// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Multiprecision decimal numbers. // For floating-point formatting only; not general purpose. // Only operations are assign and (binary) left/right shift. // Can do binary floating point in multiprecision decimal precisely // because 2 divides 10; cannot do decimal floating point // in multiprecision binary precisely. package strconv import "bytes" type decimal struct { // TODO(rsc): Can make d[] a bit smaller and add // truncated bool; d [2000]byte; // digits nd int; // number of digits used dp int; // decimal point } func (a *decimal) String() string { n := 10 + a.nd; if a.dp > 0 { n += a.dp } if a.dp < 0 { n += -a.dp } buf := make([]byte, n); w := 0; switch { case a.nd == 0: return "0" case a.dp <= 0: // zeros fill space between decimal point and digits buf[w] = '0'; w++; buf[w] = '.'; w++; w += digitZero(buf[w : w + -a.dp]); w += bytes.Copy(buf[w : w + a.nd], a.d[0 : a.nd]); case a.dp < a.nd: // decimal point in middle of digits w += bytes.Copy(buf[w : w + a.dp], a.d[0 : a.dp]); buf[w] = '.'; w++; w += bytes.Copy(buf[w : w + a.nd - a.dp], a.d[a.dp : a.nd]); default: // zeros fill space between digits and decimal point w += bytes.Copy(buf[w : w + a.nd], a.d[0 : a.nd]); w += digitZero(buf[w : w + a.dp - a.nd]); } return string(buf[0:w]); } func copy(dst []byte, src []byte) int { for i := 0; i < len(dst); i++ { dst[i] = src[i] } return len(dst); } func digitZero(dst []byte) int { for i := 0; i < len(dst); i++ { dst[i] = '0' } return len(dst); } // trim trailing zeros from number. // (They are meaningless; the decimal point is tracked // independent of the number of digits.) func trim(a *decimal) { for a.nd > 0 && a.d[a.nd - 1] == '0' { a.nd-- } if a.nd == 0 { a.dp = 0 } } // Assign v to a. func (a *decimal) Assign(v uint64) { var buf [50]byte; // Write reversed decimal in buf. n := 0; for v > 0 { v1 := v/10; v -= 10*v1; buf[n] = byte(v+'0'); n++; v = v1; } // Reverse again to produce forward decimal in a.d. a.nd = 0; for n--; n >= 0; n-- { a.d[a.nd] = buf[n]; a.nd++; } a.dp = a.nd; trim(a); } func newDecimal(i uint64) *decimal { a := new(decimal); a.Assign(i); return a; } // Maximum shift that we can do in one pass without overflow. // Signed int has 31 bits, and we have to be able to accomodate 9<>k == 0; r++ { if r >= a.nd { if n == 0 { // a == 0; shouldn't get here, but handle anyway. a.nd = 0; return; } for n>>k == 0 { n = n*10; r++; } break; } c := int(a.d[r]); n = n*10 + c - '0'; } a.dp -= r-1; // Pick up a digit, put down a digit. for ; r < a.nd; r++ { c := int(a.d[r]); dig := n>>k; n -= dig< 0 { dig := n>>k; n -= dig<= len(b) { return true } if b[i] != s[i] { return b[i] < s[i] } } return false; } // Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow. func leftShift(a *decimal, k uint) { delta := leftcheats[k].delta; if prefixIsLessThan(a.d[0 : a.nd], leftcheats[k].cutoff) { delta-- } r := a.nd; // read index w := a.nd + delta; // write index n := 0; // Pick up a digit, put down a digit. for r--; r >= 0; r-- { n += (int(a.d[r])-'0')< 0 { quo := n/10; rem := n - 10*quo; w--; a.d[w] = byte(rem+'0'); n = quo; } a.nd += delta; a.dp += delta; trim(a); } // Binary shift left (k > 0) or right (k < 0). // Returns receiver for convenience. func (a *decimal) Shift(k int) *decimal { switch { case a.nd == 0: // nothing to do: a == 0 case k > 0: for k > maxShift { leftShift(a, maxShift); k -= maxShift; } leftShift(a, uint(k)); case k < 0: for k < -maxShift { rightShift(a, maxShift); k += maxShift; } rightShift(a, uint(-k)); } return a; } // If we chop a at nd digits, should we round up? func shouldRoundUp(a *decimal, nd int) bool { if nd <= 0 || nd >= a.nd { return false } if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even return (a.d[nd-1] - '0')%2 != 0 } // not halfway - digit tells all return a.d[nd] >= '5'; } // Round a to nd digits (or fewer). // Returns receiver for convenience. func (a *decimal) Round(nd int) *decimal { if nd <= 0 || nd >= a.nd { return a } if shouldRoundUp(a, nd) { return a.RoundUp(nd) } return a.RoundDown(nd); } // Round a down to nd digits (or fewer). // Returns receiver for convenience. func (a *decimal) RoundDown(nd int) *decimal { if nd <= 0 || nd >= a.nd { return a } a.nd = nd; trim(a); return a; } // Round a up to nd digits (or fewer). // Returns receiver for convenience. func (a *decimal) RoundUp(nd int) *decimal { if nd <= 0 || nd >= a.nd { return a } // round up for i := nd-1; i >= 0; i-- { c := a.d[i]; if c < '9' { // can stop after this digit a.d[i]++; a.nd = i+1; return a; } } // Number is all 9s. // Change to single 1 with adjusted decimal point. a.d[0] = '1'; a.nd = 1; a.dp++; return a; } // Extract integer part, rounded appropriately. // No guarantees about overflow. func (a *decimal) RoundedInteger() uint64 { if a.dp > 20 { return 0xFFFFFFFFFFFFFFFF } var i int; n := uint64(0); for i = 0; i < a.dp && i < a.nd; i++ { n = n*10 + uint64(a.d[i] - '0') } for ; i < a.dp; i++ { n *= 10 } if shouldRoundUp(a, a.dp) { n++ } return n; }