// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "signal_unix.h" #include "stack.h" #include "../../cmd/ld/textflag.h" enum { ESRCH = 3, ENOTSUP = 91, // From NetBSD's CLOCK_REALTIME = 0, CLOCK_VIRTUAL = 1, CLOCK_PROF = 2, CLOCK_MONOTONIC = 3 }; extern SigTab runtime·sigtab[]; static Sigset sigset_none; static Sigset sigset_all = { ~(uint32)0, ~(uint32)0, ~(uint32)0, ~(uint32)0, }; extern void runtime·getcontext(UcontextT *context); extern int32 runtime·lwp_create(UcontextT *context, uintptr flags, void *lwpid); extern void runtime·lwp_mcontext_init(void *mc, void *stack, M *mp, G *gp, void (*fn)(void)); extern int32 runtime·lwp_park(Timespec *abstime, int32 unpark, void *hint, void *unparkhint); extern int32 runtime·lwp_unpark(int32 lwp, void *hint); extern int32 runtime·lwp_self(void); // From NetBSD's #define CTL_HW 6 #define HW_NCPU 3 static int32 getncpu(void) { uint32 mib[2]; uint32 out; int32 ret; uintptr nout; // Fetch hw.ncpu via sysctl. mib[0] = CTL_HW; mib[1] = HW_NCPU; nout = sizeof out; out = 0; ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); if(ret >= 0) return out; else return 1; } uintptr runtime·semacreate(void) { return 1; } #pragma textflag NOSPLIT int32 runtime·semasleep(int64 ns) { Timespec ts; // spin-mutex lock while(runtime·xchg(&m->waitsemalock, 1)) runtime·osyield(); for(;;) { // lock held if(m->waitsemacount == 0) { // sleep until semaphore != 0 or timeout. // thrsleep unlocks m->waitsemalock. if(ns < 0) { // TODO(jsing) - potential deadlock! // // There is a potential deadlock here since we // have to release the waitsemalock mutex // before we call lwp_park() to suspend the // thread. This allows another thread to // release the lock and call lwp_unpark() // before the thread is actually suspended. // If this occurs the current thread will end // up sleeping indefinitely. Unfortunately // the NetBSD kernel does not appear to provide // a mechanism for unlocking the userspace // mutex once the thread is actually parked. runtime·atomicstore(&m->waitsemalock, 0); runtime·lwp_park(nil, 0, &m->waitsemacount, nil); } else { ns = ns + runtime·nanotime(); // NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system. ts.tv_nsec = 0; ts.tv_sec = runtime·timediv(ns, 1000000000, (int32*)&ts.tv_nsec); // TODO(jsing) - potential deadlock! // See above for details. runtime·atomicstore(&m->waitsemalock, 0); runtime·lwp_park(&ts, 0, &m->waitsemacount, nil); } // reacquire lock while(runtime·xchg(&m->waitsemalock, 1)) runtime·osyield(); } // lock held (again) if(m->waitsemacount != 0) { // semaphore is available. m->waitsemacount--; // spin-mutex unlock runtime·atomicstore(&m->waitsemalock, 0); return 0; // semaphore acquired } // semaphore not available. // if there is a timeout, stop now. // otherwise keep trying. if(ns >= 0) break; } // lock held but giving up // spin-mutex unlock runtime·atomicstore(&m->waitsemalock, 0); return -1; } void runtime·semawakeup(M *mp) { uint32 ret; // spin-mutex lock while(runtime·xchg(&mp->waitsemalock, 1)) runtime·osyield(); mp->waitsemacount++; // TODO(jsing) - potential deadlock, see semasleep() for details. // Confirm that LWP is parked before unparking... ret = runtime·lwp_unpark(mp->procid, &mp->waitsemacount); if(ret != 0 && ret != ESRCH) runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret); // spin-mutex unlock runtime·atomicstore(&mp->waitsemalock, 0); } void runtime·newosproc(M *mp, void *stk) { UcontextT uc; int32 ret; if(0) { runtime·printf( "newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n", stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp); } mp->tls[0] = mp->id; // so 386 asm can find it runtime·getcontext(&uc); uc.uc_flags = _UC_SIGMASK | _UC_CPU; uc.uc_link = nil; uc.uc_sigmask = sigset_all; runtime·lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp->g0, runtime·mstart); ret = runtime·lwp_create(&uc, 0, &mp->procid); if(ret < 0) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret); runtime·throw("runtime.newosproc"); } } void runtime·osinit(void) { runtime·ncpu = getncpu(); } void runtime·get_random_data(byte **rnd, int32 *rnd_len) { static byte urandom_data[HashRandomBytes]; int32 fd; fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { *rnd = urandom_data; *rnd_len = HashRandomBytes; } else { *rnd = nil; *rnd_len = 0; } runtime·close(fd); } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. void runtime·mpreinit(M *mp) { mp->gsignal = runtime·malg(32*1024); } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. void runtime·minit(void) { m->procid = runtime·lwp_self(); // Initialize signal handling runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024); runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil); } // Called from dropm to undo the effect of an minit. void runtime·unminit(void) { runtime·signalstack(nil, 0); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); } uintptr runtime·memlimit(void) { return 0; } extern void runtime·sigtramp(void); typedef struct sigaction { union { void (*_sa_handler)(int32); void (*_sa_sigaction)(int32, Siginfo*, void *); } _sa_u; /* signal handler */ uint32 sa_mask[4]; /* signal mask to apply */ int32 sa_flags; /* see signal options below */ } Sigaction; void runtime·setsig(int32 i, GoSighandler *fn, bool restart) { Sigaction sa; runtime·memclr((byte*)&sa, sizeof sa); sa.sa_flags = SA_SIGINFO|SA_ONSTACK; if(restart) sa.sa_flags |= SA_RESTART; sa.sa_mask[0] = ~0U; sa.sa_mask[1] = ~0U; sa.sa_mask[2] = ~0U; sa.sa_mask[3] = ~0U; if (fn == runtime·sighandler) fn = (void*)runtime·sigtramp; sa._sa_u._sa_sigaction = (void*)fn; runtime·sigaction(i, &sa, nil); } GoSighandler* runtime·getsig(int32 i) { Sigaction sa; runtime·memclr((byte*)&sa, sizeof sa); runtime·sigaction(i, nil, &sa); if((void*)sa._sa_u._sa_sigaction == runtime·sigtramp) return runtime·sighandler; return (void*)sa._sa_u._sa_sigaction; } void runtime·signalstack(byte *p, int32 n) { StackT st; st.ss_sp = (void*)p; st.ss_size = n; st.ss_flags = 0; if(p == nil) st.ss_flags = SS_DISABLE; runtime·sigaltstack(&st, nil); }