// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Fork, exec, wait, etc. package syscall import ( "sync"; "unsafe"; ) // Lock synchronizing creation of new file descriptors with fork. // // We want the child in a fork/exec sequence to inherit only the // file descriptors we intend. To do that, we mark all file // descriptors close-on-exec and then, in the child, explicitly // unmark the ones we want the exec'ed program to keep. // Unix doesn't make this easy: there is, in general, no way to // allocate a new file descriptor close-on-exec. Instead you // have to allocate the descriptor and then mark it close-on-exec. // If a fork happens between those two events, the child's exec // will inherit an unwanted file descriptor. // // This lock solves that race: the create new fd/mark close-on-exec // operation is done holding ForkLock for reading, and the fork itself // is done holding ForkLock for writing. At least, that's the idea. // There are some complications. // // Some system calls that create new file descriptors can block // for arbitrarily long times: open on a hung NFS server or named // pipe, accept on a socket, and so on. We can't reasonably grab // the lock across those operations. // // It is worse to inherit some file descriptors than others. // If a non-malicious child accidentally inherits an open ordinary file, // that's not a big deal. On the other hand, if a long-lived child // accidentally inherits the write end of a pipe, then the reader // of that pipe will not see EOF until that child exits, potentially // causing the parent program to hang. This is a common problem // in threaded C programs that use popen. // // Luckily, the file descriptors that are most important not to // inherit are not the ones that can take an arbitrarily long time // to create: pipe returns instantly, and the net package uses // non-blocking I/O to accept on a listening socket. // The rules for which file descriptor-creating operations use the // ForkLock are as follows: // // 1) Pipe. Does not block. Use the ForkLock. // 2) Socket. Does not block. Use the ForkLock. // 3) Accept. If using non-blocking mode, use the ForkLock. // Otherwise, live with the race. // 4) Open. Can block. Use O_CLOEXEC if available (Linux). // Otherwise, live with the race. // 5) Dup. Does not block. Use the ForkLock. // On Linux, could use fcntl F_DUPFD_CLOEXEC // instead of the ForkLock, but only for dup(fd, -1). var ForkLock sync.RWMutex // Convert array of string to array // of NUL-terminated byte pointer. func StringArrayPtr(ss []string) []*byte { bb := make([]*byte, len(ss)+1); for i := 0; i < len(ss); i++ { bb[i] = StringBytePtr(ss[i]); } bb[len(ss)] = nil; return bb; } func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC) } func SetNonblock(fd int, nonblocking bool) (errno int) { flag, err := fcntl(fd, F_GETFL, 0); if err != 0 { return err; } if nonblocking { flag |= O_NONBLOCK; } else { flag &= ^O_NONBLOCK; } _, err = fcntl(fd, F_SETFL, flag); return err; } // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. // If a dup or exec fails, write the errno int to pipe. // (Pipe is close-on-exec so if exec succeeds, it will be closed.) // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. // The calls to RawSyscall are okay because they are assembly // functions that do not grow the stack. func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) { // Declare all variables at top in case any // declarations require heap allocation (e.g., err1). var r1, r2, err1 uintptr; var nextfd int; var i int; darwin := OS == "darwin"; // About to call fork. // No more allocation or calls of non-assembly functions. r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0); if err1 != 0 { return 0, int(err1); } // On Darwin: // r1 = child pid in both parent and child. // r2 = 0 in parent, 1 in child. // Convert to normal Unix r1 = 0 in child. if darwin && r2 == 1 { r1 = 0; } if r1 != 0 { // parent; return PID return int(r1), 0; } // Fork succeeded, now in child. // Enable tracing if requested. if traceme { _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0); if err1 != 0 { goto childerror; } } // Chdir if dir != nil { _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0); if err1 != 0 { goto childerror; } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. nextfd = int(len(fd)); if pipe < nextfd { _, _, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0); if err1 != 0 { goto childerror; } RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC); pipe = nextfd; nextfd++; } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < int(i) { _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0); if err1 != 0 { goto childerror; } RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC); fd[i] = nextfd; nextfd++; if nextfd == pipe { // don't stomp on pipe nextfd++; } } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0); continue; } if fd[i] == int(i) { // dup2(i, i) won't clear close-on-exec flag on Linux, // probably not elsewhere either. _, _, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0); if err1 != 0 { goto childerror; } continue; } // The new fd is created NOT close-on-exec, // which is exactly what we want. _, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0); if err1 != 0 { goto childerror; } } // By convention, we don't close-on-exec the fds we are // started with, so if len(fd) < 3, close 0, 1, 2 as needed. // Programs that know they inherit fds >= 3 will need // to set them close-on-exec. for i = len(fd); i < 3; i++ { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0); } // Time to exec. _, _, err1 = RawSyscall(SYS_EXECVE, uintptr(unsafe.Pointer(argv0)), uintptr(unsafe.Pointer(&argv[0])), uintptr(unsafe.Pointer(&envv[0]))); childerror: // send error code on pipe RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1))); for { RawSyscall(SYS_EXIT, 253, 0, 0); } // Calling panic is not actually safe, // but the for loop above won't break // and this shuts up the compiler. panic("unreached"); } func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) { var p [2]int; var n int; var err1 uintptr; var wstatus WaitStatus; p[0] = -1; p[1] = -1; // Convert args to C form. argv0p := StringBytePtr(argv0); argvp := StringArrayPtr(argv); envvp := StringArrayPtr(envv); var dirp *byte; if len(dir) > 0 { dirp = StringBytePtr(dir); } // Acquire the fork lock so that no other threads // create new fds that are not yet close-on-exec // before we fork. ForkLock.Lock(); // Allocate child status pipe close on exec. if err = Pipe(&p); err != 0 { goto error; } if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 { goto error; } if _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 { goto error; } // Kick off child. pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1]); if err != 0 { error: if p[0] >= 0 { Close(p[0]); Close(p[1]); } ForkLock.Unlock(); return 0, err; } ForkLock.Unlock(); // Read child error status from pipe. Close(p[1]); n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)); Close(p[0]); if err != 0 || n != 0 { if n == unsafe.Sizeof(err1) { err = int(err1); } if err == 0 { err = EPIPE; } // Child failed; wait for it to exit, to make sure // the zombies don't accumulate. _, err1 := Wait4(pid, &wstatus, 0, nil); for err1 == EINTR { _, err1 = Wait4(pid, &wstatus, 0, nil); } return 0, err; } // Read got EOF, so pipe closed on exec, so exec succeeded. return pid, 0; } // Combination of fork and exec, careful to be thread safe. func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) { return forkExec(argv0, argv, envv, false, dir, fd); } // PtraceForkExec is like ForkExec, but starts the child in a traced state. func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) { return forkExec(argv0, argv, envv, true, dir, fd); } // Ordinary exec. func Exec(argv0 string, argv []string, envv []string) (err int) { _, _, err1 := RawSyscall(SYS_EXECVE, uintptr(unsafe.Pointer(StringBytePtr(argv0))), uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])), uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0]))); return int(err1); }