// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package pprof writes runtime profiling data in the format expected // by the pprof visualization tool. // For more information about pprof, see // http://code.google.com/p/google-perftools/. package pprof import ( "bufio" "bytes" "fmt" "io" "runtime" "sort" "strings" "sync" "text/tabwriter" ) // BUG(rsc): Profiles are incomplete and inaccurate on NetBSD and OS X. // See http://golang.org/issue/6047 for details. // A Profile is a collection of stack traces showing the call sequences // that led to instances of a particular event, such as allocation. // Packages can create and maintain their own profiles; the most common // use is for tracking resources that must be explicitly closed, such as files // or network connections. // // A Profile's methods can be called from multiple goroutines simultaneously. // // Each Profile has a unique name. A few profiles are predefined: // // goroutine - stack traces of all current goroutines // heap - a sampling of all heap allocations // threadcreate - stack traces that led to the creation of new OS threads // block - stack traces that led to blocking on synchronization primitives // // These predefined profiles maintain themselves and panic on an explicit // Add or Remove method call. // // The CPU profile is not available as a Profile. It has a special API, // the StartCPUProfile and StopCPUProfile functions, because it streams // output to a writer during profiling. // type Profile struct { name string mu sync.Mutex m map[interface{}][]uintptr count func() int write func(io.Writer, int) error } // profiles records all registered profiles. var profiles struct { mu sync.Mutex m map[string]*Profile } var goroutineProfile = &Profile{ name: "goroutine", count: countGoroutine, write: writeGoroutine, } var threadcreateProfile = &Profile{ name: "threadcreate", count: countThreadCreate, write: writeThreadCreate, } var heapProfile = &Profile{ name: "heap", count: countHeap, write: writeHeap, } var blockProfile = &Profile{ name: "block", count: countBlock, write: writeBlock, } func lockProfiles() { profiles.mu.Lock() if profiles.m == nil { // Initial built-in profiles. profiles.m = map[string]*Profile{ "goroutine": goroutineProfile, "threadcreate": threadcreateProfile, "heap": heapProfile, "block": blockProfile, } } } func unlockProfiles() { profiles.mu.Unlock() } // NewProfile creates a new profile with the given name. // If a profile with that name already exists, NewProfile panics. // The convention is to use a 'import/path.' prefix to create // separate name spaces for each package. func NewProfile(name string) *Profile { lockProfiles() defer unlockProfiles() if name == "" { panic("pprof: NewProfile with empty name") } if profiles.m[name] != nil { panic("pprof: NewProfile name already in use: " + name) } p := &Profile{ name: name, m: map[interface{}][]uintptr{}, } profiles.m[name] = p return p } // Lookup returns the profile with the given name, or nil if no such profile exists. func Lookup(name string) *Profile { lockProfiles() defer unlockProfiles() return profiles.m[name] } // Profiles returns a slice of all the known profiles, sorted by name. func Profiles() []*Profile { lockProfiles() defer unlockProfiles() var all []*Profile for _, p := range profiles.m { all = append(all, p) } sort.Sort(byName(all)) return all } type byName []*Profile func (x byName) Len() int { return len(x) } func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byName) Less(i, j int) bool { return x[i].name < x[j].name } // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. func (p *Profile) Name() string { return p.name } // Count returns the number of execution stacks currently in the profile. func (p *Profile) Count() int { p.mu.Lock() defer p.mu.Unlock() if p.count != nil { return p.count() } return len(p.m) } // Add adds the current execution stack to the profile, associated with value. // Add stores value in an internal map, so value must be suitable for use as // a map key and will not be garbage collected until the corresponding // call to Remove. Add panics if the profile already contains a stack for value. // // The skip parameter has the same meaning as runtime.Caller's skip // and controls where the stack trace begins. Passing skip=0 begins the // trace in the function calling Add. For example, given this // execution stack: // // Add // called from rpc.NewClient // called from mypkg.Run // called from main.main // // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. // func (p *Profile) Add(value interface{}, skip int) { if p.name == "" { panic("pprof: use of uninitialized Profile") } if p.write != nil { panic("pprof: Add called on built-in Profile " + p.name) } stk := make([]uintptr, 32) n := runtime.Callers(skip+1, stk[:]) p.mu.Lock() defer p.mu.Unlock() if p.m[value] != nil { panic("pprof: Profile.Add of duplicate value") } p.m[value] = stk[:n] } // Remove removes the execution stack associated with value from the profile. // It is a no-op if the value is not in the profile. func (p *Profile) Remove(value interface{}) { p.mu.Lock() defer p.mu.Unlock() delete(p.m, value) } // WriteTo writes a pprof-formatted snapshot of the profile to w. // If a write to w returns an error, WriteTo returns that error. // Otherwise, WriteTo returns nil. // // The debug parameter enables additional output. // Passing debug=0 prints only the hexadecimal addresses that pprof needs. // Passing debug=1 adds comments translating addresses to function names // and line numbers, so that a programmer can read the profile without tools. // // The predefined profiles may assign meaning to other debug values; // for example, when printing the "goroutine" profile, debug=2 means to // print the goroutine stacks in the same form that a Go program uses // when dying due to an unrecovered panic. func (p *Profile) WriteTo(w io.Writer, debug int) error { if p.name == "" { panic("pprof: use of zero Profile") } if p.write != nil { return p.write(w, debug) } // Obtain consistent snapshot under lock; then process without lock. var all [][]uintptr p.mu.Lock() for _, stk := range p.m { all = append(all, stk) } p.mu.Unlock() // Map order is non-deterministic; make output deterministic. sort.Sort(stackProfile(all)) return printCountProfile(w, debug, p.name, stackProfile(all)) } type stackProfile [][]uintptr func (x stackProfile) Len() int { return len(x) } func (x stackProfile) Stack(i int) []uintptr { return x[i] } func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x stackProfile) Less(i, j int) bool { t, u := x[i], x[j] for k := 0; k < len(t) && k < len(u); k++ { if t[k] != u[k] { return t[k] < u[k] } } return len(t) < len(u) } // A countProfile is a set of stack traces to be printed as counts // grouped by stack trace. There are multiple implementations: // all that matters is that we can find out how many traces there are // and obtain each trace in turn. type countProfile interface { Len() int Stack(i int) []uintptr } // printCountProfile prints a countProfile at the specified debug level. func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { b := bufio.NewWriter(w) var tw *tabwriter.Writer w = b if debug > 0 { tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) w = tw } fmt.Fprintf(w, "%s profile: total %d\n", name, p.Len()) // Build count of each stack. var buf bytes.Buffer key := func(stk []uintptr) string { buf.Reset() fmt.Fprintf(&buf, "@") for _, pc := range stk { fmt.Fprintf(&buf, " %#x", pc) } return buf.String() } m := map[string]int{} n := p.Len() for i := 0; i < n; i++ { m[key(p.Stack(i))]++ } // Print stacks, listing count on first occurrence of a unique stack. for i := 0; i < n; i++ { stk := p.Stack(i) s := key(stk) if count := m[s]; count != 0 { fmt.Fprintf(w, "%d %s\n", count, s) if debug > 0 { printStackRecord(w, stk, false) } delete(m, s) } } if tw != nil { tw.Flush() } return b.Flush() } // printStackRecord prints the function + source line information // for a single stack trace. func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { show := allFrames wasPanic := false for i, pc := range stk { f := runtime.FuncForPC(pc) if f == nil { show = true fmt.Fprintf(w, "#\t%#x\n", pc) wasPanic = false } else { tracepc := pc // Back up to call instruction. if i > 0 && pc > f.Entry() && !wasPanic { if runtime.GOARCH == "386" || runtime.GOARCH == "amd64" { tracepc-- } else { tracepc -= 4 // arm, etc } } file, line := f.FileLine(tracepc) name := f.Name() // Hide runtime.goexit and any runtime functions at the beginning. // This is useful mainly for allocation traces. wasPanic = name == "runtime.panic" if name == "runtime.goexit" || !show && strings.HasPrefix(name, "runtime.") { continue } show = true fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", pc, name, pc-f.Entry(), file, line) } } if !show { // We didn't print anything; do it again, // and this time include runtime functions. printStackRecord(w, stk, true) return } fmt.Fprintf(w, "\n") } // Interface to system profiles. type byInUseBytes []runtime.MemProfileRecord func (x byInUseBytes) Len() int { return len(x) } func (x byInUseBytes) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byInUseBytes) Less(i, j int) bool { return x[i].InUseBytes() > x[j].InUseBytes() } // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). // It is preserved for backwards compatibility. func WriteHeapProfile(w io.Writer) error { return writeHeap(w, 0) } // countHeap returns the number of records in the heap profile. func countHeap() int { n, _ := runtime.MemProfile(nil, true) return n } // writeHeap writes the current runtime heap profile to w. func writeHeap(w io.Writer, debug int) error { // Find out how many records there are (MemProfile(nil, true)), // allocate that many records, and get the data. // There's a race—more records might be added between // the two calls—so allocate a few extra records for safety // and also try again if we're very unlucky. // The loop should only execute one iteration in the common case. var p []runtime.MemProfileRecord n, ok := runtime.MemProfile(nil, true) for { // Allocate room for a slightly bigger profile, // in case a few more entries have been added // since the call to MemProfile. p = make([]runtime.MemProfileRecord, n+50) n, ok = runtime.MemProfile(p, true) if ok { p = p[0:n] break } // Profile grew; try again. } sort.Sort(byInUseBytes(p)) b := bufio.NewWriter(w) var tw *tabwriter.Writer w = b if debug > 0 { tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) w = tw } var total runtime.MemProfileRecord for i := range p { r := &p[i] total.AllocBytes += r.AllocBytes total.AllocObjects += r.AllocObjects total.FreeBytes += r.FreeBytes total.FreeObjects += r.FreeObjects } // Technically the rate is MemProfileRate not 2*MemProfileRate, // but early versions of the C++ heap profiler reported 2*MemProfileRate, // so that's what pprof has come to expect. fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", total.InUseObjects(), total.InUseBytes(), total.AllocObjects, total.AllocBytes, 2*runtime.MemProfileRate) for i := range p { r := &p[i] fmt.Fprintf(w, "%d: %d [%d: %d] @", r.InUseObjects(), r.InUseBytes(), r.AllocObjects, r.AllocBytes) for _, pc := range r.Stack() { fmt.Fprintf(w, " %#x", pc) } fmt.Fprintf(w, "\n") if debug > 0 { printStackRecord(w, r.Stack(), false) } } // Print memstats information too. // Pprof will ignore, but useful for people if debug > 0 { s := new(runtime.MemStats) runtime.ReadMemStats(s) fmt.Fprintf(w, "\n# runtime.MemStats\n") fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) fmt.Fprintf(w, "# Sys = %d\n", s.Sys) fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) fmt.Fprintf(w, "# Frees = %d\n", s.Frees) fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) fmt.Fprintf(w, "# EnableGC = %v\n", s.EnableGC) fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) } if tw != nil { tw.Flush() } return b.Flush() } // countThreadCreate returns the size of the current ThreadCreateProfile. func countThreadCreate() int { n, _ := runtime.ThreadCreateProfile(nil) return n } // writeThreadCreate writes the current runtime ThreadCreateProfile to w. func writeThreadCreate(w io.Writer, debug int) error { return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) } // countGoroutine returns the number of goroutines. func countGoroutine() int { return runtime.NumGoroutine() } // writeGoroutine writes the current runtime GoroutineProfile to w. func writeGoroutine(w io.Writer, debug int) error { if debug >= 2 { return writeGoroutineStacks(w) } return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) } func writeGoroutineStacks(w io.Writer) error { // We don't know how big the buffer needs to be to collect // all the goroutines. Start with 1 MB and try a few times, doubling each time. // Give up and use a truncated trace if 64 MB is not enough. buf := make([]byte, 1<<20) for i := 0; ; i++ { n := runtime.Stack(buf, true) if n < len(buf) { buf = buf[:n] break } if len(buf) >= 64<<20 { // Filled 64 MB - stop there. break } buf = make([]byte, 2*len(buf)) } _, err := w.Write(buf) return err } func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { // Find out how many records there are (fetch(nil)), // allocate that many records, and get the data. // There's a race—more records might be added between // the two calls—so allocate a few extra records for safety // and also try again if we're very unlucky. // The loop should only execute one iteration in the common case. var p []runtime.StackRecord n, ok := fetch(nil) for { // Allocate room for a slightly bigger profile, // in case a few more entries have been added // since the call to ThreadProfile. p = make([]runtime.StackRecord, n+10) n, ok = fetch(p) if ok { p = p[0:n] break } // Profile grew; try again. } return printCountProfile(w, debug, name, runtimeProfile(p)) } type runtimeProfile []runtime.StackRecord func (p runtimeProfile) Len() int { return len(p) } func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } var cpu struct { sync.Mutex profiling bool done chan bool } // StartCPUProfile enables CPU profiling for the current process. // While profiling, the profile will be buffered and written to w. // StartCPUProfile returns an error if profiling is already enabled. func StartCPUProfile(w io.Writer) error { // The runtime routines allow a variable profiling rate, // but in practice operating systems cannot trigger signals // at more than about 500 Hz, and our processing of the // signal is not cheap (mostly getting the stack trace). // 100 Hz is a reasonable choice: it is frequent enough to // produce useful data, rare enough not to bog down the // system, and a nice round number to make it easy to // convert sample counts to seconds. Instead of requiring // each client to specify the frequency, we hard code it. const hz = 100 // Avoid queueing behind StopCPUProfile. // Could use TryLock instead if we had it. if cpu.profiling { return fmt.Errorf("cpu profiling already in use") } cpu.Lock() defer cpu.Unlock() if cpu.done == nil { cpu.done = make(chan bool) } // Double-check. if cpu.profiling { return fmt.Errorf("cpu profiling already in use") } cpu.profiling = true runtime.SetCPUProfileRate(hz) go profileWriter(w) return nil } func profileWriter(w io.Writer) { for { data := runtime.CPUProfile() if data == nil { break } w.Write(data) } cpu.done <- true } // StopCPUProfile stops the current CPU profile, if any. // StopCPUProfile only returns after all the writes for the // profile have completed. func StopCPUProfile() { cpu.Lock() defer cpu.Unlock() if !cpu.profiling { return } cpu.profiling = false runtime.SetCPUProfileRate(0) <-cpu.done } type byCycles []runtime.BlockProfileRecord func (x byCycles) Len() int { return len(x) } func (x byCycles) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byCycles) Less(i, j int) bool { return x[i].Cycles > x[j].Cycles } // countBlock returns the number of records in the blocking profile. func countBlock() int { n, _ := runtime.BlockProfile(nil) return n } // writeBlock writes the current blocking profile to w. func writeBlock(w io.Writer, debug int) error { var p []runtime.BlockProfileRecord n, ok := runtime.BlockProfile(nil) for { p = make([]runtime.BlockProfileRecord, n+50) n, ok = runtime.BlockProfile(p) if ok { p = p[:n] break } } sort.Sort(byCycles(p)) b := bufio.NewWriter(w) var tw *tabwriter.Writer w = b if debug > 0 { tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) w = tw } fmt.Fprintf(w, "--- contention:\n") fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) for i := range p { r := &p[i] fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) for _, pc := range r.Stack() { fmt.Fprintf(w, " %#x", pc) } fmt.Fprint(w, "\n") if debug > 0 { printStackRecord(w, r.Stack(), true) } } if tw != nil { tw.Flush() } return b.Flush() } func runtime_cyclesPerSecond() int64