// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math const ( uvnan = 0x7FF0000000000001 uvinf = 0x7FF0000000000000 uvneginf = 0xFFF0000000000000 mask = 0x7FF shift = 64 - 11 - 1 bias = 1022 ) // Inf returns positive infinity if sign >= 0, negative infinity if sign < 0. func Inf(sign int) float64 { var v uint64 if sign >= 0 { v = uvinf } else { v = uvneginf } return Float64frombits(v) } // NaN returns an IEEE 754 ``not-a-number'' value. func NaN() float64 { return Float64frombits(uvnan) } // IsNaN returns whether f is an IEEE 754 ``not-a-number'' value. func IsNaN(f float64) (is bool) { // IEEE 754 says that only NaNs satisfy f != f. // To avoid the floating-point hardware, could use: // x := Float64bits(f); // return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf return f != f } // IsInf returns whether f is an infinity, according to sign. // If sign > 0, IsInf returns whether f is positive infinity. // If sign < 0, IsInf returns whether f is negative infinity. // If sign == 0, IsInf returns whether f is either infinity. func IsInf(f float64, sign int) bool { // Test for infinity by comparing against maximum float. // To avoid the floating-point hardware, could use: // x := Float64bits(f); // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64 } // Frexp breaks f into a normalized fraction // and an integral power of two. // It returns frac and exp satisfying f == frac × 2exp, // with the absolute value of frac in the interval [½, 1). func Frexp(f float64) (frac float64, exp int) { // TODO(rsc): Remove manual inlining of IsNaN, IsInf // when compiler does it for us // special cases switch { case f == 0: return case f < -MaxFloat64 || f > MaxFloat64 || f != f: // IsInf(f, 0) || IsNaN(f): frac = f return } x := Float64bits(f) exp = int((x>>shift)&mask) - bias x &^= mask << shift x |= bias << shift frac = Float64frombits(x) return } // Ldexp is the inverse of Frexp. // It returns frac × 2exp. func Ldexp(frac float64, exp int) float64 { // TODO(rsc): Remove manual inlining of IsNaN, IsInf // when compiler does it for us // special cases if frac != frac { // IsNaN(frac) return NaN() } x := Float64bits(frac) exp += int(x>>shift) & mask if exp <= 0 { return 0 // underflow } if exp >= mask { // overflow if frac < 0 { return Inf(-1) } return Inf(1) } x &^= mask << shift x |= uint64(exp) << shift return Float64frombits(x) }