// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "type.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "../../cmd/ld/textflag.h" #pragma dynimport runtime·AddVectoredExceptionHandler AddVectoredExceptionHandler "kernel32.dll" #pragma dynimport runtime·CloseHandle CloseHandle "kernel32.dll" #pragma dynimport runtime·CreateEvent CreateEventA "kernel32.dll" #pragma dynimport runtime·CreateThread CreateThread "kernel32.dll" #pragma dynimport runtime·CreateWaitableTimer CreateWaitableTimerA "kernel32.dll" #pragma dynimport runtime·CryptAcquireContextW CryptAcquireContextW "advapi32.dll" #pragma dynimport runtime·CryptGenRandom CryptGenRandom "advapi32.dll" #pragma dynimport runtime·CryptReleaseContext CryptReleaseContext "advapi32.dll" #pragma dynimport runtime·DuplicateHandle DuplicateHandle "kernel32.dll" #pragma dynimport runtime·ExitProcess ExitProcess "kernel32.dll" #pragma dynimport runtime·FreeEnvironmentStringsW FreeEnvironmentStringsW "kernel32.dll" #pragma dynimport runtime·GetEnvironmentStringsW GetEnvironmentStringsW "kernel32.dll" #pragma dynimport runtime·GetProcAddress GetProcAddress "kernel32.dll" #pragma dynimport runtime·GetStdHandle GetStdHandle "kernel32.dll" #pragma dynimport runtime·GetSystemInfo GetSystemInfo "kernel32.dll" #pragma dynimport runtime·GetSystemTimeAsFileTime GetSystemTimeAsFileTime "kernel32.dll" #pragma dynimport runtime·GetThreadContext GetThreadContext "kernel32.dll" #pragma dynimport runtime·LoadLibrary LoadLibraryW "kernel32.dll" #pragma dynimport runtime·LoadLibraryA LoadLibraryA "kernel32.dll" #pragma dynimport runtime·NtWaitForSingleObject NtWaitForSingleObject "ntdll.dll" #pragma dynimport runtime·ResumeThread ResumeThread "kernel32.dll" #pragma dynimport runtime·SetConsoleCtrlHandler SetConsoleCtrlHandler "kernel32.dll" #pragma dynimport runtime·SetEvent SetEvent "kernel32.dll" #pragma dynimport runtime·SetProcessPriorityBoost SetProcessPriorityBoost "kernel32.dll" #pragma dynimport runtime·SetThreadPriority SetThreadPriority "kernel32.dll" #pragma dynimport runtime·SetWaitableTimer SetWaitableTimer "kernel32.dll" #pragma dynimport runtime·Sleep Sleep "kernel32.dll" #pragma dynimport runtime·SuspendThread SuspendThread "kernel32.dll" #pragma dynimport runtime·WaitForSingleObject WaitForSingleObject "kernel32.dll" #pragma dynimport runtime·WriteFile WriteFile "kernel32.dll" #pragma dynimport runtime·timeBeginPeriod timeBeginPeriod "winmm.dll" extern void *runtime·AddVectoredExceptionHandler; extern void *runtime·CloseHandle; extern void *runtime·CreateEvent; extern void *runtime·CreateThread; extern void *runtime·CreateWaitableTimer; extern void *runtime·CryptAcquireContextW; extern void *runtime·CryptGenRandom; extern void *runtime·CryptReleaseContext; extern void *runtime·DuplicateHandle; extern void *runtime·ExitProcess; extern void *runtime·FreeEnvironmentStringsW; extern void *runtime·GetEnvironmentStringsW; extern void *runtime·GetProcAddress; extern void *runtime·GetStdHandle; extern void *runtime·GetSystemInfo; extern void *runtime·GetSystemTimeAsFileTime; extern void *runtime·GetThreadContext; extern void *runtime·LoadLibrary; extern void *runtime·LoadLibraryA; extern void *runtime·NtWaitForSingleObject; extern void *runtime·ResumeThread; extern void *runtime·SetConsoleCtrlHandler; extern void *runtime·SetEvent; extern void *runtime·SetProcessPriorityBoost; extern void *runtime·SetThreadPriority; extern void *runtime·SetWaitableTimer; extern void *runtime·Sleep; extern void *runtime·SuspendThread; extern void *runtime·WaitForSingleObject; extern void *runtime·WriteFile; extern void *runtime·timeBeginPeriod; void *runtime·GetQueuedCompletionStatusEx; extern uintptr runtime·externalthreadhandlerp; void runtime·externalthreadhandler(void); void runtime·sigtramp(void); static int32 getproccount(void) { SystemInfo info; runtime·stdcall(runtime·GetSystemInfo, 1, &info); return info.dwNumberOfProcessors; } void runtime·osinit(void) { void *kernel32; runtime·externalthreadhandlerp = (uintptr)runtime·externalthreadhandler; runtime·stdcall(runtime·AddVectoredExceptionHandler, 2, (uintptr)1, (uintptr)runtime·sigtramp); runtime·stdcall(runtime·SetConsoleCtrlHandler, 2, runtime·ctrlhandler, (uintptr)1); runtime·stdcall(runtime·timeBeginPeriod, 1, (uintptr)1); runtime·ncpu = getproccount(); // Windows dynamic priority boosting assumes that a process has different types // of dedicated threads -- GUI, IO, computational, etc. Go processes use // equivalent threads that all do a mix of GUI, IO, computations, etc. // In such context dynamic priority boosting does nothing but harm, so we turn it off. runtime·stdcall(runtime·SetProcessPriorityBoost, 2, (uintptr)-1, (uintptr)1); kernel32 = runtime·stdcall(runtime·LoadLibraryA, 1, "kernel32.dll"); if(kernel32 != nil) { runtime·GetQueuedCompletionStatusEx = runtime·stdcall(runtime·GetProcAddress, 2, kernel32, "GetQueuedCompletionStatusEx"); } } void runtime·get_random_data(byte **rnd, int32 *rnd_len) { uintptr handle; *rnd = nil; *rnd_len = 0; if(runtime·stdcall(runtime·CryptAcquireContextW, 5, &handle, nil, nil, (uintptr)1 /* PROV_RSA_FULL */, (uintptr)0xf0000000U /* CRYPT_VERIFYCONTEXT */) != 0) { static byte random_data[HashRandomBytes]; if(runtime·stdcall(runtime·CryptGenRandom, 3, handle, (uintptr)HashRandomBytes, random_data)) { *rnd = random_data; *rnd_len = HashRandomBytes; } runtime·stdcall(runtime·CryptReleaseContext, 2, handle, (uintptr)0); } } void runtime·goenvs(void) { extern Slice syscall·envs; uint16 *env; String *s; int32 i, n; uint16 *p; env = runtime·stdcall(runtime·GetEnvironmentStringsW, 0); n = 0; for(p=env; *p; n++) p += runtime·findnullw(p)+1; s = runtime·malloc(n*sizeof s[0]); p = env; for(i=0; iwaitsema, (uintptr)ns) != 0) return -1; // timeout return 0; } void runtime·semawakeup(M *mp) { runtime·stdcall(runtime·SetEvent, 1, mp->waitsema); } uintptr runtime·semacreate(void) { return (uintptr)runtime·stdcall(runtime·CreateEvent, 4, (uintptr)0, (uintptr)0, (uintptr)0, (uintptr)0); } #define STACK_SIZE_PARAM_IS_A_RESERVATION ((uintptr)0x00010000) void runtime·newosproc(M *mp, void *stk) { void *thandle; USED(stk); thandle = runtime·stdcall(runtime·CreateThread, 6, nil, (uintptr)0x20000, runtime·tstart_stdcall, mp, STACK_SIZE_PARAM_IS_A_RESERVATION, nil); if(thandle == nil) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), runtime·getlasterror()); runtime·throw("runtime.newosproc"); } } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. void runtime·mpreinit(M *mp) { USED(mp); } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. void runtime·minit(void) { void *thandle; // -1 = current process, -2 = current thread runtime·stdcall(runtime·DuplicateHandle, 7, (uintptr)-1, (uintptr)-2, (uintptr)-1, &thandle, (uintptr)0, (uintptr)0, (uintptr)DUPLICATE_SAME_ACCESS); runtime·atomicstorep(&m->thread, thandle); } // Called from dropm to undo the effect of an minit. void runtime·unminit(void) { } #pragma textflag NOSPLIT int64 runtime·nanotime(void) { int64 filetime; runtime·stdcall(runtime·GetSystemTimeAsFileTime, 1, &filetime); // Filetime is 100s of nanoseconds since January 1, 1601. // Convert to nanoseconds since January 1, 1970. return (filetime - 116444736000000000LL) * 100LL; } void time·now(int64 sec, int32 usec) { int64 ns; ns = runtime·nanotime(); sec = ns / 1000000000LL; usec = ns - sec * 1000000000LL; FLUSH(&sec); FLUSH(&usec); } // Calling stdcall on os stack. #pragma textflag NOSPLIT void * runtime·stdcall(void *fn, int32 count, ...) { m->libcall.fn = fn; m->libcall.n = count; m->libcall.args = (uintptr*)&count + 1; if(m->profilehz != 0) { // leave pc/sp for cpu profiler m->libcallg = g; m->libcallpc = (uintptr)runtime·getcallerpc(&fn); // sp must be the last, because once async cpu profiler finds // all three values to be non-zero, it will use them m->libcallsp = (uintptr)runtime·getcallersp(&fn); } runtime·asmcgocall(runtime·asmstdcall, &m->libcall); m->libcallsp = 0; return (void*)m->libcall.r1; } extern void runtime·usleep1(uint32); #pragma textflag NOSPLIT void runtime·osyield(void) { runtime·usleep1(1); } #pragma textflag NOSPLIT void runtime·usleep(uint32 us) { // Have 1us units; want 100ns units. runtime·usleep1(10*us); } uint32 runtime·issigpanic(uint32 code) { switch(code) { case EXCEPTION_ACCESS_VIOLATION: case EXCEPTION_INT_DIVIDE_BY_ZERO: case EXCEPTION_INT_OVERFLOW: case EXCEPTION_FLT_DENORMAL_OPERAND: case EXCEPTION_FLT_DIVIDE_BY_ZERO: case EXCEPTION_FLT_INEXACT_RESULT: case EXCEPTION_FLT_OVERFLOW: case EXCEPTION_FLT_UNDERFLOW: return 1; } return 0; } void runtime·sigpanic(void) { if(!runtime·canpanic(g)) runtime·throw("unexpected signal during runtime execution"); switch(g->sig) { case EXCEPTION_ACCESS_VIOLATION: if(g->sigcode1 < 0x1000 || g->paniconfault) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case EXCEPTION_INT_DIVIDE_BY_ZERO: runtime·panicstring("integer divide by zero"); case EXCEPTION_INT_OVERFLOW: runtime·panicstring("integer overflow"); case EXCEPTION_FLT_DENORMAL_OPERAND: case EXCEPTION_FLT_DIVIDE_BY_ZERO: case EXCEPTION_FLT_INEXACT_RESULT: case EXCEPTION_FLT_OVERFLOW: case EXCEPTION_FLT_UNDERFLOW: runtime·panicstring("floating point error"); } runtime·throw("fault"); } void runtime·initsig(void) { // following line keeps sigtramp alive at link stage // if there's a better way please write it here void *p = runtime·sigtramp; USED(p); } uint32 runtime·ctrlhandler1(uint32 type) { int32 s; switch(type) { case CTRL_C_EVENT: case CTRL_BREAK_EVENT: s = SIGINT; break; default: return 0; } if(runtime·sigsend(s)) return 1; runtime·exit(2); // SIGINT, SIGTERM, etc return 0; } extern void runtime·dosigprof(Context *r, G *gp, M *mp); extern void runtime·profileloop(void); static void *profiletimer; static void profilem(M *mp) { extern M runtime·m0; extern uint32 runtime·tls0[]; byte rbuf[sizeof(Context)+15]; Context *r; void *tls; G *gp; tls = mp->tls; if(mp == &runtime·m0) tls = runtime·tls0; gp = *(G**)tls; // align Context to 16 bytes r = (Context*)((uintptr)(&rbuf[15]) & ~15); r->ContextFlags = CONTEXT_CONTROL; runtime·stdcall(runtime·GetThreadContext, 2, mp->thread, r); runtime·dosigprof(r, gp, mp); } void runtime·profileloop1(void) { M *mp, *allm; void *thread; runtime·stdcall(runtime·SetThreadPriority, 2, (uintptr)-2, (uintptr)THREAD_PRIORITY_HIGHEST); for(;;) { runtime·stdcall(runtime·WaitForSingleObject, 2, profiletimer, (uintptr)-1); allm = runtime·atomicloadp(&runtime·allm); for(mp = allm; mp != nil; mp = mp->alllink) { thread = runtime·atomicloadp(&mp->thread); // Do not profile threads blocked on Notes, // this includes idle worker threads, // idle timer thread, idle heap scavenger, etc. if(thread == nil || mp->profilehz == 0 || mp->blocked) continue; runtime·stdcall(runtime·SuspendThread, 1, thread); if(mp->profilehz != 0 && !mp->blocked) profilem(mp); runtime·stdcall(runtime·ResumeThread, 1, thread); } } } void runtime·resetcpuprofiler(int32 hz) { static Lock lock; void *timer, *thread; int32 ms; int64 due; runtime·lock(&lock); if(profiletimer == nil) { timer = runtime·stdcall(runtime·CreateWaitableTimer, 3, nil, nil, nil); runtime·atomicstorep(&profiletimer, timer); thread = runtime·stdcall(runtime·CreateThread, 6, nil, nil, runtime·profileloop, nil, nil, nil); runtime·stdcall(runtime·CloseHandle, 1, thread); } runtime·unlock(&lock); ms = 0; due = 1LL<<63; if(hz > 0) { ms = 1000 / hz; if(ms == 0) ms = 1; due = ms * -10000; } runtime·stdcall(runtime·SetWaitableTimer, 6, profiletimer, &due, (uintptr)ms, nil, nil, nil); runtime·atomicstore((uint32*)&m->profilehz, hz); } void os·sigpipe(void) { runtime·throw("too many writes on closed pipe"); } uintptr runtime·memlimit(void) { return 0; } #pragma dataflag NOPTR int8 runtime·badsignalmsg[] = "runtime: signal received on thread not created by Go.\n"; int32 runtime·badsignallen = sizeof runtime·badsignalmsg - 1; void runtime·crash(void) { // TODO: This routine should do whatever is needed // to make the Windows program abort/crash as it // would if Go was not intercepting signals. // On Unix the routine would remove the custom signal // handler and then raise a signal (like SIGABRT). // Something like that should happen here. // It's okay to leave this empty for now: if crash returns // the ordinary exit-after-panic happens. }