// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // The image package implements a basic 2-D image library. package image // An Image is a rectangular grid of Colors drawn from a ColorModel. type Image interface { ColorModel() ColorModel; Width() int; Height() int; // At(0, 0) returns the upper-left pixel of the grid. // At(Width()-1, Height()-1) returns the lower-right pixel. At(x, y int) Color; } // An RGBA is an in-memory image backed by a 2-D slice of RGBAColor values. type RGBA struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]RGBAColor; } func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel } func (p *RGBA) Width() int { if len(p.Pixel) == 0 { return 0; } return len(p.Pixel[0]); } func (p *RGBA) Height() int { return len(p.Pixel) } func (p *RGBA) At(x, y int) Color { return p.Pixel[y][x] } func (p *RGBA) Set(x, y int, c Color) { p.Pixel[y][x] = toRGBAColor(c).(RGBAColor) } // NewRGBA returns a new RGBA with the given width and height. func NewRGBA(w, h int) *RGBA { pixel := make([][]RGBAColor, h); for y := 0; y < int(h); y++ { pixel[y] = make([]RGBAColor, w); } return &RGBA{pixel}; } // An RGBA64 is an in-memory image backed by a 2-D slice of RGBA64Color values. type RGBA64 struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]RGBA64Color; } func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel } func (p *RGBA64) Width() int { if len(p.Pixel) == 0 { return 0; } return len(p.Pixel[0]); } func (p *RGBA64) Height() int { return len(p.Pixel) } func (p *RGBA64) At(x, y int) Color { return p.Pixel[y][x] } func (p *RGBA64) Set(x, y int, c Color) { p.Pixel[y][x] = toRGBA64Color(c).(RGBA64Color) } // NewRGBA64 returns a new RGBA64 with the given width and height. func NewRGBA64(w, h int) *RGBA64 { pixel := make([][]RGBA64Color, h); for y := 0; y < int(h); y++ { pixel[y] = make([]RGBA64Color, w); } return &RGBA64{pixel}; } // A NRGBA is an in-memory image backed by a 2-D slice of NRGBAColor values. type NRGBA struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]NRGBAColor; } func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel } func (p *NRGBA) Width() int { if len(p.Pixel) == 0 { return 0; } return len(p.Pixel[0]); } func (p *NRGBA) Height() int { return len(p.Pixel) } func (p *NRGBA) At(x, y int) Color { return p.Pixel[y][x] } func (p *NRGBA) Set(x, y int, c Color) { p.Pixel[y][x] = toNRGBAColor(c).(NRGBAColor) } // NewNRGBA returns a new NRGBA with the given width and height. func NewNRGBA(w, h int) *NRGBA { pixel := make([][]NRGBAColor, h); for y := 0; y < int(h); y++ { pixel[y] = make([]NRGBAColor, w); } return &NRGBA{pixel}; } // A NRGBA64 is an in-memory image backed by a 2-D slice of NRGBA64Color values. type NRGBA64 struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]NRGBA64Color; } func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel } func (p *NRGBA64) Width() int { if len(p.Pixel) == 0 { return 0; } return len(p.Pixel[0]); } func (p *NRGBA64) Height() int { return len(p.Pixel) } func (p *NRGBA64) At(x, y int) Color { return p.Pixel[y][x] } func (p *NRGBA64) Set(x, y int, c Color) { p.Pixel[y][x] = toNRGBA64Color(c).(NRGBA64Color) } // NewNRGBA64 returns a new NRGBA64 with the given width and height. func NewNRGBA64(w, h int) *NRGBA64 { pixel := make([][]NRGBA64Color, h); for y := 0; y < int(h); y++ { pixel[y] = make([]NRGBA64Color, w); } return &NRGBA64{pixel}; } // A PalettedColorModel represents a fixed palette of colors. type PalettedColorModel []Color func diff(a, b uint32) uint32 { if a > b { return a-b; } return b-a; } // Convert returns the palette color closest to c in Euclidean R,G,B space. func (p PalettedColorModel) Convert(c Color) Color { if len(p) == 0 { return nil; } // TODO(nigeltao): Revisit the "pick the palette color which minimizes sum-squared-difference" // algorithm when the premultiplied vs unpremultiplied issue is resolved. // Currently, we only compare the R, G and B values, and ignore A. cr, cg, cb, _ := c.RGBA(); // Shift by 17 bits to avoid potential uint32 overflow in sum-squared-difference. cr >>= 17; cg >>= 17; cb >>= 17; result := Color(nil); bestSSD := uint32(1<<32 - 1); for _, v := range p { vr, vg, vb, _ := v.RGBA(); vr >>= 17; vg >>= 17; vb >>= 17; dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb); ssd := (dr*dr)+(dg*dg)+(db*db); if ssd < bestSSD { bestSSD = ssd; result = v; } } return result; } // A Paletted is an in-memory image backed by a 2-D slice of uint8 values and a PalettedColorModel. type Paletted struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Palette[Pixel[y][x]]. Pixel [][]uint8; Palette PalettedColorModel; } func (p *Paletted) ColorModel() ColorModel { return p.Palette } func (p *Paletted) Width() int { if len(p.Pixel) == 0 { return 0; } return len(p.Pixel[0]); } func (p *Paletted) Height() int { return len(p.Pixel) } func (p *Paletted) At(x, y int) Color { return p.Palette[p.Pixel[y][x]] } func (p *Paletted) ColorIndexAt(x, y int) uint8 { return p.Pixel[y][x]; } func (p *Paletted) SetColorIndex(x, y int, index uint8) { p.Pixel[y][x] = index; } // NewPaletted returns a new Paletted with the given width, height and palette. func NewPaletted(w, h int, m PalettedColorModel) *Paletted { pixel := make([][]uint8, h); for y := 0; y < int(h); y++ { pixel[y] = make([]uint8, w); } return &Paletted{pixel, m}; }