// Inferno's libkern/vlop-arm.s // http://code.google.com/p/inferno-os/source/browse/libkern/vlop-arm.s // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com). All rights reserved. // Portions Copyright 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #include "zasm_GOOS_GOARCH.h" #include "../../cmd/ld/textflag.h" arg=0 /* replaced use of R10 by R11 because the former can be the data segment base register */ TEXT _mulv(SB), NOSPLIT, $0 MOVW 0(FP), R0 MOVW 4(FP), R2 /* l0 */ MOVW 8(FP), R11 /* h0 */ MOVW 12(FP), R4 /* l1 */ MOVW 16(FP), R5 /* h1 */ MULLU R4, R2, (R7,R6) MUL R11, R4, R8 ADD R8, R7 MUL R2, R5, R8 ADD R8, R7 MOVW R6, 0(R(arg)) MOVW R7, 4(R(arg)) RET // trampoline for _sfloat2. passes LR as arg0 and // saves registers R0-R13 and CPSR on the stack. R0-R12 and CPSR flags can // be changed by _sfloat2. TEXT _sfloat(SB), NOSPLIT, $64-0 // 4 arg + 14*4 saved regs + cpsr MOVW R14, 4(R13) MOVW R0, 8(R13) MOVW $12(R13), R0 MOVM.IA.W [R1-R12], (R0) MOVW $68(R13), R1 // correct for frame size MOVW R1, 60(R13) WORD $0xe10f1000 // mrs r1, cpsr MOVW R1, 64(R13) // Disable preemption of this goroutine during _sfloat2 by // m->locks++ and m->locks-- around the call. // Rescheduling this goroutine may cause the loss of the // contents of the software floating point registers in // m->freghi, m->freglo, m->fflag, if the goroutine is moved // to a different m or another goroutine runs on this m. // Rescheduling at ordinary function calls is okay because // all registers are caller save, but _sfloat2 and the things // that it runs are simulating the execution of individual // program instructions, and those instructions do not expect // the floating point registers to be lost. // An alternative would be to move the software floating point // registers into G, but they do not need to be kept at the // usual places a goroutine reschedules (at function calls), // so it would be a waste of 132 bytes per G. MOVW m_locks(m), R1 ADD $1, R1 MOVW R1, m_locks(m) MOVW $1, R1 MOVW R1, m_softfloat(m) BL runtime·_sfloat2(SB) MOVW m_locks(m), R1 SUB $1, R1 MOVW R1, m_locks(m) MOVW $0, R1 MOVW R1, m_softfloat(m) MOVW R0, 0(R13) MOVW 64(R13), R1 WORD $0xe128f001 // msr cpsr_f, r1 MOVW $12(R13), R0 // Restore R1-R8 and R11-R12, but ignore the saved R9 (m) and R10 (g). // Both are maintained by the runtime and always have correct values, // so there is no need to restore old values here. // The g should not have changed, but m may have, if we were preempted // and restarted on a different thread, in which case restoring the old // value is incorrect and will cause serious confusion in the runtime. MOVM.IA.W (R0), [R1-R8] MOVW $52(R13), R0 MOVM.IA.W (R0), [R11-R12] MOVW 8(R13), R0 RET // func udiv(n, d uint32) (q, r uint32) // Reference: // Sloss, Andrew et. al; ARM System Developer's Guide: Designing and Optimizing System Software // Morgan Kaufmann; 1 edition (April 8, 2004), ISBN 978-1558608740 q = 0 // input d, output q r = 1 // input n, output r s = 2 // three temporary variables M = 3 a = 11 // Be careful: R(a) == R11 will be used by the linker for synthesized instructions. TEXT udiv<>(SB),NOSPLIT,$-4 CLZ R(q), R(s) // find normalizing shift MOVW.S R(q)<-64(SB), R(M) MOVBU.NE R(a)>>25(R(M)), R(a) // index by most significant 7 bits of divisor SUB.S $7, R(s) RSB $0, R(q), R(M) // M = -q MOVW.PL R(a)<>32) TEQ R(M)->1, R(M) // check for d=0 or d=1 // 2nd Newton iteration MUL.NE R(M), R(q), R(a) MOVW.NE $0, R(s) MULAL.NE R(q), R(a), (R(q),R(s)) BEQ udiv_by_0_or_1 // q now accurate enough for a remainder r, 0<=r<3*d MULLU R(q), R(r), (R(q),R(s)) // q = (r * q) >> 32 ADD R(M), R(r), R(r) // r = n - d MULA R(M), R(q), R(r), R(r) // r = n - (q+1)*d // since 0 <= n-q*d < 3*d; thus -d <= r < 2*d CMN R(M), R(r) // t = r-d SUB.CS R(M), R(r), R(r) // if (t<-d || t>=0) r=r+d ADD.CC $1, R(q) ADD.PL R(M)<<1, R(r) ADD.PL $2, R(q) RET udiv_by_large_d: // at this point we know d>=2^(31-6)=2^25 SUB $4, R(a), R(a) RSB $0, R(s), R(s) MOVW R(a)>>R(s), R(q) MULLU R(q), R(r), (R(q),R(s)) MULA R(M), R(q), R(r), R(r) // q now accurate enough for a remainder r, 0<=r<4*d CMN R(r)>>1, R(M) // if(r/2 >= d) ADD.CS R(M)<<1, R(r) ADD.CS $2, R(q) CMN R(r), R(M) ADD.CS R(M), R(r) ADD.CS $1, R(q) RET udiv_by_0_or_1: // carry set if d==1, carry clear if d==0 BCC udiv_by_0 MOVW R(r), R(q) MOVW $0, R(r) RET udiv_by_0: // The ARM toolchain expects it can emit references to DIV and MOD // instructions. The linker rewrites each pseudo-instruction into // a sequence that pushes two values onto the stack and then calls // _divu, _modu, _div, or _mod (below), all of which have a 16-byte // frame plus the saved LR. The traceback routine knows the expanded // stack frame size at the pseudo-instruction call site, but it // doesn't know that the frame has a non-standard layout. In particular, // it expects to find a saved LR in the bottom word of the frame. // Unwind the stack back to the pseudo-instruction call site, copy the // saved LR where the traceback routine will look for it, and make it // appear that panicdivide was called from that PC. MOVW 0(R13), LR ADD $20, R13 MOVW 8(R13), R1 // actual saved LR MOVW R1, 0(R13) // expected here for traceback B runtime·panicdivide(SB) TEXT fast_udiv_tab<>(SB),NOSPLIT,$-4 // var tab [64]byte // tab[0] = 255; for i := 1; i <= 63; i++ { tab[i] = (1<<14)/(64+i) } // laid out here as little-endian uint32s WORD $0xf4f8fcff WORD $0xe6eaedf0 WORD $0xdadde0e3 WORD $0xcfd2d4d7 WORD $0xc5c7cacc WORD $0xbcbec0c3 WORD $0xb4b6b8ba WORD $0xacaeb0b2 WORD $0xa5a7a8aa WORD $0x9fa0a2a3 WORD $0x999a9c9d WORD $0x93949697 WORD $0x8e8f9092 WORD $0x898a8c8d WORD $0x85868788 WORD $0x81828384 // The linker will pass numerator in R(TMP), and it also // expects the result in R(TMP) TMP = 11 TEXT _divu(SB), NOSPLIT, $16 MOVW R(q), 4(R13) MOVW R(r), 8(R13) MOVW R(s), 12(R13) MOVW R(M), 16(R13) MOVW R(TMP), R(r) /* numerator */ MOVW 0(FP), R(q) /* denominator */ BL udiv<>(SB) MOVW R(q), R(TMP) MOVW 4(R13), R(q) MOVW 8(R13), R(r) MOVW 12(R13), R(s) MOVW 16(R13), R(M) RET TEXT _modu(SB), NOSPLIT, $16 MOVW R(q), 4(R13) MOVW R(r), 8(R13) MOVW R(s), 12(R13) MOVW R(M), 16(R13) MOVW R(TMP), R(r) /* numerator */ MOVW 0(FP), R(q) /* denominator */ BL udiv<>(SB) MOVW R(r), R(TMP) MOVW 4(R13), R(q) MOVW 8(R13), R(r) MOVW 12(R13), R(s) MOVW 16(R13), R(M) RET TEXT _div(SB),NOSPLIT,$16 MOVW R(q), 4(R13) MOVW R(r), 8(R13) MOVW R(s), 12(R13) MOVW R(M), 16(R13) MOVW R(TMP), R(r) /* numerator */ MOVW 0(FP), R(q) /* denominator */ CMP $0, R(r) BGE d1 RSB $0, R(r), R(r) CMP $0, R(q) BGE d2 RSB $0, R(q), R(q) d0: BL udiv<>(SB) /* none/both neg */ MOVW R(q), R(TMP) B out1 d1: CMP $0, R(q) BGE d0 RSB $0, R(q), R(q) d2: BL udiv<>(SB) /* one neg */ RSB $0, R(q), R(TMP) out1: MOVW 4(R13), R(q) MOVW 8(R13), R(r) MOVW 12(R13), R(s) MOVW 16(R13), R(M) RET TEXT _mod(SB),NOSPLIT,$16 MOVW R(q), 4(R13) MOVW R(r), 8(R13) MOVW R(s), 12(R13) MOVW R(M), 16(R13) MOVW R(TMP), R(r) /* numerator */ MOVW 0(FP), R(q) /* denominator */ CMP $0, R(q) RSB.LT $0, R(q), R(q) CMP $0, R(r) BGE m1 RSB $0, R(r), R(r) BL udiv<>(SB) /* neg numerator */ RSB $0, R(r), R(TMP) B out m1: BL udiv<>(SB) /* pos numerator */ MOVW R(r), R(TMP) out: MOVW 4(R13), R(q) MOVW 8(R13), R(r) MOVW 12(R13), R(s) MOVW 16(R13), R(M) RET