// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gob import ( "bytes"; "gob"; "io"; "math"; "os"; "reflect"; "sync"; "unsafe"; ) // The global execution state of an instance of the encoder. // Field numbers are delta encoded and always increase. The field // number is initialized to -1 so 0 comes out as delta(1). A delta of // 0 terminates the structure. type encoderState struct { b *bytes.Buffer; err os.Error; // error encountered during encoding; fieldnum int; // the last field number written. buf [16]byte; // buffer used by the encoder; here to avoid allocation. } // Integers encode as a variant of Google's protocol buffer varint (varvarint?). // The variant is that the continuation bytes have a zero top bit instead of a one. // That way there's only one bit to clear and the value is a little easier to see if // you're the unfortunate sort of person who must read the hex to debug. // encodeUint writes an encoded unsigned integer to state.b. Sets state.err. // If state.err is already non-nil, it does nothing. func encodeUint(state *encoderState, x uint64) { var n int; if state.err != nil { return } for n = 0; x > 0x7F; n++ { state.buf[n] = uint8(x & 0x7F); x >>= 7; } state.buf[n] = 0x80 | uint8(x); n, state.err = state.b.Write(state.buf[0:n+1]); } // encodeInt writes an encoded signed integer to state.w. // The low bit of the encoding says whether to bit complement the (other bits of the) uint to recover the int. // Sets state.err. If state.err is already non-nil, it does nothing. func encodeInt(state *encoderState, i int64){ var x uint64; if i < 0 { x = uint64(^i << 1) | 1 } else { x = uint64(i << 1) } encodeUint(state, uint64(x)) } type encInstr struct type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) // The 'instructions' of the encoding machine type encInstr struct { op encOp; field int; // field number indir int; // how many pointer indirections to reach the value in the struct offset uintptr; // offset in the structure of the field to encode } // Emit a field number and update the state to record its value for delta encoding. // If the instruction pointer is nil, do nothing func (state *encoderState) update(instr *encInstr) { if instr != nil { encodeUint(state, uint64(instr.field - state.fieldnum)); state.fieldnum = instr.field; } } // Each encoder is responsible for handling any indirections associated // with the data structure. If any pointer so reached is nil, no bytes are written. // If the data item is zero, no bytes are written. // Otherwise, the output (for a scalar) is the field number, as an encoded integer, // followed by the field data in its appropriate format. func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { for ; indir > 0; indir-- { p = *(*unsafe.Pointer)(p); if p == nil { return unsafe.Pointer(nil) } } return p } func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { b := *(*bool)(p); if b { state.update(i); encodeUint(state, 1); } } func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int)(p)); if v != 0 { state.update(i); encodeInt(state, v); } } func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint)(p)); if v != 0 { state.update(i); encodeUint(state, v); } } func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int8)(p)); if v != 0 { state.update(i); encodeInt(state, v); } } func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint8)(p)); if v != 0 { state.update(i); encodeUint(state, v); } } func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int16)(p)); if v != 0 { state.update(i); encodeInt(state, v); } } func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint16)(p)); if v != 0 { state.update(i); encodeUint(state, v); } } func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { v := int64(*(*int32)(p)); if v != 0 { state.update(i); encodeInt(state, v); } } func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uint32)(p)); if v != 0 { state.update(i); encodeUint(state, v); } } func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { v := *(*int64)(p); if v != 0 { state.update(i); encodeInt(state, v); } } func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { v := *(*uint64)(p); if v != 0 { state.update(i); encodeUint(state, v); } } func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { v := uint64(*(*uintptr)(p)); if v != 0 { state.update(i); encodeUint(state, v); } } // Floating-point numbers are transmitted as uint64s holding the bits // of the underlying representation. They are sent byte-reversed, with // the exponent end coming out first, so integer floating point numbers // (for example) transmit more compactly. This routine does the // swizzling. func floatBits(f float64) uint64 { u := math.Float64bits(f); var v uint64; for i := 0; i < 8; i++ { v <<= 8; v |= u & 0xFF; u >>= 8; } return v; } func encFloat(i *encInstr, state *encoderState, p unsafe.Pointer) { f := float(*(*float)(p)); if f != 0 { v := floatBits(float64(f)); state.update(i); encodeUint(state, v); } } func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { f := float32(*(*float32)(p)); if f != 0 { v := floatBits(float64(f)); state.update(i); encodeUint(state, v); } } func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { f := *(*float64)(p); if f != 0 { state.update(i); v := floatBits(f); encodeUint(state, v); } } // Byte arrays are encoded as an unsigned count followed by the raw bytes. func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { b := *(*[]byte)(p); if len(b) > 0 { state.update(i); encodeUint(state, uint64(len(b))); state.b.Write(b); } } // Strings are encoded as an unsigned count followed by the raw bytes. func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { s := *(*string)(p); if len(s) > 0 { state.update(i); encodeUint(state, uint64(len(s))); io.WriteString(state.b, s); } } // The end of a struct is marked by a delta field number of 0. func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { encodeUint(state, 0); } // Execution engine // The encoder engine is an array of instructions indexed by field number of the encoding // data, typically a struct. It is executed top to bottom, walking the struct. type encEngine struct { instr []encInstr } func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error { state := new(encoderState); state.b = b; state.fieldnum = -1; for i := 0; i < len(engine.instr); i++ { instr := &engine.instr[i]; p := unsafe.Pointer(basep+instr.offset); if instr.indir > 0 { if p = encIndirect(p, instr.indir); p == nil { continue } } instr.op(instr, state, p); if state.err != nil { break } } return state.err } func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, length int, elemIndir int) os.Error { state := new(encoderState); state.b = b; state.fieldnum = -1; encodeUint(state, uint64(length)); for i := 0; i < length && state.err == nil; i++ { elemp := p; up := unsafe.Pointer(elemp); if elemIndir > 0 { if up = encIndirect(up, elemIndir); up == nil { state.err = os.ErrorString("gob: encodeArray: nil element"); break } elemp = uintptr(up); } op(nil, state, unsafe.Pointer(elemp)); p += uintptr(elemWid); } return state.err } var encOpMap = map[reflect.Type] encOp { valueKind(false): encBool, valueKind(int(0)): encInt, valueKind(int8(0)): encInt8, valueKind(int16(0)): encInt16, valueKind(int32(0)): encInt32, valueKind(int64(0)): encInt64, valueKind(uint(0)): encUint, valueKind(uint8(0)): encUint8, valueKind(uint16(0)): encUint16, valueKind(uint32(0)): encUint32, valueKind(uint64(0)): encUint64, valueKind(uintptr(0)): encUintptr, valueKind(float(0)): encFloat, valueKind(float32(0)): encFloat32, valueKind(float64(0)): encFloat64, valueKind("x"): encString, } func getEncEngine(rt reflect.Type) *encEngine // Return the encoding op for the base type under rt and // the indirection count to reach it. func encOpFor(rt reflect.Type) (encOp, int) { typ, indir := indirect(rt); op, ok := encOpMap[reflect.Typeof(typ)]; if !ok { typ, _ := indirect(rt); // Special cases switch t := typ.(type) { case *reflect.SliceType: if _, ok := t.Elem().(*reflect.Uint8Type); ok { op = encUint8Array; break; } // Slices have a header; we decode it to find the underlying array. elemOp, indir := encOpFor(t.Elem()); op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { slice := (*reflect.SliceHeader)(p); if slice.Len == 0 { return } state.update(i); state.err = encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), int(slice.Len), indir); }; case *reflect.ArrayType: // True arrays have size in the type. elemOp, indir := encOpFor(t.Elem()); op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { state.update(i); state.err = encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), t.Len(), indir); }; case *reflect.StructType: // Generate a closure that calls out to the engine for the nested type. engine := getEncEngine(typ); info := getTypeInfo(typ); op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { state.update(i); // indirect through info to delay evaluation for recursive structs state.err = encodeStruct(info.encoder, state.b, uintptr(p)); }; } } if op == nil { panicln("can't happen: encode type", rt.String()); } return op, indir } // The local Type was compiled from the actual value, so we know it's compatible. func compileEnc(rt reflect.Type) *encEngine { srt, ok := rt.(*reflect.StructType); if !ok { panicln("can't happen: non-struct"); } engine := new(encEngine); engine.instr = make([]encInstr, srt.NumField()+1); // +1 for terminator for fieldnum := 0; fieldnum < srt.NumField(); fieldnum++ { f := srt.Field(fieldnum); op, indir := encOpFor(f.Type); engine.instr[fieldnum] = encInstr{op, fieldnum, indir, uintptr(f.Offset)}; } engine.instr[srt.NumField()] = encInstr{encStructTerminator, 0, 0, 0}; return engine; } // typeLock must be held (or we're in initialization and guaranteed single-threaded). // The reflection type must have all its indirections processed out. func getEncEngine(rt reflect.Type) *encEngine { info := getTypeInfo(rt); if info.encoder == nil { // mark this engine as underway before compiling to handle recursive types. info.encoder = new(encEngine); info.encoder = compileEnc(rt); } return info.encoder; } func encode(b *bytes.Buffer, e interface{}) os.Error { // Dereference down to the underlying object. rt, indir := indirect(reflect.Typeof(e)); v := reflect.NewValue(e); for i := 0; i < indir; i++ { v = reflect.Indirect(v); } if _, ok := v.(*reflect.StructValue); !ok { return os.ErrorString("gob: encode can't handle " + v.Type().String()) } typeLock.Lock(); engine := getEncEngine(rt); typeLock.Unlock(); return encodeStruct(engine, b, v.Addr()); }