// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // HTTP server. See RFC 2616. // TODO(rsc): // logging // post support package http import ( "bufio" "crypto/rand" "crypto/tls" "fmt" "io" "log" "net" "os" "path" "strconv" "strings" "sync" "time" ) // Errors introduced by the HTTP server. var ( ErrWriteAfterFlush = os.NewError("Conn.Write called after Flush") ErrBodyNotAllowed = os.NewError("http: response status code does not allow body") ErrHijacked = os.NewError("Conn has been hijacked") ErrContentLength = os.NewError("Conn.Write wrote more than the declared Content-Length") ) // Objects implementing the Handler interface can be // registered to serve a particular path or subtree // in the HTTP server. // // ServeHTTP should write reply headers and data to the ResponseWriter // and then return. Returning signals that the request is finished // and that the HTTP server can move on to the next request on // the connection. type Handler interface { ServeHTTP(ResponseWriter, *Request) } // A ResponseWriter interface is used by an HTTP handler to // construct an HTTP response. type ResponseWriter interface { // Header returns the header map that will be sent by WriteHeader. // Changing the header after a call to WriteHeader (or Write) has // no effect. Header() Header // Write writes the data to the connection as part of an HTTP reply. // If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK) // before writing the data. Write([]byte) (int, os.Error) // WriteHeader sends an HTTP response header with status code. // If WriteHeader is not called explicitly, the first call to Write // will trigger an implicit WriteHeader(http.StatusOK). // Thus explicit calls to WriteHeader are mainly used to // send error codes. WriteHeader(int) } // The Flusher interface is implemented by ResponseWriters that allow // an HTTP handler to flush buffered data to the client. // // Note that even for ResponseWriters that support Flush, // if the client is connected through an HTTP proxy, // the buffered data may not reach the client until the response // completes. type Flusher interface { // Flush sends any buffered data to the client. Flush() } // The Hijacker interface is implemented by ResponseWriters that allow // an HTTP handler to take over the connection. type Hijacker interface { // Hijack lets the caller take over the connection. // After a call to Hijack(), the HTTP server library // will not do anything else with the connection. // It becomes the caller's responsibility to manage // and close the connection. Hijack() (net.Conn, *bufio.ReadWriter, os.Error) } // A conn represents the server side of an HTTP connection. type conn struct { remoteAddr string // network address of remote side handler Handler // request handler rwc net.Conn // i/o connection buf *bufio.ReadWriter // buffered rwc hijacked bool // connection has been hijacked by handler tlsState *tls.ConnectionState // or nil when not using TLS } // A response represents the server side of an HTTP response. type response struct { conn *conn req *Request // request for this response chunking bool // using chunked transfer encoding for reply body wroteHeader bool // reply header has been written wroteContinue bool // 100 Continue response was written header Header // reply header parameters written int64 // number of bytes written in body contentLength int64 // explicitly-declared Content-Length; or -1 status int // status code passed to WriteHeader // close connection after this reply. set on request and // updated after response from handler if there's a // "Connection: keep-alive" response header and a // Content-Length. closeAfterReply bool } // Create new connection from rwc. func newConn(rwc net.Conn, handler Handler) (c *conn, err os.Error) { c = new(conn) c.remoteAddr = rwc.RemoteAddr().String() c.handler = handler c.rwc = rwc br := bufio.NewReader(rwc) bw := bufio.NewWriter(rwc) c.buf = bufio.NewReadWriter(br, bw) if tlsConn, ok := rwc.(*tls.Conn); ok { c.tlsState = new(tls.ConnectionState) *c.tlsState = tlsConn.ConnectionState() } return c, nil } // wrapper around io.ReaderCloser which on first read, sends an // HTTP/1.1 100 Continue header type expectContinueReader struct { resp *response readCloser io.ReadCloser closed bool } func (ecr *expectContinueReader) Read(p []byte) (n int, err os.Error) { if ecr.closed { return 0, os.NewError("http: Read after Close on request Body") } if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked { ecr.resp.wroteContinue = true io.WriteString(ecr.resp.conn.buf, "HTTP/1.1 100 Continue\r\n\r\n") ecr.resp.conn.buf.Flush() } return ecr.readCloser.Read(p) } func (ecr *expectContinueReader) Close() os.Error { ecr.closed = true return ecr.readCloser.Close() } // TimeFormat is the time format to use with // time.Parse and time.Time.Format when parsing // or generating times in HTTP headers. // It is like time.RFC1123 but hard codes GMT as the time zone. const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" // Read next request from connection. func (c *conn) readRequest() (w *response, err os.Error) { if c.hijacked { return nil, ErrHijacked } var req *Request if req, err = ReadRequest(c.buf.Reader); err != nil { return nil, err } req.RemoteAddr = c.remoteAddr req.TLS = c.tlsState w = new(response) w.conn = c w.req = req w.header = make(Header) w.contentLength = -1 return w, nil } func (w *response) Header() Header { return w.header } func (w *response) WriteHeader(code int) { if w.conn.hijacked { log.Print("http: response.WriteHeader on hijacked connection") return } if w.wroteHeader { log.Print("http: multiple response.WriteHeader calls") return } // Per RFC 2616, we should consume the request body before // replying, if the handler hasn't already done so. if w.req.ContentLength != 0 { ecr, isExpecter := w.req.Body.(*expectContinueReader) if !isExpecter || ecr.resp.wroteContinue { w.req.Body.Close() } } w.wroteHeader = true w.status = code if code == StatusNotModified { // Must not have body. for _, header := range []string{"Content-Type", "Content-Length", "Transfer-Encoding"} { if w.header.Get(header) != "" { // TODO: return an error if WriteHeader gets a return parameter // or set a flag on w to make future Writes() write an error page? // for now just log and drop the header. log.Printf("http: StatusNotModified response with header %q defined", header) w.header.Del(header) } } } else { // Default output is HTML encoded in UTF-8. if w.header.Get("Content-Type") == "" { w.header.Set("Content-Type", "text/html; charset=utf-8") } } if w.header.Get("Date") == "" { w.Header().Set("Date", time.UTC().Format(TimeFormat)) } // Check for a explicit (and valid) Content-Length header. var hasCL bool var contentLength int64 if clenStr := w.header.Get("Content-Length"); clenStr != "" { var err os.Error contentLength, err = strconv.Atoi64(clenStr) if err == nil { hasCL = true } else { log.Printf("http: invalid Content-Length of %q sent", clenStr) w.header.Del("Content-Length") } } te := w.header.Get("Transfer-Encoding") hasTE := te != "" if hasCL && hasTE && te != "identity" { // TODO: return an error if WriteHeader gets a return parameter // For now just ignore the Content-Length. log.Printf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", te, contentLength) w.header.Del("Content-Length") hasCL = false } if w.req.Method == "HEAD" || code == StatusNotModified { // do nothing } else if hasCL { w.contentLength = contentLength w.header.Del("Transfer-Encoding") } else if w.req.ProtoAtLeast(1, 1) { // HTTP/1.1 or greater: use chunked transfer encoding // to avoid closing the connection at EOF. // TODO: this blows away any custom or stacked Transfer-Encoding they // might have set. Deal with that as need arises once we have a valid // use case. w.chunking = true w.header.Set("Transfer-Encoding", "chunked") } else { // HTTP version < 1.1: cannot do chunked transfer // encoding and we don't know the Content-Length so // signal EOF by closing connection. w.closeAfterReply = true w.header.Del("Transfer-Encoding") // in case already set } if w.req.wantsHttp10KeepAlive() && (w.req.Method == "HEAD" || hasCL) { _, connectionHeaderSet := w.header["Connection"] if !connectionHeaderSet { w.header.Set("Connection", "keep-alive") } } else if !w.req.ProtoAtLeast(1, 1) { // Client did not ask to keep connection alive. w.closeAfterReply = true } // Cannot use Content-Length with non-identity Transfer-Encoding. if w.chunking { w.header.Del("Content-Length") } if !w.req.ProtoAtLeast(1, 0) { return } proto := "HTTP/1.0" if w.req.ProtoAtLeast(1, 1) { proto = "HTTP/1.1" } codestring := strconv.Itoa(code) text, ok := statusText[code] if !ok { text = "status code " + codestring } io.WriteString(w.conn.buf, proto+" "+codestring+" "+text+"\r\n") writeSortedHeader(w.conn.buf, w.header, nil) io.WriteString(w.conn.buf, "\r\n") } func (w *response) Write(data []byte) (n int, err os.Error) { if w.conn.hijacked { log.Print("http: response.Write on hijacked connection") return 0, ErrHijacked } if !w.wroteHeader { w.WriteHeader(StatusOK) } if len(data) == 0 { return 0, nil } if w.status == StatusNotModified || w.req.Method == "HEAD" { // Must not have body. return 0, ErrBodyNotAllowed } w.written += int64(len(data)) // ignoring errors, for errorKludge if w.contentLength != -1 && w.written > w.contentLength { return 0, ErrContentLength } // TODO(rsc): if chunking happened after the buffering, // then there would be fewer chunk headers. // On the other hand, it would make hijacking more difficult. if w.chunking { fmt.Fprintf(w.conn.buf, "%x\r\n", len(data)) // TODO(rsc): use strconv not fmt } n, err = w.conn.buf.Write(data) if err == nil && w.chunking { if n != len(data) { err = io.ErrShortWrite } if err == nil { io.WriteString(w.conn.buf, "\r\n") } } return n, err } // If this is an error reply (4xx or 5xx) // and the handler wrote some data explaining the error, // some browsers (i.e., Chrome, Internet Explorer) // will show their own error instead unless the error is // long enough. The minimum lengths used in those // browsers are in the 256-512 range. // Pad to 1024 bytes. func errorKludge(w *response) { const min = 1024 // Is this an error? if kind := w.status / 100; kind != 4 && kind != 5 { return } // Did the handler supply any info? Enough? if w.written == 0 || w.written >= min { return } // Is it a broken browser? var msg string switch agent := w.req.UserAgent; { case strings.Contains(agent, "MSIE"): msg = "Internet Explorer" case strings.Contains(agent, "Chrome/"): msg = "Chrome" default: return } msg += " would ignore this error page if this text weren't here.\n" // Is it text? ("Content-Type" is always in the map) baseType := strings.Split(w.header.Get("Content-Type"), ";", 2)[0] switch baseType { case "text/html": io.WriteString(w, "") case "text/plain": io.WriteString(w, "\n") for w.written < min { io.WriteString(w, msg) } } } func (w *response) finishRequest() { // If this was an HTTP/1.0 request with keep-alive and we sent a Content-Length // back, we can make this a keep-alive response ... if w.req.wantsHttp10KeepAlive() { sentLength := w.header.Get("Content-Length") != "" if sentLength && w.header.Get("Connection") == "keep-alive" { w.closeAfterReply = false } } if !w.wroteHeader { w.WriteHeader(StatusOK) } errorKludge(w) if w.chunking { io.WriteString(w.conn.buf, "0\r\n") // trailer key/value pairs, followed by blank line io.WriteString(w.conn.buf, "\r\n") } w.conn.buf.Flush() w.req.Body.Close() if w.req.MultipartForm != nil { w.req.MultipartForm.RemoveAll() } if w.contentLength != -1 && w.contentLength != w.written { // Did not write enough. Avoid getting out of sync. w.closeAfterReply = true } } func (w *response) Flush() { if !w.wroteHeader { w.WriteHeader(StatusOK) } w.conn.buf.Flush() } // Close the connection. func (c *conn) close() { if c.buf != nil { c.buf.Flush() c.buf = nil } if c.rwc != nil { c.rwc.Close() c.rwc = nil } } // Serve a new connection. func (c *conn) serve() { for { w, err := c.readRequest() if err != nil { break } // Expect 100 Continue support req := w.req if req.expectsContinue() { if req.ProtoAtLeast(1, 1) { // Wrap the Body reader with one that replies on the connection req.Body = &expectContinueReader{readCloser: req.Body, resp: w} } if req.ContentLength == 0 { w.Header().Set("Connection", "close") w.WriteHeader(StatusBadRequest) break } req.Header.Del("Expect") } else if req.Header.Get("Expect") != "" { // TODO(bradfitz): let ServeHTTP handlers handle // requests with non-standard expectation[s]? Seems // theoretical at best, and doesn't fit into the // current ServeHTTP model anyway. We'd need to // make the ResponseWriter an optional // "ExpectReplier" interface or something. // // For now we'll just obey RFC 2616 14.20 which says // "If a server receives a request containing an // Expect field that includes an expectation- // extension that it does not support, it MUST // respond with a 417 (Expectation Failed) status." w.Header().Set("Connection", "close") w.WriteHeader(StatusExpectationFailed) break } // HTTP cannot have multiple simultaneous active requests.[*] // Until the server replies to this request, it can't read another, // so we might as well run the handler in this goroutine. // [*] Not strictly true: HTTP pipelining. We could let them all process // in parallel even if their responses need to be serialized. c.handler.ServeHTTP(w, w.req) if c.hijacked { return } w.finishRequest() if w.closeAfterReply { break } } c.close() } // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter // and a Hijacker. func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err os.Error) { if w.conn.hijacked { return nil, nil, ErrHijacked } w.conn.hijacked = true rwc = w.conn.rwc buf = w.conn.buf w.conn.rwc = nil w.conn.buf = nil return } // The HandlerFunc type is an adapter to allow the use of // ordinary functions as HTTP handlers. If f is a function // with the appropriate signature, HandlerFunc(f) is a // Handler object that calls f. type HandlerFunc func(ResponseWriter, *Request) // ServeHTTP calls f(w, req). func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { f(w, r) } // Helper handlers // Error replies to the request with the specified error message and HTTP code. func Error(w ResponseWriter, error string, code int) { w.Header().Set("Content-Type", "text/plain; charset=utf-8") w.WriteHeader(code) fmt.Fprintln(w, error) } // NotFound replies to the request with an HTTP 404 not found error. func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } // NotFoundHandler returns a simple request handler // that replies to each request with a ``404 page not found'' reply. func NotFoundHandler() Handler { return HandlerFunc(NotFound) } // Redirect replies to the request with a redirect to url, // which may be a path relative to the request path. func Redirect(w ResponseWriter, r *Request, url string, code int) { if u, err := ParseURL(url); err == nil { // If url was relative, make absolute by // combining with request path. // The browser would probably do this for us, // but doing it ourselves is more reliable. // NOTE(rsc): RFC 2616 says that the Location // line must be an absolute URI, like // "http://www.google.com/redirect/", // not a path like "/redirect/". // Unfortunately, we don't know what to // put in the host name section to get the // client to connect to us again, so we can't // know the right absolute URI to send back. // Because of this problem, no one pays attention // to the RFC; they all send back just a new path. // So do we. oldpath := r.URL.Path if oldpath == "" { // should not happen, but avoid a crash if it does oldpath = "/" } if u.Scheme == "" { // no leading http://server if url == "" || url[0] != '/' { // make relative path absolute olddir, _ := path.Split(oldpath) url = olddir + url } // clean up but preserve trailing slash trailing := url[len(url)-1] == '/' url = path.Clean(url) if trailing && url[len(url)-1] != '/' { url += "/" } } } w.Header().Set("Location", url) w.WriteHeader(code) // RFC2616 recommends that a short note "SHOULD" be included in the // response because older user agents may not understand 301/307. // Shouldn't send the response for POST or HEAD; that leaves GET. if r.Method == "GET" { note := "" + statusText[code] + ".\n" fmt.Fprintln(w, note) } } func htmlEscape(s string) string { s = strings.Replace(s, "&", "&", -1) s = strings.Replace(s, "<", "<", -1) s = strings.Replace(s, ">", ">", -1) s = strings.Replace(s, "\"", """, -1) s = strings.Replace(s, "'", "'", -1) return s } // Redirect to a fixed URL type redirectHandler struct { url string code int } func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { Redirect(w, r, rh.url, rh.code) } // RedirectHandler returns a request handler that redirects // each request it receives to the given url using the given // status code. func RedirectHandler(url string, code int) Handler { return &redirectHandler{url, code} } // ServeMux is an HTTP request multiplexer. // It matches the URL of each incoming request against a list of registered // patterns and calls the handler for the pattern that // most closely matches the URL. // // Patterns named fixed, rooted paths, like "/favicon.ico", // or rooted subtrees, like "/images/" (note the trailing slash). // Longer patterns take precedence over shorter ones, so that // if there are handlers registered for both "/images/" // and "/images/thumbnails/", the latter handler will be // called for paths beginning "/images/thumbnails/" and the // former will receiver requests for any other paths in the // "/images/" subtree. // // Patterns may optionally begin with a host name, restricting matches to // URLs on that host only. Host-specific patterns take precedence over // general patterns, so that a handler might register for the two patterns // "/codesearch" and "codesearch.google.com/" without also taking over // requests for "http://www.google.com/". // // ServeMux also takes care of sanitizing the URL request path, // redirecting any request containing . or .. elements to an // equivalent .- and ..-free URL. type ServeMux struct { m map[string]Handler } // NewServeMux allocates and returns a new ServeMux. func NewServeMux() *ServeMux { return &ServeMux{make(map[string]Handler)} } // DefaultServeMux is the default ServeMux used by Serve. var DefaultServeMux = NewServeMux() // Does path match pattern? func pathMatch(pattern, path string) bool { if len(pattern) == 0 { // should not happen return false } n := len(pattern) if pattern[n-1] != '/' { return pattern == path } return len(path) >= n && path[0:n] == pattern } // Return the canonical path for p, eliminating . and .. elements. func cleanPath(p string) string { if p == "" { return "/" } if p[0] != '/' { p = "/" + p } np := path.Clean(p) // path.Clean removes trailing slash except for root; // put the trailing slash back if necessary. if p[len(p)-1] == '/' && np != "/" { np += "/" } return np } // Find a handler on a handler map given a path string // Most-specific (longest) pattern wins func (mux *ServeMux) match(path string) Handler { var h Handler var n = 0 for k, v := range mux.m { if !pathMatch(k, path) { continue } if h == nil || len(k) > n { n = len(k) h = v } } return h } // ServeHTTP dispatches the request to the handler whose // pattern most closely matches the request URL. func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { // Clean path to canonical form and redirect. if p := cleanPath(r.URL.Path); p != r.URL.Path { w.Header().Set("Location", p) w.WriteHeader(StatusMovedPermanently) return } // Host-specific pattern takes precedence over generic ones h := mux.match(r.Host + r.URL.Path) if h == nil { h = mux.match(r.URL.Path) } if h == nil { h = NotFoundHandler() } h.ServeHTTP(w, r) } // Handle registers the handler for the given pattern. func (mux *ServeMux) Handle(pattern string, handler Handler) { if pattern == "" { panic("http: invalid pattern " + pattern) } mux.m[pattern] = handler // Helpful behavior: // If pattern is /tree/, insert permanent redirect for /tree. n := len(pattern) if n > 0 && pattern[n-1] == '/' { mux.m[pattern[0:n-1]] = RedirectHandler(pattern, StatusMovedPermanently) } } // HandleFunc registers the handler function for the given pattern. func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { mux.Handle(pattern, HandlerFunc(handler)) } // Handle registers the handler for the given pattern // in the DefaultServeMux. // The documentation for ServeMux explains how patterns are matched. func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } // HandleFunc registers the handler function for the given pattern // in the DefaultServeMux. // The documentation for ServeMux explains how patterns are matched. func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { DefaultServeMux.HandleFunc(pattern, handler) } // Serve accepts incoming HTTP connections on the listener l, // creating a new service thread for each. The service threads // read requests and then call handler to reply to them. // Handler is typically nil, in which case the DefaultServeMux is used. func Serve(l net.Listener, handler Handler) os.Error { srv := &Server{Handler: handler} return srv.Serve(l) } // A Server defines parameters for running an HTTP server. type Server struct { Addr string // TCP address to listen on, ":http" if empty Handler Handler // handler to invoke, http.DefaultServeMux if nil ReadTimeout int64 // the net.Conn.SetReadTimeout value for new connections WriteTimeout int64 // the net.Conn.SetWriteTimeout value for new connections } // ListenAndServe listens on the TCP network address srv.Addr and then // calls Serve to handle requests on incoming connections. If // srv.Addr is blank, ":http" is used. func (srv *Server) ListenAndServe() os.Error { addr := srv.Addr if addr == "" { addr = ":http" } l, e := net.Listen("tcp", addr) if e != nil { return e } return srv.Serve(l) } // Serve accepts incoming connections on the Listener l, creating a // new service thread for each. The service threads read requests and // then call srv.Handler to reply to them. func (srv *Server) Serve(l net.Listener) os.Error { defer l.Close() handler := srv.Handler if handler == nil { handler = DefaultServeMux } for { rw, e := l.Accept() if e != nil { return e } if srv.ReadTimeout != 0 { rw.SetReadTimeout(srv.ReadTimeout) } if srv.WriteTimeout != 0 { rw.SetWriteTimeout(srv.WriteTimeout) } c, err := newConn(rw, handler) if err != nil { continue } go c.serve() } panic("not reached") } // ListenAndServe listens on the TCP network address addr // and then calls Serve with handler to handle requests // on incoming connections. Handler is typically nil, // in which case the DefaultServeMux is used. // // A trivial example server is: // // package main // // import ( // "http" // "io" // "log" // ) // // // hello world, the web server // func HelloServer(w http.ResponseWriter, req *http.Request) { // io.WriteString(w, "hello, world!\n") // } // // func main() { // http.HandleFunc("/hello", HelloServer) // err := http.ListenAndServe(":12345", nil) // if err != nil { // log.Fatal("ListenAndServe: ", err.String()) // } // } func ListenAndServe(addr string, handler Handler) os.Error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() } // ListenAndServeTLS acts identically to ListenAndServe, except that it // expects HTTPS connections. Additionally, files containing a certificate and // matching private key for the server must be provided. // // A trivial example server is: // // import ( // "http" // "log" // ) // // func handler(w http.ResponseWriter, req *http.Request) { // w.Header().Set("Content-Type", "text/plain") // w.Write([]byte("This is an example server.\n")) // } // // func main() { // http.HandleFunc("/", handler) // log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/") // err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil) // if err != nil { // log.Fatal(err) // } // } // // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem. func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) os.Error { config := &tls.Config{ Rand: rand.Reader, Time: time.Seconds, NextProtos: []string{"http/1.1"}, } var err os.Error config.Certificates = make([]tls.Certificate, 1) config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) if err != nil { return err } conn, err := net.Listen("tcp", addr) if err != nil { return err } tlsListener := tls.NewListener(conn, config) return Serve(tlsListener, handler) } // TimeoutHandler returns a Handler that runs h with the given time limit. // // The new Handler calls h.ServeHTTP to handle each request, but if a // call runs for more than ns nanoseconds, the handler responds with // a 503 Service Unavailable error and the given message in its body. // (If msg is empty, a suitable default message will be sent.) // After such a timeout, writes by h to its ResponseWriter will return // ErrHandlerTimeout. func TimeoutHandler(h Handler, ns int64, msg string) Handler { f := func() <-chan int64 { return time.After(ns) } return &timeoutHandler{h, f, msg} } // ErrHandlerTimeout is returned on ResponseWriter Write calls // in handlers which have timed out. var ErrHandlerTimeout = os.NewError("http: Handler timeout") type timeoutHandler struct { handler Handler timeout func() <-chan int64 // returns channel producing a timeout body string } func (h *timeoutHandler) errorBody() string { if h.body != "" { return h.body } return "Timeout

Timeout

" } func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { done := make(chan bool) tw := &timeoutWriter{w: w} go func() { h.handler.ServeHTTP(tw, r) done <- true }() select { case <-done: return case <-h.timeout(): tw.mu.Lock() defer tw.mu.Unlock() if !tw.wroteHeader { tw.w.WriteHeader(StatusServiceUnavailable) tw.w.Write([]byte(h.errorBody())) } tw.timedOut = true } } type timeoutWriter struct { w ResponseWriter mu sync.Mutex timedOut bool wroteHeader bool } func (tw *timeoutWriter) Header() Header { return tw.w.Header() } func (tw *timeoutWriter) Write(p []byte) (int, os.Error) { tw.mu.Lock() timedOut := tw.timedOut tw.mu.Unlock() if timedOut { return 0, ErrHandlerTimeout } return tw.w.Write(p) } func (tw *timeoutWriter) WriteHeader(code int) { tw.mu.Lock() if tw.timedOut || tw.wroteHeader { tw.mu.Unlock() return } tw.wroteHeader = true tw.mu.Unlock() tw.w.WriteHeader(code) }