// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* * basic types */ typedef signed char int8; typedef unsigned char uint8; typedef signed short int16; typedef unsigned short uint16; typedef signed int int32; typedef unsigned int uint32; typedef signed long long int int64; typedef unsigned long long int uint64; typedef float float32; typedef double float64; #ifdef _64BIT typedef uint64 uintptr; typedef int64 intptr; typedef int64 intgo; // Go's int typedef uint64 uintgo; // Go's uint #else typedef uint32 uintptr; typedef int32 intptr; typedef int32 intgo; // Go's int typedef uint32 uintgo; // Go's uint #endif #ifdef _64BITREG typedef uint64 uintreg; #else typedef uint32 uintreg; #endif /* * get rid of C types * the / / / forces a syntax error immediately, * which will show "last name: XXunsigned". */ #define unsigned XXunsigned / / / #define signed XXsigned / / / #define char XXchar / / / #define short XXshort / / / #define int XXint / / / #define long XXlong / / / #define float XXfloat / / / #define double XXdouble / / / /* * defined types */ typedef uint8 bool; typedef uint8 byte; typedef struct Func Func; typedef struct G G; typedef struct Gobuf Gobuf; typedef struct SudoG SudoG; typedef struct Mutex Mutex; typedef struct M M; typedef struct P P; typedef struct SchedT SchedT; typedef struct Note Note; typedef struct Slice Slice; typedef struct String String; typedef struct FuncVal FuncVal; typedef struct SigTab SigTab; typedef struct MCache MCache; typedef struct FixAlloc FixAlloc; typedef struct Iface Iface; typedef struct Itab Itab; typedef struct InterfaceType InterfaceType; typedef struct Eface Eface; typedef struct Type Type; typedef struct PtrType PtrType; typedef struct ChanType ChanType; typedef struct MapType MapType; typedef struct Defer Defer; typedef struct Panic Panic; typedef struct Hmap Hmap; typedef struct Hiter Hiter; typedef struct Hchan Hchan; typedef struct Complex64 Complex64; typedef struct Complex128 Complex128; typedef struct LibCall LibCall; typedef struct WinCallbackContext WinCallbackContext; typedef struct GCStats GCStats; typedef struct LFNode LFNode; typedef struct ParFor ParFor; typedef struct ParForThread ParForThread; typedef struct CgoMal CgoMal; typedef struct PollDesc PollDesc; typedef struct DebugVars DebugVars; typedef struct ForceGCState ForceGCState; typedef struct Stack Stack; /* * Per-CPU declaration. * * "extern register" is a special storage class implemented by 6c, 8c, etc. * On the ARM, it is an actual register; elsewhere it is a slot in thread- * local storage indexed by a pseudo-register TLS. See zasmhdr in * src/cmd/dist/buildruntime.c for details, and be aware that the linker may * make further OS-specific changes to the compiler's output. For example, * 6l/linux rewrites 0(TLS) as -8(FS). * * Every C file linked into a Go program must include runtime.h so that the * C compiler (6c, 8c, etc.) knows to avoid other uses of these dedicated * registers. The Go compiler (6g, 8g, etc.) knows to avoid them. */ extern register G* g; /* * defined constants */ enum { // G status // // If you add to this list, add to the list // of "okay during garbage collection" status // in mgc0.c too. Gidle, // 0 Grunnable, // 1 runnable and on a run queue Grunning, // 2 Gsyscall, // 3 Gwaiting, // 4 Gmoribund_unused, // 5 currently unused, but hardcoded in gdb scripts Gdead, // 6 Genqueue, // 7 Only the Gscanenqueue is used. Gcopystack, // 8 in this state when newstack is moving the stack // the following encode that the GC is scanning the stack and what to do when it is done Gscan = 0x1000, // atomicstatus&~Gscan = the non-scan state, // Gscanidle = Gscan + Gidle, // Not used. Gidle only used with newly malloced gs Gscanrunnable = Gscan + Grunnable, // 0x1001 When scanning complets make Grunnable (it is already on run queue) Gscanrunning = Gscan + Grunning, // 0x1002 Used to tell preemption newstack routine to scan preempted stack. Gscansyscall = Gscan + Gsyscall, // 0x1003 When scanning completes make is Gsyscall Gscanwaiting = Gscan + Gwaiting, // 0x1004 When scanning completes make it Gwaiting // Gscanmoribund_unused, // not possible // Gscandead, // not possible Gscanenqueue = Gscan + Genqueue, // When scanning completes make it Grunnable and put on runqueue }; enum { // P status Pidle, Prunning, Psyscall, Pgcstop, Pdead, }; enum { true = 1, false = 0, }; enum { PtrSize = sizeof(void*), }; /* * structures */ struct Mutex { // Futex-based impl treats it as uint32 key, // while sema-based impl as M* waitm. // Used to be a union, but unions break precise GC. uintptr key; }; struct Note { // Futex-based impl treats it as uint32 key, // while sema-based impl as M* waitm. // Used to be a union, but unions break precise GC. uintptr key; }; struct String { byte* str; intgo len; }; struct FuncVal { void (*fn)(void); // variable-size, fn-specific data here }; struct Iface { Itab* tab; void* data; }; struct Eface { Type* type; void* data; }; struct Complex64 { float32 real; float32 imag; }; struct Complex128 { float64 real; float64 imag; }; struct Slice { // must not move anything byte* array; // actual data uintgo len; // number of elements uintgo cap; // allocated number of elements }; struct Gobuf { // The offsets of sp, pc, and g are known to (hard-coded in) libmach. uintptr sp; uintptr pc; G* g; void* ctxt; // this has to be a pointer so that GC scans it uintreg ret; uintptr lr; }; // Known to compiler. // Changes here must also be made in src/cmd/gc/select.c's selecttype. struct SudoG { G* g; uint32* selectdone; SudoG* next; SudoG* prev; void* elem; // data element int64 releasetime; int32 nrelease; // -1 for acquire SudoG* waitlink; // G.waiting list }; struct GCStats { // the struct must consist of only uint64's, // because it is casted to uint64[]. uint64 nhandoff; uint64 nhandoffcnt; uint64 nprocyield; uint64 nosyield; uint64 nsleep; }; struct LibCall { uintptr fn; uintptr n; // number of parameters uintptr args; // parameters uintptr r1; // return values uintptr r2; uintptr err; // error number }; // describes how to handle callback struct WinCallbackContext { void* gobody; // Go function to call uintptr argsize; // callback arguments size (in bytes) uintptr restorestack; // adjust stack on return by (in bytes) (386 only) bool cleanstack; }; // Stack describes a Go execution stack. // The bounds of the stack are exactly [lo, hi), // with no implicit data structures on either side. struct Stack { uintptr lo; uintptr hi; }; struct G { // Stack parameters. // stack describes the actual stack memory: [stack.lo, stack.hi). // stackguard0 is the stack pointer compared in the Go stack growth prologue. // It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption. // stackguard1 is the stack pointer compared in the C stack growth prologue. // It is stack.lo+StackGuard on g0 and gsignal stacks. // It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash). Stack stack; // offset known to runtime/cgo uintptr stackguard0; // offset known to liblink uintptr stackguard1; // offset known to liblink Panic* panic; // innermost panic - offset known to liblink Defer* defer; // innermost defer Gobuf sched; uintptr syscallsp; // if status==Gsyscall, syscallsp = sched.sp to use during gc uintptr syscallpc; // if status==Gsyscall, syscallpc = sched.pc to use during gc void* param; // passed parameter on wakeup uint32 atomicstatus; int64 goid; int64 waitsince; // approx time when the G become blocked String waitreason; // if status==Gwaiting G* schedlink; bool issystem; // do not output in stack dump, ignore in deadlock detector bool preempt; // preemption signal, duplicates stackguard0 = StackPreempt bool paniconfault; // panic (instead of crash) on unexpected fault address bool preemptscan; // preempted g does scan for GC bool gcworkdone; // debug: cleared at begining of gc work phase cycle, set by gcphasework, tested at end of cycle bool throwsplit; // must not split stack int8 raceignore; // ignore race detection events M* m; // for debuggers, but offset not hard-coded M* lockedm; int32 sig; Slice writebuf; uintptr sigcode0; uintptr sigcode1; uintptr sigpc; uintptr gopc; // pc of go statement that created this goroutine uintptr racectx; SudoG* waiting; // sudog structures this G is waiting on (that have a valid elem ptr) uintptr end[]; }; struct M { G* g0; // goroutine with scheduling stack Gobuf morebuf; // gobuf arg to morestack // Fields not known to debuggers. uint64 procid; // for debuggers, but offset not hard-coded G* gsignal; // signal-handling G uintptr tls[4]; // thread-local storage (for x86 extern register) void (*mstartfn)(void); G* curg; // current running goroutine G* caughtsig; // goroutine running during fatal signal P* p; // attached P for executing Go code (nil if not executing Go code) P* nextp; int32 id; int32 mallocing; int32 throwing; int32 gcing; int32 locks; int32 softfloat; int32 dying; int32 profilehz; int32 helpgc; bool spinning; // M is out of work and is actively looking for work bool blocked; // M is blocked on a Note uint32 fastrand; uint64 ncgocall; // number of cgo calls in total int32 ncgo; // number of cgo calls currently in progress CgoMal* cgomal; Note park; M* alllink; // on allm M* schedlink; uint32 machport; // Return address for Mach IPC (OS X) MCache* mcache; G* lockedg; uintptr createstack[32];// Stack that created this thread. uint32 freglo[16]; // D[i] lsb and F[i] uint32 freghi[16]; // D[i] msb and F[i+16] uint32 fflag; // floating point compare flags uint32 locked; // tracking for LockOSThread M* nextwaitm; // next M waiting for lock uintptr waitsema; // semaphore for parking on locks uint32 waitsemacount; uint32 waitsemalock; GCStats gcstats; bool needextram; uint8 traceback; bool (*waitunlockf)(G*, void*); void* waitlock; uintptr scalararg[4]; // scalar argument/return for mcall void* ptrarg[4]; // pointer argument/return for mcall #ifdef GOOS_windows uintptr thread; // thread handle // these are here because they are too large to be on the stack // of low-level NOSPLIT functions. LibCall libcall; uintptr libcallpc; // for cpu profiler uintptr libcallsp; G* libcallg; #endif #ifdef GOOS_solaris int32* perrno; // pointer to TLS errno // these are here because they are too large to be on the stack // of low-level NOSPLIT functions. LibCall libcall; struct MTs { int64 tv_sec; int64 tv_nsec; } ts; struct MScratch { uintptr v[6]; } scratch; #endif #ifdef GOOS_plan9 int8* notesig; byte* errstr; #endif uintptr end[]; }; struct P { Mutex lock; int32 id; uint32 status; // one of Pidle/Prunning/... P* link; uint32 schedtick; // incremented on every scheduler call uint32 syscalltick; // incremented on every system call M* m; // back-link to associated M (nil if idle) MCache* mcache; Defer* deferpool[5]; // pool of available Defer structs of different sizes (see panic.c) // Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen. uint64 goidcache; uint64 goidcacheend; // Queue of runnable goroutines. uint32 runqhead; uint32 runqtail; G* runq[256]; // Available G's (status == Gdead) G* gfree; int32 gfreecnt; byte pad[64]; }; enum { // The max value of GOMAXPROCS. // There are no fundamental restrictions on the value. MaxGomaxprocs = 1<<8, }; struct SchedT { Mutex lock; uint64 goidgen; M* midle; // idle m's waiting for work int32 nmidle; // number of idle m's waiting for work int32 nmidlelocked; // number of locked m's waiting for work int32 mcount; // number of m's that have been created int32 maxmcount; // maximum number of m's allowed (or die) P* pidle; // idle P's uint32 npidle; uint32 nmspinning; // Global runnable queue. G* runqhead; G* runqtail; int32 runqsize; // Global cache of dead G's. Mutex gflock; G* gfree; int32 ngfree; uint32 gcwaiting; // gc is waiting to run int32 stopwait; Note stopnote; uint32 sysmonwait; Note sysmonnote; uint64 lastpoll; int32 profilehz; // cpu profiling rate }; // The m->locked word holds two pieces of state counting active calls to LockOSThread/lockOSThread. // The low bit (LockExternal) is a boolean reporting whether any LockOSThread call is active. // External locks are not recursive; a second lock is silently ignored. // The upper bits of m->lockedcount record the nesting depth of calls to lockOSThread // (counting up by LockInternal), popped by unlockOSThread (counting down by LockInternal). // Internal locks can be recursive. For instance, a lock for cgo can occur while the main // goroutine is holding the lock during the initialization phase. enum { LockExternal = 1, LockInternal = 2, }; struct SigTab { int32 flags; int8 *name; }; enum { SigNotify = 1<<0, // let signal.Notify have signal, even if from kernel SigKill = 1<<1, // if signal.Notify doesn't take it, exit quietly SigThrow = 1<<2, // if signal.Notify doesn't take it, exit loudly SigPanic = 1<<3, // if the signal is from the kernel, panic SigDefault = 1<<4, // if the signal isn't explicitly requested, don't monitor it SigHandling = 1<<5, // our signal handler is registered SigIgnored = 1<<6, // the signal was ignored before we registered for it SigGoExit = 1<<7, // cause all runtime procs to exit (only used on Plan 9). }; // Layout of in-memory per-function information prepared by linker // See http://golang.org/s/go12symtab. // Keep in sync with linker and with ../../libmach/sym.c // and with package debug/gosym and with symtab.go in package runtime. struct Func { uintptr entry; // start pc int32 nameoff;// function name int32 args; // in/out args size int32 frame; // legacy frame size; use pcsp if possible int32 pcsp; int32 pcfile; int32 pcln; int32 npcdata; int32 nfuncdata; }; // layout of Itab known to compilers // allocated in non-garbage-collected memory struct Itab { InterfaceType* inter; Type* type; Itab* link; int32 bad; int32 unused; void (*fun[])(void); }; #ifdef GOOS_nacl enum { NaCl = 1, }; #else enum { NaCl = 0, }; #endif #ifdef GOOS_windows enum { Windows = 1 }; #else enum { Windows = 0 }; #endif #ifdef GOOS_solaris enum { Solaris = 1 }; #else enum { Solaris = 0 }; #endif #ifdef GOOS_plan9 enum { Plan9 = 1 }; #else enum { Plan9 = 0 }; #endif // Lock-free stack node. struct LFNode { LFNode *next; uintptr pushcnt; }; // Parallel for descriptor. struct ParFor { void (*body)(ParFor*, uint32); // executed for each element uint32 done; // number of idle threads uint32 nthr; // total number of threads uint32 nthrmax; // maximum number of threads uint32 thrseq; // thread id sequencer uint32 cnt; // iteration space [0, cnt) void *ctx; // arbitrary user context bool wait; // if true, wait while all threads finish processing, // otherwise parfor may return while other threads are still working ParForThread *thr; // array of thread descriptors uint32 pad; // to align ParForThread.pos for 64-bit atomic operations // stats uint64 nsteal; uint64 nstealcnt; uint64 nprocyield; uint64 nosyield; uint64 nsleep; }; // Track memory allocated by code not written in Go during a cgo call, // so that the garbage collector can see them. struct CgoMal { CgoMal *next; void *alloc; }; // Holds variables parsed from GODEBUG env var. struct DebugVars { int32 allocfreetrace; int32 efence; int32 gctrace; int32 gcdead; int32 scheddetail; int32 schedtrace; int32 scavenge; }; // Indicates to write barrier and sychronization task to preform. enum { // Synchronization Write barrier GCoff, // stop and start nop GCquiesce, // stop and start nop GCstw, // stop the ps nop GCmark, // scan the stacks and start no white to black GCsweep, // stop and start nop }; struct ForceGCState { Mutex lock; G* g; uint32 idle; }; extern uint32 runtime·gcphase; /* * defined macros * you need super-gopher-guru privilege * to add this list. */ #define nelem(x) (sizeof(x)/sizeof((x)[0])) #define nil ((void*)0) #define offsetof(s,m) (uint32)(&(((s*)0)->m)) #define ROUND(x, n) (((x)+(n)-1)&~(uintptr)((n)-1)) /* all-caps to mark as macro: it evaluates n twice */ /* * known to compiler */ enum { Structrnd = sizeof(uintreg), }; byte* runtime·startup_random_data; uint32 runtime·startup_random_data_len; int32 runtime·invalidptr; enum { // hashinit wants this many random bytes HashRandomBytes = 32 }; uint32 runtime·readgstatus(G*); void runtime·casgstatus(G*, uint32, uint32); void runtime·casgstatus(G*, uint32, uint32); uint32 runtime·casgcopystack(G*); void runtime·quiesce(G*); bool runtime·stopg(G*); void runtime·restartg(G*); void runtime·gcphasework(G*); /* * deferred subroutine calls */ struct Defer { int32 siz; bool started; uintptr argp; // where args were copied from uintptr pc; FuncVal* fn; Panic* panic; // panic that is running defer Defer* link; }; // argp used in Defer structs when there is no argp. #define NoArgs ((uintptr)-1) /* * panics */ struct Panic { void* argp; // pointer to arguments of deferred call run during panic; cannot move - known to liblink Eface arg; // argument to panic Panic* link; // link to earlier panic bool recovered; // whether this panic is over bool aborted; // the panic was aborted }; /* * stack traces */ typedef struct Stkframe Stkframe; typedef struct BitVector BitVector; struct Stkframe { Func* fn; // function being run uintptr pc; // program counter within fn uintptr continpc; // program counter where execution can continue, or 0 if not uintptr lr; // program counter at caller aka link register uintptr sp; // stack pointer at pc uintptr fp; // stack pointer at caller aka frame pointer uintptr varp; // top of local variables uintptr argp; // pointer to function arguments uintptr arglen; // number of bytes at argp BitVector* argmap; // force use of this argmap }; enum { TraceRuntimeFrames = 1<<0, // include frames for internal runtime functions. TraceTrap = 1<<1, // the initial PC, SP are from a trap, not a return PC from a call }; intgo runtime·gentraceback(uintptr, uintptr, uintptr, G*, intgo, uintptr*, intgo, bool(**)(Stkframe*, void*), void*, uintgo); void runtime·tracebackdefers(G*, bool(**)(Stkframe*, void*), void*); void runtime·traceback(uintptr pc, uintptr sp, uintptr lr, G* gp); void runtime·tracebacktrap(uintptr pc, uintptr sp, uintptr lr, G* gp); void runtime·tracebackothers(G*); bool runtime·haszeroargs(uintptr pc); bool runtime·topofstack(Func*); enum { // The maximum number of frames we print for a traceback TracebackMaxFrames = 100, }; /* * external data */ extern String runtime·emptystring; extern G** runtime·allg; extern Slice runtime·allgs; // []*G extern uintptr runtime·allglen; extern G* runtime·lastg; extern M* runtime·allm; extern P* runtime·allp[MaxGomaxprocs+1]; extern int32 runtime·gomaxprocs; extern uint32 runtime·needextram; extern uint32 runtime·panicking; extern int8* runtime·goos; extern int32 runtime·ncpu; extern bool runtime·iscgo; extern void (*runtime·sysargs)(int32, uint8**); extern uintptr runtime·maxstring; extern uint32 runtime·cpuid_ecx; extern uint32 runtime·cpuid_edx; extern DebugVars runtime·debug; extern uintptr runtime·maxstacksize; extern Note runtime·signote; extern ForceGCState runtime·forcegc; extern SchedT runtime·sched; extern int32 runtime·newprocs; /* * common functions and data */ int32 runtime·strcmp(byte*, byte*); int32 runtime·strncmp(byte*, byte*, uintptr); byte* runtime·strstr(byte*, byte*); intgo runtime·findnull(byte*); intgo runtime·findnullw(uint16*); void runtime·dump(byte*, int32); int32 runtime·runetochar(byte*, int32); int32 runtime·charntorune(int32*, uint8*, int32); /* * This macro is used when writing C functions * called as if they were Go functions. * Passed the address of a result before a return statement, * it makes sure the result has been flushed to memory * before the return. * * It is difficult to write such functions portably, because * of the varying requirements on the alignment of the * first output value. Almost all code should write such * functions in .goc files, where goc2c (part of cmd/dist) * can arrange the correct alignment for the target system. * Goc2c also takes care of conveying to the garbage collector * which parts of the argument list are inputs vs outputs. * * Therefore, do NOT use this macro if at all possible. */ #define FLUSH(x) USED(x) /* * GoOutput is a type with the same alignment requirements as the * initial output argument from a Go function. Only for use in cases * where using goc2c is not possible. See comment on FLUSH above. */ typedef uint64 GoOutput; void runtime·gogo(Gobuf*); void runtime·gostartcall(Gobuf*, void(*)(void), void*); void runtime·gostartcallfn(Gobuf*, FuncVal*); void runtime·gosave(Gobuf*); void runtime·goargs(void); void runtime·goenvs(void); void runtime·goenvs_unix(void); void* runtime·getu(void); void runtime·throw(int8*); bool runtime·canpanic(G*); void runtime·prints(int8*); void runtime·printf(int8*, ...); void runtime·snprintf(byte*, int32, int8*, ...); byte* runtime·mchr(byte*, byte, byte*); int32 runtime·mcmp(byte*, byte*, uintptr); void runtime·memmove(void*, void*, uintptr); String runtime·catstring(String, String); String runtime·gostring(byte*); Slice runtime·makeStringSlice(intgo); String runtime·gostringn(byte*, intgo); Slice runtime·gobytes(byte*, intgo); String runtime·gostringnocopy(byte*); String runtime·gostringw(uint16*); void runtime·initsig(void); void runtime·sigenable(uint32 sig); void runtime·sigdisable(uint32 sig); int32 runtime·gotraceback(bool *crash); void runtime·goroutineheader(G*); int32 runtime·open(int8*, int32, int32); int32 runtime·read(int32, void*, int32); int32 runtime·write(uintptr, void*, int32); // use uintptr to accommodate windows. int32 runtime·close(int32); int32 runtime·mincore(void*, uintptr, byte*); void runtime·jmpdefer(FuncVal*, uintptr); void runtime·exit1(int32); void runtime·ready(G*); byte* runtime·getenv(int8*); int32 runtime·atoi(byte*); void runtime·newosproc(M *mp, void *stk); void runtime·mstart(void); G* runtime·malg(int32); void runtime·asminit(void); void runtime·mpreinit(M*); void runtime·minit(void); void runtime·unminit(void); void runtime·signalstack(byte*, int32); void runtime·tracebackinit(void); void runtime·symtabinit(void); Func* runtime·findfunc(uintptr); int32 runtime·funcline(Func*, uintptr, String*); int32 runtime·funcspdelta(Func*, uintptr); int8* runtime·funcname(Func*); int32 runtime·pcdatavalue(Func*, int32, uintptr); void runtime·stackinit(void); Stack runtime·stackalloc(uint32); void runtime·stackfree(Stack); void runtime·shrinkstack(G*); void runtime·shrinkfinish(void); MCache* runtime·allocmcache(void); void runtime·freemcache(MCache*); void runtime·mallocinit(void); void runtime·gcinit(void); void* runtime·mallocgc(uintptr size, Type* typ, uint32 flag); void runtime·runpanic(Panic*); uintptr runtime·getcallersp(void*); int32 runtime·mcount(void); int32 runtime·gcount(void); void runtime·mcall(void(**)(G*)); void runtime·onM(void(**)(void)); void runtime·onMsignal(void(**)(void)); uint32 runtime·fastrand1(void); void runtime·rewindmorestack(Gobuf*); int32 runtime·timediv(int64, int32, int32*); int32 runtime·round2(int32 x); // round x up to a power of 2. // atomic operations bool runtime·cas(uint32*, uint32, uint32); bool runtime·cas64(uint64*, uint64, uint64); bool runtime·casp(void**, void*, void*); // Don't confuse with XADD x86 instruction, // this one is actually 'addx', that is, add-and-fetch. uint32 runtime·xadd(uint32 volatile*, int32); uint64 runtime·xadd64(uint64 volatile*, int64); uint32 runtime·xchg(uint32 volatile*, uint32); uint64 runtime·xchg64(uint64 volatile*, uint64); void* runtime·xchgp(void* volatile*, void*); uint32 runtime·atomicload(uint32 volatile*); void runtime·atomicstore(uint32 volatile*, uint32); void runtime·atomicstore64(uint64 volatile*, uint64); uint64 runtime·atomicload64(uint64 volatile*); void* runtime·atomicloadp(void* volatile*); uintptr runtime·atomicloaduintptr(uintptr volatile*); void runtime·atomicstorep(void* volatile*, void*); void runtime·atomicstoreuintptr(uintptr volatile*, uintptr); void runtime·atomicor8(byte volatile*, byte); void runtime·setg(G*); void runtime·newextram(void); void runtime·exit(int32); void runtime·breakpoint(void); void runtime·gosched_m(G*); void runtime·schedtrace(bool); void runtime·park(bool(*)(G*, void*), void*, String); void runtime·parkunlock(Mutex*, String); void runtime·tsleep(int64, String); M* runtime·newm(void); void runtime·goexit(void); void runtime·asmcgocall(void (*fn)(void*), void*); int32 runtime·asmcgocall_errno(void (*fn)(void*), void*); void runtime·entersyscall(void); void runtime·reentersyscall(uintptr, uintptr); void runtime·entersyscallblock(void); void runtime·exitsyscall(void); G* runtime·newproc1(FuncVal*, byte*, int32, int32, void*); bool runtime·sigsend(int32 sig); intgo runtime·callers(intgo, uintptr*, intgo); intgo runtime·gcallers(G*, intgo, uintptr*, intgo); int64 runtime·nanotime(void); // monotonic time int64 runtime·unixnanotime(void); // real time, can skip void runtime·dopanic(int32); void runtime·startpanic(void); void runtime·freezetheworld(void); void runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp, M *mp); void runtime·resetcpuprofiler(int32); void runtime·setcpuprofilerate(int32); void runtime·usleep(uint32); int64 runtime·cputicks(void); int64 runtime·tickspersecond(void); void runtime·blockevent(int64, intgo); G* runtime·netpoll(bool); void runtime·netpollready(G**, PollDesc*, int32); uintptr runtime·netpollfd(PollDesc*); void** runtime·netpolluser(PollDesc*); bool runtime·netpollclosing(PollDesc*); void runtime·netpolllock(PollDesc*); void runtime·netpollunlock(PollDesc*); void runtime·crash(void); void runtime·parsedebugvars(void); void* runtime·funcdata(Func*, int32); void runtime·setmaxthreads_m(void); G* runtime·timejump(void); void runtime·iterate_itabs(void (**callback)(Itab*)); void runtime·iterate_finq(void (*callback)(FuncVal*, byte*, uintptr, Type*, PtrType*)); #pragma varargck argpos runtime·printf 1 #pragma varargck type "c" int32 #pragma varargck type "d" int32 #pragma varargck type "d" uint32 #pragma varargck type "D" int64 #pragma varargck type "D" uint64 #pragma varargck type "x" int32 #pragma varargck type "x" uint32 #pragma varargck type "X" int64 #pragma varargck type "X" uint64 #pragma varargck type "p" void* #pragma varargck type "p" uintptr #pragma varargck type "s" int8* #pragma varargck type "s" uint8* #pragma varargck type "S" String void runtime·stoptheworld(void); void runtime·starttheworld(void); extern uint32 runtime·worldsema; /* * mutual exclusion locks. in the uncontended case, * as fast as spin locks (just a few user-level instructions), * but on the contention path they sleep in the kernel. * a zeroed Mutex is unlocked (no need to initialize each lock). */ void runtime·lock(Mutex*); void runtime·unlock(Mutex*); /* * sleep and wakeup on one-time events. * before any calls to notesleep or notewakeup, * must call noteclear to initialize the Note. * then, exactly one thread can call notesleep * and exactly one thread can call notewakeup (once). * once notewakeup has been called, the notesleep * will return. future notesleep will return immediately. * subsequent noteclear must be called only after * previous notesleep has returned, e.g. it's disallowed * to call noteclear straight after notewakeup. * * notetsleep is like notesleep but wakes up after * a given number of nanoseconds even if the event * has not yet happened. if a goroutine uses notetsleep to * wake up early, it must wait to call noteclear until it * can be sure that no other goroutine is calling * notewakeup. * * notesleep/notetsleep are generally called on g0, * notetsleepg is similar to notetsleep but is called on user g. */ void runtime·noteclear(Note*); void runtime·notesleep(Note*); void runtime·notewakeup(Note*); bool runtime·notetsleep(Note*, int64); // false - timeout bool runtime·notetsleepg(Note*, int64); // false - timeout /* * low-level synchronization for implementing the above */ uintptr runtime·semacreate(void); int32 runtime·semasleep(int64); void runtime·semawakeup(M*); // or void runtime·futexsleep(uint32*, uint32, int64); void runtime·futexwakeup(uint32*, uint32); /* * Mutex-free stack. * Initialize uint64 head to 0, compare with 0 to test for emptiness. * The stack does not keep pointers to nodes, * so they can be garbage collected if there are no other pointers to nodes. */ void runtime·lfstackpush(uint64 *head, LFNode *node); LFNode* runtime·lfstackpop(uint64 *head); /* * Parallel for over [0, n). * body() is executed for each iteration. * nthr - total number of worker threads. * ctx - arbitrary user context. * if wait=true, threads return from parfor() when all work is done; * otherwise, threads can return while other threads are still finishing processing. */ ParFor* runtime·parforalloc(uint32 nthrmax); void runtime·parforsetup(ParFor *desc, uint32 nthr, uint32 n, void *ctx, bool wait, void (*body)(ParFor*, uint32)); void runtime·parfordo(ParFor *desc); void runtime·parforiters(ParFor*, uintptr, uintptr*, uintptr*); /* * low level C-called */ // for mmap, we only pass the lower 32 bits of file offset to the // assembly routine; the higher bits (if required), should be provided // by the assembly routine as 0. uint8* runtime·mmap(byte*, uintptr, int32, int32, int32, uint32); void runtime·munmap(byte*, uintptr); void runtime·madvise(byte*, uintptr, int32); void runtime·memclr(byte*, uintptr); void runtime·setcallerpc(void*, void*); void* runtime·getcallerpc(void*); void runtime·printbool(bool); void runtime·printbyte(int8); void runtime·printfloat(float64); void runtime·printint(int64); void runtime·printiface(Iface); void runtime·printeface(Eface); void runtime·printstring(String); void runtime·printpc(void*); void runtime·printpointer(void*); void runtime·printuint(uint64); void runtime·printhex(uint64); void runtime·printslice(Slice); void runtime·printcomplex(Complex128); /* * runtime go-called */ void runtime·gopanic(Eface); void runtime·panicindex(void); void runtime·panicslice(void); void runtime·panicdivide(void); /* * runtime c-called (but written in Go) */ void runtime·printany(Eface); void runtime·newTypeAssertionError(String*, String*, String*, String*, Eface*); void runtime·fadd64c(uint64, uint64, uint64*); void runtime·fsub64c(uint64, uint64, uint64*); void runtime·fmul64c(uint64, uint64, uint64*); void runtime·fdiv64c(uint64, uint64, uint64*); void runtime·fneg64c(uint64, uint64*); void runtime·f32to64c(uint32, uint64*); void runtime·f64to32c(uint64, uint32*); void runtime·fcmp64c(uint64, uint64, int32*, bool*); void runtime·fintto64c(int64, uint64*); void runtime·f64tointc(uint64, int64*, bool*); /* * wrapped for go users */ float64 runtime·Inf(int32 sign); float64 runtime·NaN(void); float32 runtime·float32frombits(uint32 i); uint32 runtime·float32tobits(float32 f); float64 runtime·float64frombits(uint64 i); uint64 runtime·float64tobits(float64 f); float64 runtime·frexp(float64 d, int32 *ep); bool runtime·isInf(float64 f, int32 sign); bool runtime·isNaN(float64 f); float64 runtime·ldexp(float64 d, int32 e); float64 runtime·modf(float64 d, float64 *ip); void runtime·semacquire(uint32*, bool); void runtime·semrelease(uint32*); int32 runtime·gomaxprocsfunc(int32 n); void runtime·procyield(uint32); void runtime·osyield(void); void runtime·lockOSThread(void); void runtime·unlockOSThread(void); bool runtime·showframe(Func*, G*); void runtime·printcreatedby(G*); void runtime·ifaceE2I(InterfaceType*, Eface, Iface*); bool runtime·ifaceE2I2(InterfaceType*, Eface, Iface*); uintptr runtime·memlimit(void); // float.c extern float64 runtime·nan; extern float64 runtime·posinf; extern float64 runtime·neginf; extern uint64 ·nan; extern uint64 ·posinf; extern uint64 ·neginf; #define ISNAN(f) ((f) != (f)) enum { UseSpanType = 1, };