// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "signal_unix.h" #include "stack.h" #include "../../cmd/ld/textflag.h" extern SigTab runtime·sigtab[]; static Sigset sigset_none; static Sigset sigset_all = { ~(uint32)0, ~(uint32)0 }; // Linux futex. // // futexsleep(uint32 *addr, uint32 val) // futexwakeup(uint32 *addr) // // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. // Futexwakeup wakes up threads sleeping on addr. // Futexsleep is allowed to wake up spuriously. enum { FUTEX_WAIT = 0, FUTEX_WAKE = 1, }; // Atomically, // if(*addr == val) sleep // Might be woken up spuriously; that's allowed. // Don't sleep longer than ns; ns < 0 means forever. #pragma textflag NOSPLIT void runtime·futexsleep(uint32 *addr, uint32 val, int64 ns) { Timespec ts; // Some Linux kernels have a bug where futex of // FUTEX_WAIT returns an internal error code // as an errno. Libpthread ignores the return value // here, and so can we: as it says a few lines up, // spurious wakeups are allowed. if(ns < 0) { runtime·futex(addr, FUTEX_WAIT, val, nil, nil, 0); return; } // NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system. ts.tv_nsec = 0; ts.tv_sec = runtime·timediv(ns, 1000000000LL, (int32*)&ts.tv_nsec); runtime·futex(addr, FUTEX_WAIT, val, &ts, nil, 0); } // If any procs are sleeping on addr, wake up at most cnt. void runtime·futexwakeup(uint32 *addr, uint32 cnt) { int64 ret; ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0); if(ret >= 0) return; // I don't know that futex wakeup can return // EAGAIN or EINTR, but if it does, it would be // safe to loop and call futex again. runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret); *(int32*)0x1006 = 0x1006; } extern runtime·sched_getaffinity(uintptr pid, uintptr len, uintptr *buf); static int32 getproccount(void) { uintptr buf[16], t; int32 r, cnt, i; cnt = 0; r = runtime·sched_getaffinity(0, sizeof(buf), buf); if(r > 0) for(i = 0; i < r/sizeof(buf[0]); i++) { t = buf[i]; t = t - ((t >> 1) & 0x5555555555555555ULL); t = (t & 0x3333333333333333ULL) + ((t >> 2) & 0x3333333333333333ULL); cnt += (int32)((((t + (t >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56); } return cnt ? cnt : 1; } // Clone, the Linux rfork. enum { CLONE_VM = 0x100, CLONE_FS = 0x200, CLONE_FILES = 0x400, CLONE_SIGHAND = 0x800, CLONE_PTRACE = 0x2000, CLONE_VFORK = 0x4000, CLONE_PARENT = 0x8000, CLONE_THREAD = 0x10000, CLONE_NEWNS = 0x20000, CLONE_SYSVSEM = 0x40000, CLONE_SETTLS = 0x80000, CLONE_PARENT_SETTID = 0x100000, CLONE_CHILD_CLEARTID = 0x200000, CLONE_UNTRACED = 0x800000, CLONE_CHILD_SETTID = 0x1000000, CLONE_STOPPED = 0x2000000, CLONE_NEWUTS = 0x4000000, CLONE_NEWIPC = 0x8000000, }; void runtime·newosproc(M *mp, void *stk) { int32 ret; int32 flags; Sigset oset; /* * note: strace gets confused if we use CLONE_PTRACE here. */ flags = CLONE_VM /* share memory */ | CLONE_FS /* share cwd, etc */ | CLONE_FILES /* share fd table */ | CLONE_SIGHAND /* share sig handler table */ | CLONE_THREAD /* revisit - okay for now */ ; mp->tls[0] = mp->id; // so 386 asm can find it if(0){ runtime·printf("newosproc stk=%p m=%p g=%p clone=%p id=%d/%d ostk=%p\n", stk, mp, mp->g0, runtime·clone, mp->id, (int32)mp->tls[0], &mp); } // Disable signals during clone, so that the new thread starts // with signals disabled. It will enable them in minit. runtime·rtsigprocmask(SIG_SETMASK, &sigset_all, &oset, sizeof oset); ret = runtime·clone(flags, stk, mp, mp->g0, runtime·mstart); runtime·rtsigprocmask(SIG_SETMASK, &oset, nil, sizeof oset); if(ret < 0) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret); runtime·throw("runtime.newosproc"); } } void runtime·osinit(void) { runtime·ncpu = getproccount(); } // Random bytes initialized at startup. These come // from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c). byte* runtime·startup_random_data; uint32 runtime·startup_random_data_len; void runtime·get_random_data(byte **rnd, int32 *rnd_len) { if(runtime·startup_random_data != nil) { *rnd = runtime·startup_random_data; *rnd_len = runtime·startup_random_data_len; } else { #pragma dataflag NOPTR static byte urandom_data[HashRandomBytes]; int32 fd; fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { *rnd = urandom_data; *rnd_len = HashRandomBytes; } else { *rnd = nil; *rnd_len = 0; } runtime·close(fd); } } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. void runtime·mpreinit(M *mp) { mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. void runtime·minit(void) { // Initialize signal handling. runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024); runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof(Sigset)); } // Called from dropm to undo the effect of an minit. void runtime·unminit(void) { runtime·signalstack(nil, 0); } void runtime·sigpanic(void) { if(!runtime·canpanic(g)) runtime·throw("unexpected signal during runtime execution"); switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000 || g->paniconfault) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000 || g->paniconfault) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); } uintptr runtime·memlimit(void) { Rlimit rl; extern byte text[], end[]; uintptr used; if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) return 0; if(rl.rlim_cur >= 0x7fffffff) return 0; // Estimate our VM footprint excluding the heap. // Not an exact science: use size of binary plus // some room for thread stacks. used = end - text + (64<<20); if(used >= rl.rlim_cur) return 0; // If there's not at least 16 MB left, we're probably // not going to be able to do much. Treat as no limit. rl.rlim_cur -= used; if(rl.rlim_cur < (16<<20)) return 0; return rl.rlim_cur - used; } #ifdef GOARCH_386 #define sa_handler k_sa_handler #endif /* * This assembler routine takes the args from registers, puts them on the stack, * and calls sighandler(). */ extern void runtime·sigtramp(void); extern void runtime·sigreturn(void); // calls runtime·sigreturn void runtime·setsig(int32 i, GoSighandler *fn, bool restart) { Sigaction sa; runtime·memclr((byte*)&sa, sizeof sa); sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER; if(restart) sa.sa_flags |= SA_RESTART; sa.sa_mask = ~0ULL; // TODO(adonovan): Linux manpage says "sa_restorer element is // obsolete and should not be used". Avoid it here, and test. sa.sa_restorer = (void*)runtime·sigreturn; if(fn == runtime·sighandler) fn = (void*)runtime·sigtramp; sa.sa_handler = fn; if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0) runtime·throw("rt_sigaction failure"); } GoSighandler* runtime·getsig(int32 i) { Sigaction sa; runtime·memclr((byte*)&sa, sizeof sa); if(runtime·rt_sigaction(i, nil, &sa, sizeof(sa.sa_mask)) != 0) runtime·throw("rt_sigaction read failure"); if((void*)sa.sa_handler == runtime·sigtramp) return runtime·sighandler; return (void*)sa.sa_handler; } void runtime·signalstack(byte *p, int32 n) { Sigaltstack st; st.ss_sp = p; st.ss_size = n; st.ss_flags = 0; if(p == nil) st.ss_flags = SS_DISABLE; runtime·sigaltstack(&st, nil); } void runtime·unblocksignals(void) { runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof sigset_none); }