// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector. #include "runtime.h" #include "arch_GOARCH.h" #include "malloc.h" #include "stack.h" #include "mgc0.h" #include "race.h" #include "type.h" #include "typekind.h" #include "hashmap.h" enum { Debug = 0, DebugMark = 0, // run second pass to check mark CollectStats = 0, ScanStackByFrames = 0, IgnorePreciseGC = 0, // Four bits per word (see #defines below). wordsPerBitmapWord = sizeof(void*)*8/4, bitShift = sizeof(void*)*8/4, handoffThreshold = 4, IntermediateBufferCapacity = 64, // Bits in type information PRECISE = 1, LOOP = 2, PC_BITS = PRECISE | LOOP, }; // Bits in per-word bitmap. // #defines because enum might not be able to hold the values. // // Each word in the bitmap describes wordsPerBitmapWord words // of heap memory. There are 4 bitmap bits dedicated to each heap word, // so on a 64-bit system there is one bitmap word per 16 heap words. // The bits in the word are packed together by type first, then by // heap location, so each 64-bit bitmap word consists of, from top to bottom, // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. // This layout makes it easier to iterate over the bits of a given type. // // The bitmap starts at mheap.arena_start and extends *backward* from // there. On a 64-bit system the off'th word in the arena is tracked by // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, // the only difference is that the divisor is 8.) // // To pull out the bits corresponding to a given pointer p, we use: // // off = p - (uintptr*)mheap.arena_start; // word offset // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; // shift = off % wordsPerBitmapWord // bits = *b >> shift; // /* then test bits & bitAllocated, bits & bitMarked, etc. */ // #define bitAllocated ((uintptr)1<<(bitShift*0)) #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) // Holding worldsema grants an M the right to try to stop the world. // The procedure is: // // runtime·semacquire(&runtime·worldsema); // m->gcing = 1; // runtime·stoptheworld(); // // ... do stuff ... // // m->gcing = 0; // runtime·semrelease(&runtime·worldsema); // runtime·starttheworld(); // uint32 runtime·worldsema = 1; static int32 gctrace; typedef struct Obj Obj; struct Obj { byte *p; // data pointer uintptr n; // size of data in bytes uintptr ti; // type info }; // The size of Workbuf is N*PageSize. typedef struct Workbuf Workbuf; struct Workbuf { #define SIZE (2*PageSize-sizeof(LFNode)-sizeof(uintptr)) LFNode node; // must be first uintptr nobj; Obj obj[SIZE/sizeof(Obj) - 1]; uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)]; #undef SIZE }; typedef struct Finalizer Finalizer; struct Finalizer { FuncVal *fn; void *arg; uintptr nret; }; typedef struct FinBlock FinBlock; struct FinBlock { FinBlock *alllink; FinBlock *next; int32 cnt; int32 cap; Finalizer fin[1]; }; extern byte data[]; extern byte edata[]; extern byte bss[]; extern byte ebss[]; extern byte gcdata[]; extern byte gcbss[]; static G *fing; static FinBlock *finq; // list of finalizers that are to be executed static FinBlock *finc; // cache of free blocks static FinBlock *allfin; // list of all blocks static Lock finlock; static int32 fingwait; static void runfinq(void); static Workbuf* getempty(Workbuf*); static Workbuf* getfull(Workbuf*); static void putempty(Workbuf*); static Workbuf* handoff(Workbuf*); static void gchelperstart(void); static struct { uint64 full; // lock-free list of full blocks uint64 empty; // lock-free list of empty blocks byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait uint32 nproc; volatile uint32 nwait; volatile uint32 ndone; volatile uint32 debugmarkdone; Note alldone; ParFor *markfor; ParFor *sweepfor; Lock; byte *chunk; uintptr nchunk; Obj *roots; uint32 nroot; uint32 rootcap; } work; enum { GC_DEFAULT_PTR = GC_NUM_INSTR, GC_MAP_NEXT, GC_CHAN, GC_NUM_INSTR2 }; static struct { struct { uint64 sum; uint64 cnt; } ptr; uint64 nbytes; struct { uint64 sum; uint64 cnt; uint64 notype; uint64 typelookup; } obj; uint64 rescan; uint64 rescanbytes; uint64 instr[GC_NUM_INSTR2]; uint64 putempty; uint64 getfull; } gcstats; // markonly marks an object. It returns true if the object // has been marked by this function, false otherwise. // This function doesn't append the object to any buffer. static bool markonly(void *obj) { byte *p; uintptr *bitp, bits, shift, x, xbits, off; MSpan *s; PageID k; // Words outside the arena cannot be pointers. if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) return false; // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Find bits for this word. off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; if(sizeof(void*) == 8) x -= (uintptr)runtime·mheap->arena_start>>PageShift; s = runtime·mheap->map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) return false; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) return false; uintptr size = s->elemsize; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) return false; if(work.nproc == 1) *bitp |= bitMarked< PtrTarget (pointer targets) // ↑ | // | | // `----------' // flushptrbuf // (find block start, mark and enqueue) static void flushptrbuf(PtrTarget *ptrbuf, PtrTarget **ptrbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj) { byte *p, *arena_start, *obj; uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n; MSpan *s; PageID k; Obj *wp; Workbuf *wbuf; PtrTarget *ptrbuf_end; arena_start = runtime·mheap->arena_start; wp = *_wp; wbuf = *_wbuf; nobj = *_nobj; ptrbuf_end = *ptrbufpos; n = ptrbuf_end - ptrbuf; *ptrbufpos = ptrbuf; if(CollectStats) { runtime·xadd64(&gcstats.ptr.sum, n); runtime·xadd64(&gcstats.ptr.cnt, 1); } // If buffer is nearly full, get a new one. if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; if(n >= nelem(wbuf->obj)) runtime·throw("ptrbuf has to be smaller than WorkBuf"); } // TODO(atom): This block is a branch of an if-then-else statement. // The single-threaded branch may be added in a next CL. { // Multi-threaded version. while(ptrbuf < ptrbuf_end) { obj = ptrbuf->p; ti = ptrbuf->ti; ptrbuf++; // obj belongs to interval [mheap.arena_start, mheap.arena_used). if(Debug > 1) { if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) runtime·throw("object is outside of mheap"); } // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) { obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); ti = 0; } // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; ti = 0; // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { obj = (byte*)obj - (shift-j)*PtrSize; shift = j; bits = xbits>>shift; goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime·mheap->map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; size = s->elemsize; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) continue; if(work.nproc == 1) *bitp |= bitMarked<> PageShift; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime·mheap->map[x]; PREFETCH(obj); *wp = (Obj){obj, s->elemsize, ti}; wp++; nobj++; continue_obj:; } // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } } *_wp = wp; *_wbuf = wbuf; *_nobj = nobj; } static void flushobjbuf(Obj *objbuf, Obj **objbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj) { uintptr nobj, off; Obj *wp, obj; Workbuf *wbuf; Obj *objbuf_end; wp = *_wp; wbuf = *_wbuf; nobj = *_nobj; objbuf_end = *objbufpos; *objbufpos = objbuf; while(objbuf < objbuf_end) { obj = *objbuf++; // Align obj.b to a word boundary. off = (uintptr)obj.p & (PtrSize-1); if(off != 0) { obj.p += PtrSize - off; obj.n -= PtrSize - off; obj.ti = 0; } if(obj.p == nil || obj.n == 0) continue; // If buffer is full, get a new one. if(wbuf == nil || nobj >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; } *wp = obj; wp++; nobj++; } // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } *_wp = wp; *_wbuf = wbuf; *_nobj = nobj; } // Program that scans the whole block and treats every block element as a potential pointer static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR}; // Hashmap iterator program static uintptr mapProg[2] = {0, GC_MAP_NEXT}; // Hchan program static uintptr chanProg[2] = {0, GC_CHAN}; // Local variables of a program fragment or loop typedef struct Frame Frame; struct Frame { uintptr count, elemsize, b; uintptr *loop_or_ret; }; // Sanity check for the derived type info objti. static void checkptr(void *obj, uintptr objti) { uintptr *pc1, *pc2, type, tisize, i, j, x; byte *objstart; Type *t; MSpan *s; if(!Debug) runtime·throw("checkptr is debug only"); if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) return; type = runtime·gettype(obj); t = (Type*)(type & ~(uintptr)(PtrSize-1)); if(t == nil) return; x = (uintptr)obj >> PageShift; if(sizeof(void*) == 8) x -= (uintptr)(runtime·mheap->arena_start)>>PageShift; s = runtime·mheap->map[x]; objstart = (byte*)((uintptr)s->start<sizeclass != 0) { i = ((byte*)obj - objstart)/s->elemsize; objstart += i*s->elemsize; } tisize = *(uintptr*)objti; // Sanity check for object size: it should fit into the memory block. if((byte*)obj + tisize > objstart + s->elemsize) runtime·throw("invalid gc type info"); if(obj != objstart) return; // If obj points to the beginning of the memory block, // check type info as well. if(t->string == nil || // Gob allocates unsafe pointers for indirection. (runtime·strcmp(t->string->str, (byte*)"unsafe.Pointer") && // Runtime and gc think differently about closures. runtime·strstr(t->string->str, (byte*)"struct { F uintptr") != t->string->str)) { pc1 = (uintptr*)objti; pc2 = (uintptr*)t->gc; // A simple best-effort check until first GC_END. for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) { if(pc1[j] != pc2[j]) { runtime·printf("invalid gc type info for '%s' at %p, type info %p, block info %p\n", t->string ? (int8*)t->string->str : (int8*)"?", j, pc1[j], pc2[j]); runtime·throw("invalid gc type info"); } } } } // scanblock scans a block of n bytes starting at pointer b for references // to other objects, scanning any it finds recursively until there are no // unscanned objects left. Instead of using an explicit recursion, it keeps // a work list in the Workbuf* structures and loops in the main function // body. Keeping an explicit work list is easier on the stack allocator and // more efficient. // // wbuf: current work buffer // wp: storage for next queued pointer (write pointer) // nobj: number of queued objects static void scanblock(Workbuf *wbuf, Obj *wp, uintptr nobj, bool keepworking) { byte *b, *arena_start, *arena_used; uintptr n, i, end_b, elemsize, size, ti, objti, count, type; uintptr *pc, precise_type, nominal_size; uintptr *map_ret, mapkey_size, mapval_size, mapkey_ti, mapval_ti, *chan_ret, chancap; void *obj; Type *t; Slice *sliceptr; Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4]; BufferList *scanbuffers; PtrTarget *ptrbuf, *ptrbuf_end, *ptrbufpos; Obj *objbuf, *objbuf_end, *objbufpos; Eface *eface; Iface *iface; Hmap *hmap; MapType *maptype; bool mapkey_kind, mapval_kind; struct hash_gciter map_iter; struct hash_gciter_data d; Hchan *chan; ChanType *chantype; if(sizeof(Workbuf) % PageSize != 0) runtime·throw("scanblock: size of Workbuf is suboptimal"); // Memory arena parameters. arena_start = runtime·mheap->arena_start; arena_used = runtime·mheap->arena_used; stack_ptr = stack+nelem(stack)-1; precise_type = false; nominal_size = 0; // Allocate ptrbuf { scanbuffers = &bufferList[m->helpgc]; ptrbuf = &scanbuffers->ptrtarget[0]; ptrbuf_end = &scanbuffers->ptrtarget[0] + nelem(scanbuffers->ptrtarget); objbuf = &scanbuffers->obj[0]; objbuf_end = &scanbuffers->obj[0] + nelem(scanbuffers->obj); } ptrbufpos = ptrbuf; objbufpos = objbuf; // (Silence the compiler) map_ret = nil; mapkey_size = mapval_size = 0; mapkey_kind = mapval_kind = false; mapkey_ti = mapval_ti = 0; chan = nil; chantype = nil; chan_ret = nil; goto next_block; for(;;) { // Each iteration scans the block b of length n, queueing pointers in // the work buffer. if(Debug > 1) { runtime·printf("scanblock %p %D\n", b, (int64)n); } if(CollectStats) { runtime·xadd64(&gcstats.nbytes, n); runtime·xadd64(&gcstats.obj.sum, nobj); runtime·xadd64(&gcstats.obj.cnt, 1); } if(ti != 0) { pc = (uintptr*)(ti & ~(uintptr)PC_BITS); precise_type = (ti & PRECISE); stack_top.elemsize = pc[0]; if(!precise_type) nominal_size = pc[0]; if(ti & LOOP) { stack_top.count = 0; // 0 means an infinite number of iterations stack_top.loop_or_ret = pc+1; } else { stack_top.count = 1; } if(Debug) { // Simple sanity check for provided type info ti: // The declared size of the object must be not larger than the actual size // (it can be smaller due to inferior pointers). // It's difficult to make a comprehensive check due to inferior pointers, // reflection, gob, etc. if(pc[0] > n) { runtime·printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n); runtime·throw("invalid gc type info"); } } } else if(UseSpanType) { if(CollectStats) runtime·xadd64(&gcstats.obj.notype, 1); type = runtime·gettype(b); if(type != 0) { if(CollectStats) runtime·xadd64(&gcstats.obj.typelookup, 1); t = (Type*)(type & ~(uintptr)(PtrSize-1)); switch(type & (PtrSize-1)) { case TypeInfo_SingleObject: pc = (uintptr*)t->gc; precise_type = true; // type information about 'b' is precise stack_top.count = 1; stack_top.elemsize = pc[0]; break; case TypeInfo_Array: pc = (uintptr*)t->gc; if(pc[0] == 0) goto next_block; precise_type = true; // type information about 'b' is precise stack_top.count = 0; // 0 means an infinite number of iterations stack_top.elemsize = pc[0]; stack_top.loop_or_ret = pc+1; break; case TypeInfo_Map: hmap = (Hmap*)b; maptype = (MapType*)t; if(hash_gciter_init(hmap, &map_iter)) { mapkey_size = maptype->key->size; mapkey_kind = maptype->key->kind; mapkey_ti = (uintptr)maptype->key->gc | PRECISE; mapval_size = maptype->elem->size; mapval_kind = maptype->elem->kind; mapval_ti = (uintptr)maptype->elem->gc | PRECISE; map_ret = nil; pc = mapProg; } else { goto next_block; } break; case TypeInfo_Chan: chan = (Hchan*)b; chantype = (ChanType*)t; chan_ret = nil; pc = chanProg; break; default: runtime·throw("scanblock: invalid type"); return; } } else { pc = defaultProg; } } else { pc = defaultProg; } if(IgnorePreciseGC) pc = defaultProg; pc++; stack_top.b = (uintptr)b; end_b = (uintptr)b + n - PtrSize; for(;;) { if(CollectStats) runtime·xadd64(&gcstats.instr[pc[0]], 1); obj = nil; objti = 0; switch(pc[0]) { case GC_PTR: obj = *(void**)(stack_top.b + pc[1]); objti = pc[2]; pc += 3; if(Debug) checkptr(obj, objti); break; case GC_SLICE: sliceptr = (Slice*)(stack_top.b + pc[1]); if(sliceptr->cap != 0) { obj = sliceptr->array; // Can't use slice element type for scanning, // because if it points to an array embedded // in the beginning of a struct, // we will scan the whole struct as the slice. // So just obtain type info from heap. } pc += 3; break; case GC_APTR: obj = *(void**)(stack_top.b + pc[1]); pc += 2; break; case GC_STRING: obj = *(void**)(stack_top.b + pc[1]); markonly(obj); pc += 2; continue; case GC_EFACE: eface = (Eface*)(stack_top.b + pc[1]); pc += 2; if(eface->type == nil) continue; // eface->type t = eface->type; if((void*)t >= arena_start && (void*)t < arena_used) { *ptrbufpos++ = (PtrTarget){t, 0}; if(ptrbufpos == ptrbuf_end) flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); } // eface->data if(eface->data >= arena_start && eface->data < arena_used) { if(t->size <= sizeof(void*)) { if((t->kind & KindNoPointers)) continue; obj = eface->data; if((t->kind & ~KindNoPointers) == KindPtr) objti = (uintptr)((PtrType*)t)->elem->gc; } else { obj = eface->data; objti = (uintptr)t->gc; } } break; case GC_IFACE: iface = (Iface*)(stack_top.b + pc[1]); pc += 2; if(iface->tab == nil) continue; // iface->tab if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) { *ptrbufpos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc}; if(ptrbufpos == ptrbuf_end) flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); } // iface->data if(iface->data >= arena_start && iface->data < arena_used) { t = iface->tab->type; if(t->size <= sizeof(void*)) { if((t->kind & KindNoPointers)) continue; obj = iface->data; if((t->kind & ~KindNoPointers) == KindPtr) objti = (uintptr)((PtrType*)t)->elem->gc; } else { obj = iface->data; objti = (uintptr)t->gc; } } break; case GC_DEFAULT_PTR: while(stack_top.b <= end_b) { obj = *(byte**)stack_top.b; stack_top.b += PtrSize; if(obj >= arena_start && obj < arena_used) { *ptrbufpos++ = (PtrTarget){obj, 0}; if(ptrbufpos == ptrbuf_end) flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); } } goto next_block; case GC_END: if(--stack_top.count != 0) { // Next iteration of a loop if possible. stack_top.b += stack_top.elemsize; if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) { pc = stack_top.loop_or_ret; continue; } i = stack_top.b; } else { // Stack pop if possible. if(stack_ptr+1 < stack+nelem(stack)) { pc = stack_top.loop_or_ret; stack_top = *(++stack_ptr); continue; } i = (uintptr)b + nominal_size; } if(!precise_type) { // Quickly scan [b+i,b+n) for possible pointers. for(; i<=end_b; i+=PtrSize) { if(*(byte**)i != nil) { // Found a value that may be a pointer. // Do a rescan of the entire block. enqueue((Obj){b, n, 0}, &wbuf, &wp, &nobj); if(CollectStats) { runtime·xadd64(&gcstats.rescan, 1); runtime·xadd64(&gcstats.rescanbytes, n); } break; } } } goto next_block; case GC_ARRAY_START: i = stack_top.b + pc[1]; count = pc[2]; elemsize = pc[3]; pc += 4; // Stack push. *stack_ptr-- = stack_top; stack_top = (Frame){count, elemsize, i, pc}; continue; case GC_ARRAY_NEXT: if(--stack_top.count != 0) { stack_top.b += stack_top.elemsize; pc = stack_top.loop_or_ret; } else { // Stack pop. stack_top = *(++stack_ptr); pc += 1; } continue; case GC_CALL: // Stack push. *stack_ptr-- = stack_top; stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/}; pc = (uintptr*)((byte*)pc + *(int32*)(pc+2)); // target of the CALL instruction continue; case GC_MAP_PTR: hmap = *(Hmap**)(stack_top.b + pc[1]); if(hmap == nil) { pc += 3; continue; } if(markonly(hmap)) { maptype = (MapType*)pc[2]; if(hash_gciter_init(hmap, &map_iter)) { mapkey_size = maptype->key->size; mapkey_kind = maptype->key->kind; mapkey_ti = (uintptr)maptype->key->gc | PRECISE; mapval_size = maptype->elem->size; mapval_kind = maptype->elem->kind; mapval_ti = (uintptr)maptype->elem->gc | PRECISE; // Start mapProg. map_ret = pc+3; pc = mapProg+1; } else { pc += 3; } } else { pc += 3; } continue; case GC_MAP_NEXT: // Add all keys and values to buffers, mark all subtables. while(hash_gciter_next(&map_iter, &d)) { // buffers: reserve space for 2 objects. if(ptrbufpos+2 >= ptrbuf_end) flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); if(objbufpos+2 >= objbuf_end) flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); if(d.st != nil) markonly(d.st); if(d.key_data != nil) { if(!(mapkey_kind & KindNoPointers) || d.indirectkey) { if(!d.indirectkey) *objbufpos++ = (Obj){d.key_data, mapkey_size, mapkey_ti}; else { if(Debug) { obj = *(void**)d.key_data; if(!(arena_start <= obj && obj < arena_used)) runtime·throw("scanblock: inconsistent hashmap"); } *ptrbufpos++ = (PtrTarget){*(void**)d.key_data, mapkey_ti}; } } if(!(mapval_kind & KindNoPointers) || d.indirectval) { if(!d.indirectval) *objbufpos++ = (Obj){d.val_data, mapval_size, mapval_ti}; else { if(Debug) { obj = *(void**)d.val_data; if(!(arena_start <= obj && obj < arena_used)) runtime·throw("scanblock: inconsistent hashmap"); } *ptrbufpos++ = (PtrTarget){*(void**)d.val_data, mapval_ti}; } } } } if(map_ret == nil) goto next_block; pc = map_ret; continue; case GC_REGION: obj = (void*)(stack_top.b + pc[1]); size = pc[2]; objti = pc[3]; pc += 4; *objbufpos++ = (Obj){obj, size, objti}; if(objbufpos == objbuf_end) flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); continue; case GC_CHAN_PTR: // Similar to GC_MAP_PTR chan = *(Hchan**)(stack_top.b + pc[1]); if(chan == nil) { pc += 3; continue; } if(markonly(chan)) { chantype = (ChanType*)pc[2]; if(!(chantype->elem->kind & KindNoPointers)) { // Start chanProg. chan_ret = pc+3; pc = chanProg+1; continue; } } pc += 3; continue; case GC_CHAN: // There are no heap pointers in struct Hchan, // so we can ignore the leading sizeof(Hchan) bytes. if(!(chantype->elem->kind & KindNoPointers)) { // Channel's buffer follows Hchan immediately in memory. // Size of buffer (cap(c)) is second int in the chan struct. chancap = ((uintgo*)chan)[1]; if(chancap > 0) { // TODO(atom): split into two chunks so that only the // in-use part of the circular buffer is scanned. // (Channel routines zero the unused part, so the current // code does not lead to leaks, it's just a little inefficient.) *objbufpos++ = (Obj){(byte*)chan+runtime·Hchansize, chancap*chantype->elem->size, (uintptr)chantype->elem->gc | PRECISE | LOOP}; if(objbufpos == objbuf_end) flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); } } if(chan_ret == nil) goto next_block; pc = chan_ret; continue; default: runtime·throw("scanblock: invalid GC instruction"); return; } if(obj >= arena_start && obj < arena_used) { *ptrbufpos++ = (PtrTarget){obj, objti}; if(ptrbufpos == ptrbuf_end) flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); } } next_block: // Done scanning [b, b+n). Prepare for the next iteration of // the loop by setting b, n, ti to the parameters for the next block. if(nobj == 0) { flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj); flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); if(nobj == 0) { if(!keepworking) { if(wbuf) putempty(wbuf); goto endscan; } // Emptied our buffer: refill. wbuf = getfull(wbuf); if(wbuf == nil) goto endscan; nobj = wbuf->nobj; wp = wbuf->obj + wbuf->nobj; } } // Fetch b from the work buffer. --wp; b = wp->p; n = wp->n; ti = wp->ti; nobj--; } endscan:; } // debug_scanblock is the debug copy of scanblock. // it is simpler, slower, single-threaded, recursive, // and uses bitSpecial as the mark bit. static void debug_scanblock(byte *b, uintptr n) { byte *obj, *p; void **vp; uintptr size, *bitp, bits, shift, i, xbits, off; MSpan *s; if(!DebugMark) runtime·throw("debug_scanblock without DebugMark"); if((intptr)n < 0) { runtime·printf("debug_scanblock %p %D\n", b, (int64)n); runtime·throw("debug_scanblock"); } // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } vp = (void**)b; n /= PtrSize; for(i=0; iarena_start || (byte*)obj >= runtime·mheap->arena_used) continue; // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Consult span table to find beginning. s = runtime·MHeap_LookupMaybe(runtime·mheap, obj); if(s == nil) continue; p = (byte*)((uintptr)s->start<elemsize; if(s->sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // If not allocated or already marked, done. if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked continue; *bitp |= bitSpecial< 1) runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti); // Align obj.b to a word boundary. off = (uintptr)obj.p & (PtrSize-1); if(off != 0) { obj.p += PtrSize - off; obj.n -= PtrSize - off; obj.ti = 0; } if(obj.p == nil || obj.n == 0) return; // Load work buffer state wp = *_wp; wbuf = *_wbuf; nobj = *_nobj; // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } // If buffer is full, get a new one. if(wbuf == nil || nobj >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; } *wp = obj; wp++; nobj++; // Save work buffer state *_wp = wp; *_wbuf = wbuf; *_nobj = nobj; } static void markroot(ParFor *desc, uint32 i) { Obj *wp; Workbuf *wbuf; uintptr nobj; USED(&desc); wp = nil; wbuf = nil; nobj = 0; enqueue(work.roots[i], &wbuf, &wp, &nobj); scanblock(wbuf, wp, nobj, false); } // Get an empty work buffer off the work.empty list, // allocating new buffers as needed. static Workbuf* getempty(Workbuf *b) { if(b != nil) runtime·lfstackpush(&work.full, &b->node); b = (Workbuf*)runtime·lfstackpop(&work.empty); if(b == nil) { // Need to allocate. runtime·lock(&work); if(work.nchunk < sizeof *b) { work.nchunk = 1<<20; work.chunk = runtime·SysAlloc(work.nchunk); if(work.chunk == nil) runtime·throw("runtime: cannot allocate memory"); } b = (Workbuf*)work.chunk; work.chunk += sizeof *b; work.nchunk -= sizeof *b; runtime·unlock(&work); } b->nobj = 0; return b; } static void putempty(Workbuf *b) { if(CollectStats) runtime·xadd64(&gcstats.putempty, 1); runtime·lfstackpush(&work.empty, &b->node); } // Get a full work buffer off the work.full list, or return nil. static Workbuf* getfull(Workbuf *b) { int32 i; if(CollectStats) runtime·xadd64(&gcstats.getfull, 1); if(b != nil) runtime·lfstackpush(&work.empty, &b->node); b = (Workbuf*)runtime·lfstackpop(&work.full); if(b != nil || work.nproc == 1) return b; runtime·xadd(&work.nwait, +1); for(i=0;; i++) { if(work.full != 0) { runtime·xadd(&work.nwait, -1); b = (Workbuf*)runtime·lfstackpop(&work.full); if(b != nil) return b; runtime·xadd(&work.nwait, +1); } if(work.nwait == work.nproc) return nil; if(i < 10) { m->gcstats.nprocyield++; runtime·procyield(20); } else if(i < 20) { m->gcstats.nosyield++; runtime·osyield(); } else { m->gcstats.nsleep++; runtime·usleep(100); } } } static Workbuf* handoff(Workbuf *b) { int32 n; Workbuf *b1; // Make new buffer with half of b's pointers. b1 = getempty(nil); n = b->nobj/2; b->nobj -= n; b1->nobj = n; runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); m->gcstats.nhandoff++; m->gcstats.nhandoffcnt += n; // Put b on full list - let first half of b get stolen. runtime·lfstackpush(&work.full, &b->node); return b1; } static void addroot(Obj obj) { uint32 cap; Obj *new; if(work.nroot >= work.rootcap) { cap = PageSize/sizeof(Obj); if(cap < 2*work.rootcap) cap = 2*work.rootcap; new = (Obj*)runtime·SysAlloc(cap*sizeof(Obj)); if(new == nil) runtime·throw("runtime: cannot allocate memory"); if(work.roots != nil) { runtime·memmove(new, work.roots, work.rootcap*sizeof(Obj)); runtime·SysFree(work.roots, work.rootcap*sizeof(Obj)); } work.roots = new; work.rootcap = cap; } work.roots[work.nroot] = obj; work.nroot++; } // Scan a stack frame. The doframe parameter is a signal that the previously // scanned activation has an unknown argument size. When *doframe is true the // current activation must have its entire frame scanned. Otherwise, only the // locals need to be scanned. static void addframeroots(Func *f, byte*, byte *sp, void *doframe) { uintptr outs; if(thechar == '5') sp += sizeof(uintptr); if(f->locals == 0 || *(bool*)doframe == true) addroot((Obj){sp, f->frame - sizeof(uintptr), 0}); else if(f->locals > 0) { outs = f->frame - sizeof(uintptr) - f->locals; addroot((Obj){sp + outs, f->locals, 0}); } if(f->args > 0) addroot((Obj){sp + f->frame, f->args, 0}); *(bool*)doframe = (f->args == ArgsSizeUnknown); } static void addstackroots(G *gp) { M *mp; int32 n; Stktop *stk; byte *sp, *guard, *pc; Func *f; bool doframe; stk = (Stktop*)gp->stackbase; guard = (byte*)gp->stackguard; if(gp == g) { // Scanning our own stack: start at &gp. sp = runtime·getcallersp(&gp); pc = runtime·getcallerpc(&gp); } else if((mp = gp->m) != nil && mp->helpgc) { // gchelper's stack is in active use and has no interesting pointers. return; } else if(gp->gcstack != (uintptr)nil) { // Scanning another goroutine that is about to enter or might // have just exited a system call. It may be executing code such // as schedlock and may have needed to start a new stack segment. // Use the stack segment and stack pointer at the time of // the system call instead, since that won't change underfoot. sp = (byte*)gp->gcsp; pc = gp->gcpc; stk = (Stktop*)gp->gcstack; guard = (byte*)gp->gcguard; } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). sp = (byte*)gp->sched.sp; pc = gp->sched.pc; if(ScanStackByFrames && pc == (byte*)runtime·goexit && gp->fnstart != nil) { // The goroutine has not started. However, its incoming // arguments are live at the top of the stack and must // be scanned. No other live values should be on the // stack. f = runtime·findfunc((uintptr)gp->fnstart->fn); if(f->args > 0) { if(thechar == '5') sp += sizeof(uintptr); addroot((Obj){sp, f->args, 0}); } return; } } if (ScanStackByFrames) { doframe = false; runtime·gentraceback(pc, sp, nil, gp, 0, nil, 0x7fffffff, addframeroots, &doframe); } else { USED(pc); n = 0; while(stk) { if(sp < guard-StackGuard || (byte*)stk < sp) { runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); runtime·throw("scanstack"); } addroot((Obj){sp, (byte*)stk - sp, (uintptr)defaultProg | PRECISE | LOOP}); sp = (byte*)stk->gobuf.sp; guard = stk->stackguard; stk = (Stktop*)stk->stackbase; n++; } } } static void addfinroots(void *v) { uintptr size; void *base; size = 0; if(!runtime·mlookup(v, &base, &size, nil) || !runtime·blockspecial(base)) runtime·throw("mark - finalizer inconsistency"); // do not mark the finalizer block itself. just mark the things it points at. addroot((Obj){base, size, 0}); } static void addroots(void) { G *gp; FinBlock *fb; MSpan *s, **allspans; uint32 spanidx; work.nroot = 0; // data & bss // TODO(atom): load balancing addroot((Obj){data, edata - data, (uintptr)gcdata}); addroot((Obj){bss, ebss - bss, (uintptr)gcbss}); // MSpan.types allspans = runtime·mheap->allspans; for(spanidx=0; spanidxnspan; spanidx++) { s = allspans[spanidx]; if(s->state == MSpanInUse) { // The garbage collector ignores type pointers stored in MSpan.types: // - Compiler-generated types are stored outside of heap. // - The reflect package has runtime-generated types cached in its data structures. // The garbage collector relies on finding the references via that cache. switch(s->types.compression) { case MTypes_Empty: case MTypes_Single: break; case MTypes_Words: case MTypes_Bytes: markonly((byte*)s->types.data); break; } } } // stacks for(gp=runtime·allg; gp!=nil; gp=gp->alllink) { switch(gp->status){ default: runtime·printf("unexpected G.status %d\n", gp->status); runtime·throw("mark - bad status"); case Gdead: break; case Grunning: if(gp != g) runtime·throw("mark - world not stopped"); addstackroots(gp); break; case Grunnable: case Gsyscall: case Gwaiting: addstackroots(gp); break; } } runtime·walkfintab(addfinroots); for(fb=allfin; fb; fb=fb->alllink) addroot((Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0}); } static bool handlespecial(byte *p, uintptr size) { FuncVal *fn; uintptr nret; FinBlock *block; Finalizer *f; if(!runtime·getfinalizer(p, true, &fn, &nret)) { runtime·setblockspecial(p, false); runtime·MProf_Free(p, size); return false; } runtime·lock(&finlock); if(finq == nil || finq->cnt == finq->cap) { if(finc == nil) { finc = runtime·SysAlloc(PageSize); if(finc == nil) runtime·throw("runtime: cannot allocate memory"); finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; finc->alllink = allfin; allfin = finc; } block = finc; finc = block->next; block->next = finq; finq = block; } f = &finq->fin[finq->cnt]; finq->cnt++; f->fn = fn; f->nret = nret; f->arg = p; runtime·unlock(&finlock); return true; } // Sweep frees or collects finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. static void sweepspan(ParFor *desc, uint32 idx) { int32 cl, n, npages; uintptr size; byte *p; MCache *c; byte *arena_start; MLink head, *end; int32 nfree; byte *type_data; byte compression; uintptr type_data_inc; MSpan *s; USED(&desc); s = runtime·mheap->allspans[idx]; if(s->state != MSpanInUse) return; arena_start = runtime·mheap->arena_start; p = (byte*)(s->start << PageShift); cl = s->sizeclass; size = s->elemsize; if(cl == 0) { n = 1; } else { // Chunk full of small blocks. npages = runtime·class_to_allocnpages[cl]; n = (npages << PageShift) / size; } nfree = 0; end = &head; c = m->mcache; type_data = (byte*)s->types.data; type_data_inc = sizeof(uintptr); compression = s->types.compression; switch(compression) { case MTypes_Bytes: type_data += 8*sizeof(uintptr); type_data_inc = 1; break; } // Sweep through n objects of given size starting at p. // This thread owns the span now, so it can manipulate // the block bitmap without atomic operations. for(; n > 0; n--, p += size, type_data+=type_data_inc) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & bitAllocated) == 0) continue; if((bits & bitMarked) != 0) { if(DebugMark) { if(!(bits & bitSpecial)) runtime·printf("found spurious mark on %p\n", p); *bitp &= ~(bitSpecial<local_alloc -= size; c->local_nfree++; } else { // Free small object. switch(compression) { case MTypes_Words: *(uintptr*)type_data = 0; break; case MTypes_Bytes: *(byte*)type_data = 0; break; } if(size > sizeof(uintptr)) ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed" end->next = (MLink*)p; end = (MLink*)p; nfree++; } } if(nfree) { c->local_by_size[cl].nfree += nfree; c->local_alloc -= size * nfree; c->local_nfree += nfree; c->local_cachealloc -= nfree * size; c->local_objects -= nfree; runtime·MCentral_FreeSpan(&runtime·mheap->central[cl], s, nfree, head.next, end); } } static void dumpspan(uint32 idx) { int32 sizeclass, n, npages, i, column; uintptr size; byte *p; byte *arena_start; MSpan *s; bool allocated, special; s = runtime·mheap->allspans[idx]; if(s->state != MSpanInUse) return; arena_start = runtime·mheap->arena_start; p = (byte*)(s->start << PageShift); sizeclass = s->sizeclass; size = s->elemsize; if(sizeclass == 0) { n = 1; } else { npages = runtime·class_to_allocnpages[sizeclass]; n = (npages << PageShift) / size; } runtime·printf("%p .. %p:\n", p, p+n*size); column = 0; for(; n>0; n--, p+=size) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; allocated = ((bits & bitAllocated) != 0); special = ((bits & bitSpecial) != 0); for(i=0; i= size) { runtime·printf(allocated ? ") " : "] "); } column++; if(column == 8) { runtime·printf("\n"); column = 0; } } } runtime·printf("\n"); } // A debugging function to dump the contents of memory void runtime·memorydump(void) { uint32 spanidx; for(spanidx=0; spanidxnspan; spanidx++) { dumpspan(spanidx); } } void runtime·gchelper(void) { gchelperstart(); // parallel mark for over gc roots runtime·parfordo(work.markfor); // help other threads scan secondary blocks scanblock(nil, nil, 0, true); if(DebugMark) { // wait while the main thread executes mark(debug_scanblock) while(runtime·atomicload(&work.debugmarkdone) == 0) runtime·usleep(10); } runtime·parfordo(work.sweepfor); bufferList[m->helpgc].busy = 0; if(runtime·xadd(&work.ndone, +1) == work.nproc-1) runtime·notewakeup(&work.alldone); } #define GcpercentUnknown (-2) // Initialized from $GOGC. GOGC=off means no gc. // // Next gc is after we've allocated an extra amount of // memory proportional to the amount already in use. // If gcpercent=100 and we're using 4M, we'll gc again // when we get to 8M. This keeps the gc cost in linear // proportion to the allocation cost. Adjusting gcpercent // just changes the linear constant (and also the amount of // extra memory used). static int32 gcpercent = GcpercentUnknown; static void cachestats(GCStats *stats) { M *mp; MCache *c; P *p, **pp; int32 i; uint64 stacks_inuse; uint64 *src, *dst; if(stats) runtime·memclr((byte*)stats, sizeof(*stats)); stacks_inuse = 0; for(mp=runtime·allm; mp; mp=mp->alllink) { stacks_inuse += mp->stackinuse*FixedStack; if(stats) { src = (uint64*)&mp->gcstats; dst = (uint64*)stats; for(i=0; igcstats, sizeof(mp->gcstats)); } } for(pp=runtime·allp; p=*pp; pp++) { c = p->mcache; if(c==nil) continue; runtime·purgecachedstats(c); for(i=0; ilocal_by_size); i++) { mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; c->local_by_size[i].nmalloc = 0; mstats.by_size[i].nfree += c->local_by_size[i].nfree; c->local_by_size[i].nfree = 0; } } mstats.stacks_inuse = stacks_inuse; } // Structure of arguments passed to function gc(). // This allows the arguments to be passed via reflect·call. struct gc_args { int32 force; }; static void gc(struct gc_args *args); static int32 readgogc(void) { byte *p; p = runtime·getenv("GOGC"); if(p == nil || p[0] == '\0') return 100; if(runtime·strcmp(p, (byte*)"off") == 0) return -1; return runtime·atoi(p); } void runtime·gc(int32 force) { byte *p; struct gc_args a, *ap; FuncVal gcv; // The atomic operations are not atomic if the uint64s // are not aligned on uint64 boundaries. This has been // a problem in the past. if((((uintptr)&work.empty) & 7) != 0) runtime·throw("runtime: gc work buffer is misaligned"); if((((uintptr)&work.full) & 7) != 0) runtime·throw("runtime: gc work buffer is misaligned"); // The gc is turned off (via enablegc) until // the bootstrap has completed. // Also, malloc gets called in the guts // of a number of libraries that might be // holding locks. To avoid priority inversion // problems, don't bother trying to run gc // while holding a lock. The next mallocgc // without a lock will do the gc instead. if(!mstats.enablegc || m->locks > 0 || runtime·panicking) return; if(gcpercent == GcpercentUnknown) { // first time through gcpercent = readgogc(); p = runtime·getenv("GOGCTRACE"); if(p != nil) gctrace = runtime·atoi(p); } if(gcpercent < 0) return; // Run gc on a bigger stack to eliminate // a potentially large number of calls to runtime·morestack. a.force = force; ap = &a; m->moreframesize_minalloc = StackBig; gcv.fn = (void*)gc; reflect·call(&gcv, (byte*)&ap, sizeof(ap)); if(gctrace > 1 && !force) { a.force = 1; gc(&a); } } static FuncVal runfinqv = {runfinq}; static void gc(struct gc_args *args) { int64 t0, t1, t2, t3, t4; uint64 heap0, heap1, obj0, obj1, ninstr; GCStats stats; M *mp; uint32 i; Eface eface; runtime·semacquire(&runtime·worldsema); if(!args->force && mstats.heap_alloc < mstats.next_gc) { runtime·semrelease(&runtime·worldsema); return; } t0 = runtime·nanotime(); m->gcing = 1; runtime·stoptheworld(); if(CollectStats) runtime·memclr((byte*)&gcstats, sizeof(gcstats)); for(mp=runtime·allm; mp; mp=mp->alllink) runtime·settype_flush(mp, false); heap0 = 0; obj0 = 0; if(gctrace) { cachestats(nil); heap0 = mstats.heap_alloc; obj0 = mstats.nmalloc - mstats.nfree; } m->locks++; // disable gc during mallocs in parforalloc if(work.markfor == nil) work.markfor = runtime·parforalloc(MaxGcproc); if(work.sweepfor == nil) work.sweepfor = runtime·parforalloc(MaxGcproc); m->locks--; if(itabtype == nil) { // get C pointer to the Go type "itab" runtime·gc_itab_ptr(&eface); itabtype = ((PtrType*)eface.type)->elem; } work.nwait = 0; work.ndone = 0; work.debugmarkdone = 0; work.nproc = runtime·gcprocs(); addroots(); runtime·parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot); runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap->nspan, nil, true, sweepspan); if(work.nproc > 1) { runtime·noteclear(&work.alldone); runtime·helpgc(work.nproc); } t1 = runtime·nanotime(); gchelperstart(); runtime·parfordo(work.markfor); scanblock(nil, nil, 0, true); if(DebugMark) { for(i=0; ihelpgc].busy = 0; t3 = runtime·nanotime(); if(work.nproc > 1) runtime·notesleep(&work.alldone); cachestats(&stats); stats.nprocyield += work.sweepfor->nprocyield; stats.nosyield += work.sweepfor->nosyield; stats.nsleep += work.sweepfor->nsleep; mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; m->gcing = 0; if(finq != nil) { m->locks++; // disable gc during the mallocs in newproc // kick off or wake up goroutine to run queued finalizers if(fing == nil) fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc); else if(fingwait) { fingwait = 0; runtime·ready(fing); } m->locks--; } heap1 = mstats.heap_alloc; obj1 = mstats.nmalloc - mstats.nfree; t4 = runtime·nanotime(); mstats.last_gc = t4; mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0; mstats.pause_total_ns += t4 - t0; mstats.numgc++; if(mstats.debuggc) runtime·printf("pause %D\n", t4-t0); if(gctrace) { runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects," " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", mstats.numgc, work.nproc, (t2-t1)/1000000, (t3-t2)/1000000, (t1-t0+t4-t3)/1000000, heap0>>20, heap1>>20, obj0, obj1, mstats.nmalloc, mstats.nfree, stats.nhandoff, stats.nhandoffcnt, work.sweepfor->nsteal, work.sweepfor->nstealcnt, stats.nprocyield, stats.nosyield, stats.nsleep); if(CollectStats) { runtime·printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n", gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup); if(gcstats.ptr.cnt != 0) runtime·printf("avg ptrbufsize: %D (%D/%D)\n", gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt); if(gcstats.obj.cnt != 0) runtime·printf("avg nobj: %D (%D/%D)\n", gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt); runtime·printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes); runtime·printf("instruction counts:\n"); ninstr = 0; for(i=0; igcing = 1; runtime·stoptheworld(); cachestats(nil); *stats = mstats; m->gcing = 0; runtime·semrelease(&runtime·worldsema); runtime·starttheworld(); } void runtime∕debug·readGCStats(Slice *pauses) { uint64 *p; uint32 i, n; // Calling code in runtime/debug should make the slice large enough. if(pauses->cap < nelem(mstats.pause_ns)+3) runtime·throw("runtime: short slice passed to readGCStats"); // Pass back: pauses, last gc (absolute time), number of gc, total pause ns. p = (uint64*)pauses->array; runtime·lock(runtime·mheap); n = mstats.numgc; if(n > nelem(mstats.pause_ns)) n = nelem(mstats.pause_ns); // The pause buffer is circular. The most recent pause is at // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward // from there to go back farther in time. We deliver the times // most recent first (in p[0]). for(i=0; ilen = n+3; } void runtime∕debug·setGCPercent(intgo in, intgo out) { runtime·lock(runtime·mheap); if(gcpercent == GcpercentUnknown) gcpercent = readgogc(); out = gcpercent; if(in < 0) in = -1; gcpercent = in; runtime·unlock(runtime·mheap); FLUSH(&out); } static void gchelperstart(void) { if(m->helpgc < 0 || m->helpgc >= MaxGcproc) runtime·throw("gchelperstart: bad m->helpgc"); if(runtime·xchg(&bufferList[m->helpgc].busy, 1)) runtime·throw("gchelperstart: already busy"); } static void runfinq(void) { Finalizer *f; FinBlock *fb, *next; byte *frame; uint32 framesz, framecap, i; frame = nil; framecap = 0; for(;;) { // There's no need for a lock in this section // because it only conflicts with the garbage // collector, and the garbage collector only // runs when everyone else is stopped, and // runfinq only stops at the gosched() or // during the calls in the for loop. fb = finq; finq = nil; if(fb == nil) { fingwait = 1; runtime·park(nil, nil, "finalizer wait"); continue; } if(raceenabled) runtime·racefingo(); for(; fb; fb=next) { next = fb->next; for(i=0; icnt; i++) { f = &fb->fin[i]; framesz = sizeof(uintptr) + f->nret; if(framecap < framesz) { runtime·free(frame); frame = runtime·mal(framesz); framecap = framesz; } *(void**)frame = f->arg; reflect·call(f->fn, frame, sizeof(uintptr) + f->nret); f->fn = nil; f->arg = nil; } fb->cnt = 0; fb->next = finc; finc = fb; } runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible } } // mark the block at v of size n as allocated. // If noptr is true, mark it as having no pointers. void runtime·markallocated(void *v, uintptr n, bool noptr) { uintptr *b, obits, bits, off, shift; if(0) runtime·printf("markallocated %p+%p\n", v, n); if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) return; // not allocated, so okay off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; if((bits & bitAllocated) != 0) { runtime·printf("checkfreed %p+%p: off=%p have=%p\n", v, n, off, bits & bitMask); runtime·throw("checkfreed: not freed"); } } // mark the span of memory at v as having n blocks of the given size. // if leftover is true, there is left over space at the end of the span. void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) { uintptr *b, off, shift; byte *p; if((byte*)v+size*n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markspan: bad pointer"); p = v; if(leftover) // mark a boundary just past end of last block too n++; for(; n-- > 0; p += size) { // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. off = (uintptr*)p - (uintptr*)runtime·mheap->arena_start; // word offset b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markspan: bad pointer"); p = v; off = p - (uintptr*)runtime·mheap->arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime·throw("markspan: unaligned pointer"); b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime·throw("unmarkspan: unaligned length"); // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. n /= wordsPerBitmapWord; while(n-- > 0) *b-- = 0; } bool runtime·blockspecial(void *v) { uintptr *b, off, shift; if(DebugMark) return true; off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; return (*b & (bitSpecial<arena_start; b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; if(s) bits = obits | (bitSpecial<arena_used - h->arena_start) / wordsPerBitmapWord; n = (n+bitmapChunk-1) & ~(bitmapChunk-1); if(h->bitmap_mapped >= n) return; runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped); h->bitmap_mapped = n; }