// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build race #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" #include "../../cmd/ld/textflag.h" // The following thunks allow calling the gcc-compiled race runtime directly // from Go code without going all the way through cgo. // First, it's much faster (up to 50% speedup for real Go programs). // Second, it eliminates race-related special cases from cgocall and scheduler. // Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go. // A brief recap of the amd64 calling convention. // Arguments are passed in DI, SI, DX, CX, R8, R9, the rest is on stack. // Callee-saved registers are: BX, BP, R12-R15. // SP must be 16-byte aligned. // On Windows: // Arguments are passed in CX, DX, R8, R9, the rest is on stack. // Callee-saved registers are: BX, BP, DI, SI, R12-R15. // SP must be 16-byte aligned. Windows also requires "stack-backing" for the 4 register arguments: // http://msdn.microsoft.com/en-us/library/ms235286.aspx // We do not do this, because it seems to be intended for vararg/unprototyped functions. // Gcc-compiled race runtime does not try to use that space. #ifdef GOOS_windows #define RARG0 CX #define RARG1 DX #define RARG2 R8 #define RARG3 R9 #else #define RARG0 DI #define RARG1 SI #define RARG2 DX #define RARG3 CX #endif // func runtime·raceread(addr uintptr) // Called from instrumented code. TEXT runtime·raceread(SB), NOSPLIT, $0-8 MOVQ addr+0(FP), RARG1 MOVQ (SP), RARG2 // void __tsan_read(ThreadState *thr, void *addr, void *pc); MOVQ $__tsan_read(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceRead(addr uintptr) TEXT runtime·RaceRead(SB), NOSPLIT, $0-8 // This needs to be a tail call, because raceread reads caller pc. JMP runtime·raceread(SB) // void runtime·racereadpc(void *addr, void *callpc, void *pc) TEXT runtime·racereadpc(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ callpc+8(FP), RARG2 MOVQ pc+16(FP), RARG3 // void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVQ $__tsan_read_pc(SB), AX JMP racecalladdr<>(SB) // func runtime·racewrite(addr uintptr) // Called from instrumented code. TEXT runtime·racewrite(SB), NOSPLIT, $0-8 MOVQ addr+0(FP), RARG1 MOVQ (SP), RARG2 // void __tsan_write(ThreadState *thr, void *addr, void *pc); MOVQ $__tsan_write(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceWrite(addr uintptr) TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8 // This needs to be a tail call, because racewrite reads caller pc. JMP runtime·racewrite(SB) // void runtime·racewritepc(void *addr, void *callpc, void *pc) TEXT runtime·racewritepc(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ callpc+8(FP), RARG2 MOVQ cp+16(FP), RARG3 // void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVQ $__tsan_write_pc(SB), AX JMP racecalladdr<>(SB) // func runtime·racereadrange(addr, size uintptr) // Called from instrumented code. TEXT runtime·racereadrange(SB), NOSPLIT, $0-16 MOVQ addr+0(FP), RARG1 MOVQ size+8(FP), RARG2 MOVQ (SP), RARG3 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_read_range(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceReadRange(addr, size uintptr) TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racereadrange reads caller pc. JMP runtime·racereadrange(SB) // void runtime·racereadrangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ size+8(FP), RARG2 MOVQ pc+16(FP), RARG3 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_read_range(SB), AX JMP racecalladdr<>(SB) // func runtime·racewriterange(addr, size uintptr) // Called from instrumented code. TEXT runtime·racewriterange(SB), NOSPLIT, $0-16 MOVQ addr+0(FP), RARG1 MOVQ size+8(FP), RARG2 MOVQ (SP), RARG3 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_write_range(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceWriteRange(addr, size uintptr) TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racewriterange reads caller pc. JMP runtime·racewriterange(SB) // void runtime·racewriterangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ size+8(FP), RARG2 MOVQ pc+16(FP), RARG3 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_write_range(SB), AX JMP racecalladdr<>(SB) // If addr (RARG1) is out of range, do nothing. // Otherwise, setup goroutine context and invoke racecall. Other arguments already set. TEXT racecalladdr<>(SB), NOSPLIT, $0-0 get_tls(R12) MOVQ g(R12), R14 MOVQ g_racectx(R14), RARG0 // goroutine context // Check that addr is within [arenastart, arenaend) or within [noptrdata, enoptrbss). CMPQ RARG1, runtime·racearenastart(SB) JB racecalladdr_data CMPQ RARG1, runtime·racearenaend(SB) JB racecalladdr_call racecalladdr_data: CMPQ RARG1, $noptrdata(SB) JB racecalladdr_ret CMPQ RARG1, $enoptrbss(SB) JAE racecalladdr_ret racecalladdr_call: MOVQ AX, AX // w/o this 6a miscompiles this function JMP racecall<>(SB) racecalladdr_ret: RET // func runtime·racefuncenter(pc uintptr) // Called from instrumented code. TEXT runtime·racefuncenter(SB), NOSPLIT, $0-8 MOVQ DX, R15 // save function entry context (for closures) get_tls(R12) MOVQ g(R12), R14 MOVQ g_racectx(R14), RARG0 // goroutine context MOVQ callpc+0(FP), RARG1 // void __tsan_func_enter(ThreadState *thr, void *pc); MOVQ $__tsan_func_enter(SB), AX CALL racecall<>(SB) MOVQ R15, DX // restore function entry context RET // func runtime·racefuncexit() // Called from instrumented code. TEXT runtime·racefuncexit(SB), NOSPLIT, $0-0 get_tls(R12) MOVQ g(R12), R14 MOVQ g_racectx(R14), RARG0 // goroutine context // void __tsan_func_exit(ThreadState *thr); MOVQ $__tsan_func_exit(SB), AX JMP racecall<>(SB) // void runtime·racecall(void(*f)(...), ...) // Calls C function f from race runtime and passes up to 4 arguments to it. // The arguments are never heap-object-preserving pointers, so we pretend there are no arguments. TEXT runtime·racecall(SB), NOSPLIT, $0-0 MOVQ fn+0(FP), AX MOVQ arg0+8(FP), RARG0 MOVQ arg1+16(FP), RARG1 MOVQ arg2+24(FP), RARG2 MOVQ arg3+32(FP), RARG3 JMP racecall<>(SB) // Switches SP to g0 stack and calls (AX). Arguments already set. TEXT racecall<>(SB), NOSPLIT, $0-0 get_tls(R12) MOVQ m(R12), R13 MOVQ g(R12), R14 // Switch to g0 stack. MOVQ SP, R12 // callee-saved, preserved across the CALL MOVQ m_g0(R13), R10 CMPQ R10, R14 JE racecall_cont // already on g0 MOVQ (g_sched+gobuf_sp)(R10), SP racecall_cont: ANDQ $~15, SP // alignment for gcc ABI CALL AX MOVQ R12, SP RET // C->Go callback thunk that allows to call runtime·racesymbolize from C code. // Direct Go->C race call has only switched SP, finish g->g0 switch by setting correct g. // The overall effect of Go->C->Go call chain is similar to that of mcall. TEXT runtime·racesymbolizethunk(SB), NOSPLIT, $56-8 // Save callee-saved registers (Go code won't respect that). // This is superset of darwin/linux/windows registers. PUSHQ BX PUSHQ BP PUSHQ DI PUSHQ SI PUSHQ R12 PUSHQ R13 PUSHQ R14 PUSHQ R15 // Set g = g0. get_tls(R12) MOVQ m(R12), R13 MOVQ m_g0(R13), R14 MOVQ R14, g(R12) // g = m->g0 MOVQ RARG0, 0(SP) // func arg CALL runtime·racesymbolize(SB) // All registers are smashed after Go code, reload. get_tls(R12) MOVQ m(R12), R13 MOVQ m_curg(R13), R14 MOVQ R14, g(R12) // g = m->curg // Restore callee-saved registers. POPQ R15 POPQ R14 POPQ R13 POPQ R12 POPQ SI POPQ DI POPQ BP POPQ BX RET