commaSep, multiLine, s.TokPos) p.print(blank, s.TokPos, s.Tok) p.exprList(s.TokPos, s.Rhs, depth, blankStart|commaSep, multiLine, token.NoPos) case *ast.GoStmt: p.print(token.GO, blank) p.expr(s.Call, multiLine) case *ast.DeferStmt: p.print(token.DEFER, blank) p.expr(s.Call, multiLine) case *ast.ReturnStmt: p.print(token.RETURN) if s.Results != nil { p.exprList(s.Pos(), s.Results, 1, blankStart|commaSep, multiLine, token.NoPos) } case *ast.BranchStmt: p.print(s.Tok) if s.Label != nil { p.print(blank) p.expr(s.Label, multiLine) } case *ast.BlockStmt: p.block(s, 1) *multiLine = true case *ast.IfStmt: p.print(token.IF) p.controlClause(false, s.Init, s.Cond, nil) p.block(s.Body, 1) *multiLine = true if s.Else != nil { p.print(blank, token.ELSE, blank) switch s.Else.(type) { case *ast.BlockStmt, *ast.IfStmt: p.stmt(s.Else, nextIsRBrace, ignoreMultiLine) default: p.print(token.LBRACE, indent, formfeed) p.stmt(s.Else, true, ignoreMultiLine) p.print(unindent, formfeed, token.RBRACE) } } case *ast.CaseClause: if s.List != nil { p.print(token.CASE) p.exprList(s.Pos(), s.List, 1, blankStart|commaSep, multiLine, s.Colon) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1, nextIsRBrace) case *ast.SwitchStmt: p.print(token.SWITCH) p.controlClause(false, s.Init, s.Tag, nil) p.block(s.Body, 0) *multiLine = true case *ast.TypeSwitchStmt: p.print(token.SWITCH) if s.Init != nil { p.print(blank) p.stmt(s.Init, false, ignoreMultiLine) p.print(token.SEMICOLON) } p.print(blank) p.stmt(s.Assign, false, ignoreMultiLine) p.print(blank) p.block(s.Body, 0) *multiLine = true case *ast.CommClause: if s.Comm != nil { p.print(token.CASE, blank) p.stmt(s.Comm, false, ignoreMultiLine) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1, nextIsRBrace) case *ast.SelectStmt: p.print(token.SELECT, blank) body := s.Body if len(body.List) == 0 && !p.commentBefore(p.fset.Position(body.Rbrace)) { // print empty select statement w/o comments on one line p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE) } else { p.block(body, 0) *multiLine = true } case *ast.ForStmt: p.print(token.FOR) p.controlClause(true, s.Init, s.Cond, s.Post) p.block(s.Body, 1) *multiLine = true case *ast.RangeStmt: p.print(token.FOR, blank) p.expr(s.Key, multiLine) if s.Value != nil { p.print(token.COMMA, blank) p.expr(s.Value, multiLine) } p.print(blank, s.TokPos, s.Tok, blank, token.RANGE, blank) p.expr(stripParens(s.X), multiLine) p.print(blank) p.block(s.Body, 1) *multiLine = true default: panic("unreachable") } return } // ---------------------------------------------------------------------------- // Declarations // The keepTypeColumn function determines if the type column of a series of // consecutive const or var declarations must be kept, or if initialization // values (V) can be placed in the type column (T) instead. The i'th entry // in the result slice is true if the type column in spec[i] must be kept. // // For example, the declaration: // // const ( // foobar int = 42 // comment // x = 7 // comment // foo // bar = 991 // ) // // leads to the type/values matrix below. A run of value columns (V) can // be moved into the type column if there is no type for any of the values // in that column (we only move entire columns so that they align properly). // // matrix formatted result // matrix // T V -> T V -> true there is a T and so the type // - V - V true column must be kept // - - - - false // - V V - false V is moved into T column // func keepTypeColumn(specs []ast.Spec) []bool { m := make([]bool, len(specs)) populate := func(i, j int, keepType bool) { if keepType { for ; i < j; i++ { m[i] = true } } } i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run var keepType bool for i, s := range specs { t := s.(*ast.ValueSpec) if t.Values != nil { if i0 < 0 { // start of a run of ValueSpecs with non-nil Values i0 = i keepType = false } } else { if i0 >= 0 { // end of a run populate(i0, i, keepType) i0 = -1 } } if t.Type != nil { keepType = true } } if i0 >= 0 { // end of a run populate(i0, len(specs), keepType) } return m } func (p *printer) valueSpec(s *ast.ValueSpec, keepType, doIndent bool, multiLine *bool) { p.setComment(s.Doc) p.identList(s.Names, doIndent, multiLine) // always present extraTabs := 3 if s.Type != nil || keepType { p.print(vtab) extraTabs-- } if s.Type != nil { p.expr(s.Type, multiLine) } if s.Values != nil { p.print(vtab, token.ASSIGN) p.exprList(token.NoPos, s.Values, 1, blankStart|commaSep, multiLine, token.NoPos) extraTabs-- } if s.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(vtab) } p.setComment(s.Comment) } } // The parameter n is the number of specs in the group. If doIndent is set, // multi-line identifier lists in the spec are indented when the first // linebreak is encountered. // Sets multiLine to true if the spec spans multiple lines. // func (p *printer) spec(spec ast.Spec, n int, doIndent bool, multiLine *bool) { switch s := spec.(type) { case *ast.ImportSpec: p.setComment(s.Doc) if s.Name != nil { p.expr(s.Name, multiLine) p.print(blank) } p.expr(s.Path, multiLine) p.setComment(s.Comment) case *ast.ValueSpec: if n != 1 { p.internalError("expected n = 1; got", n) } p.setComment(s.Doc) p.identList(s.Names, doIndent, multiLine) // always present if s.Type != nil { p.print(blank) p.expr(s.Type, multiLine) } if s.Values != nil { p.print(blank, token.ASSIGN) p.exprList(token.NoPos, s.Values, 1, blankStart|commaSep, multiLine, token.NoPos) } p.setComment(s.Comment) case *ast.TypeSpec: p.setComment(s.Doc) p.expr(s.Name, multiLine) if n == 1 { p.print(blank) } else { p.print(vtab) } p.expr(s.Type, multiLine) p.setComment(s.Comment) default: panic("unreachable") } } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) genDecl(d *ast.GenDecl, multiLine *bool) { p.setComment(d.Doc) p.print(d.Pos(), d.Tok, blank) if d.Lparen.IsValid() { // group of parenthesized declarations p.print(d.Lparen, token.LPAREN) if n := len(d.Specs); n > 0 { p.print(indent, formfeed) if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) { // two or more grouped const/var declarations: // determine if the type column must be kept keepType := keepTypeColumn(d.Specs) var ml bool for i, s := range d.Specs { if i > 0 { p.linebreak(p.fset.Position(s.Pos()).Line, 1, ignore, ml) } ml = false p.valueSpec(s.(*ast.ValueSpec), keepType[i], false, &ml) } } else { var ml bool for i, s := range d.Specs { if i > 0 { p.linebreak(p.fset.Position(s.Pos()).Line, 1, ignore, ml) } ml = false p.spec(s, n, false, &ml) } } p.print(unindent, formfeed) *multiLine = true } p.print(d.Rparen, token.RPAREN) } else { // single declaration p.spec(d.Specs[0], 1, true, multiLine) } } // nodeSize determines the size of n in chars after formatting. // The result is <= maxSize if the node fits on one line with at // most maxSize chars and the formatted output doesn't contain // any control chars. Otherwise, the result is > maxSize. // func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { // nodeSize invokes the printer, which may invoke nodeSize // recursively. For deep composite literal nests, this can // lead to an exponential algorithm. Remember previous // results to prune the recursion (was issue 1628). if size, found := p.nodeSizes[n]; found { return size } size = maxSize + 1 // assume n doesn't fit p.nodeSizes[n] = size // nodeSize computation must be independent of particular // style so that we always get the same decision; print // in RawFormat cfg := Config{Mode: RawFormat} var buf bytes.Buffer if _, err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil { return } if buf.Len() <= maxSize { for _, ch := range buf.Bytes() { if ch < ' ' { return } } size = buf.Len() // n fits p.nodeSizes[n] = size } return } func (p *printer) isOneLineFunc(b *ast.BlockStmt, headerSize int) bool { pos1 := b.Pos() pos2 := b.Rbrace if pos1.IsValid() && pos2.IsValid() && p.fset.Position(pos1).Line != p.fset.Position(pos2).Line { // opening and closing brace are on different lines - don't make it a one-liner return false } if len(b.List) > 5 || p.commentBefore(p.fset.Position(pos2)) { // too many statements or there is a comment inside - don't make it a one-liner return false } // otherwise, estimate body size const maxSize = 100 bodySize := 0 for i, s := range b.List { if i > 0 { bodySize += 2 // space for a semicolon and blank } bodySize += p.nodeSize(s, maxSize) } return headerSize+bodySize <= maxSize } // Sets multiLine to true if the function body spans multiple lines. func (p *printer) funcBody(b *ast.BlockStmt, headerSize int, isLit bool, multiLine *bool) { if b == nil { return } if p.isOneLineFunc(b, headerSize) { sep := vtab if isLit { sep = blank } p.print(sep, b.Lbrace, token.LBRACE) if len(b.List) > 0 { p.print(blank) for i, s := range b.List { if i > 0 { p.print(token.SEMICOLON, blank) } p.stmt(s, i == len(b.List)-1, ignoreMultiLine) } p.print(blank) } p.print(b.Rbrace, token.RBRACE) return } p.print(blank) p.block(b, 1) *multiLine = true } // distance returns the column difference between from and to if both // are on the same line; if they are on different lines (or unknown) // the result is infinity. func (p *printer) distance(from0 token.Pos, to token.Position) int { from := p.fset.Position(from0) if from.IsValid() && to.IsValid() && from.Line == to.Line { return to.Column - from.Column } return infinity } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) funcDecl(d *ast.FuncDecl, multiLine *bool) { p.setComment(d.Doc) p.print(d.Pos(), token.FUNC, blank) if d.Recv != nil { p.parameters(d.Recv, multiLine) // method: print receiver p.print(blank) } p.expr(d.Name, multiLine) p.signature(d.Type.Params, d.Type.Results, multiLine) p.funcBody(d.Body, p.distance(d.Pos(), p.pos), false, multiLine) } // Sets multiLine to true if the declaration spans multiple lines. func (p *printer) decl(decl ast.Decl, multiLine *bool) { switch d := decl.(type) { case *ast.BadDecl: p.print(d.Pos(), "BadDecl") case *ast.GenDecl: p.genDecl(d, multiLine) case *ast.FuncDecl: p.funcDecl(d, multiLine) default: panic("unreachable") } } // ---------------------------------------------------------------------------- // Files func declToken(decl ast.Decl) (tok token.Token) { tok = token.ILLEGAL switch d := decl.(type) { case *ast.GenDecl: tok = d.Tok case *ast.FuncDecl: tok = token.FUNC } return } func (p *printer) file(src *ast.File) { p.setComment(src.Doc) p.print(src.Pos(), token.PACKAGE, blank) p.expr(src.Name, ignoreMultiLine) if len(src.Decls) > 0 { tok := token.ILLEGAL for _, d := range src.Decls { prev := tok tok = declToken(d) // if the declaration token changed (e.g., from CONST to TYPE) // print an empty line between top-level declarations min := 1 if prev != tok { min = 2 } p.linebreak(p.fset.Position(d.Pos()).Line, min, ignore, false) p.decl(d, ignoreMultiLine) } } p.print(newline) }