1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
|
<!--
Biggest open issues:
[ ] General iterators
[ ] Conversions:
- current situation is messy
- 2 (3?) different notations for the same thing
- unclear when a type assertion is needed
- unclear where conversions can be applied
- for type T int; can we say T(3.0) ?
- do we need channel conversion (channel direction)
[ ] Semantics of type declaration:
- creating a new type (status quo), or only a new type name?
- also: declaration type T S; strips methods of S. why/why not?
Decisions in need of integration into the doc:
[ ] pair assignment is required to get map, and receive ok.
[ ] len() returns an int, new(array_type, n) n must be an int
Todo's:
[ ] there is some funny-ness regarding ';' and empty statements and label decls
[ ] document illegality of package-external tuple assignments to structs
w/ private fields: P.T(1, 2) illegal since same as P.T(a: 1, b: 2) for
a T struct { a b int }.
[ ] clarification on interface types, rules
[ ] clarify tuples
[ ] need to talk about precise int/floats clearly
[ ] iant suggests to use abstract/precise int for len(), cap() - good idea
(issue: what happens in len() + const - what is the type?)
[ ] cleanup convert() vs T() vs x.(T) - convert() should go away?
[ ] fix "else" part of if statement
[ ] cleanup: 6g allows: interface { f F } where F is a function type.
fine, but then we should also allow: func f F {}, where F is a function type.
Wish list:
[ ] enum facility (enum symbols that are not mixable with ints) or some other
mechanism to obtain type-safety which we don't have with int-only tags
[ ] Gri: built-in assert() - alternatively: allow entire expressions
as statements so we can write: some_condition || panic(); (along these lines)
[ ] Helper syntax for composite types: allow names/keys/indices for
structs/maps/arrays, remove need for type in elements of composites
Smaller issues:
[ ] need for type switch? (or use type assertion with ok in tuple assignment?)
[ ] Is . import implemented / do we still need it?
[ ] Do we allow empty statements? If so, do we allow empty statements after a label?
and if so, does a label followed by an empty statement (a semicolon) still denote
a for loop that is following, and can break L be used inside it?
Closed:
[x] Russ: If we use x.(T) for all conversions, we could use T() for "construction"
and type literals - would resolve the parsing ambiguity of T{} in if's -
switching to () for literals, conversion discussion still open
[x] Russ: consider re-introducing "func" for function type. Make function literals
behave like slices, etc. Require no &'s to get a function value (solves issue
of func{} vs &func{} vs &func_name).
[x] onreturn/undo statement - now: defer statement
[x] comparison of non-basic types: what do we allow? what do we allow in interfaces
what about maps (require ==, copy and hash)
maybe: no maps with non-basic type keys, and no interface comparison unless
with nil[x]
[x] clarify slice rules
[x] what are the permissible ranges for the indices in slices? The spec
doesn't correspond to the implementation. The spec is wrong when it
comes to the first index i: it should allow (at least) the range 0 <= i <= len(a).
also: document different semantics for strings and arrays (strings cannot be grown).
[x] reopening & and func issue: Seems inconsistent as both &func(){} and func(){} are
permitted. Suggestion: func literals are pointers. We need to use & for all other
functions. This would be in consistency with the declaration of function pointer
variables and the use of '&' to convert methods into function pointers.
- covered by other entry
[x] composite types should uniformly create an instance instead of a pointer - fixed
[x] like to have assert() in the language, w/ option to disable code gen for it
- added to wish list
[x] convert should not be used for composite literals anymore,
in fact, convert() should go away - made a todo
[x] type switch or some form of type test needed - duplicate entry
[x] provide composite literal notation to address array indices: []int{ 0: x1, 1: x2, ... }
and struct field names (both seem easy to do). - under "Missing" list
[x] passing a "..." arg to another "..." parameter doesn't wrap the argument again
(so "..." args can be passed down easily) - this is documented
[x] consider syntactic notation for composite literals to make them parsable w/o type information
(require ()'s in control clauses) - use heuristics for now
[x] do we need anything on package vs file names? - current package scheme workable for now
[x] what is the meaning of typeof() - we don't have it
[x] old-style export decls (still needed, but ideally should go away)
[x] packages of multiple files - we have a working approach
[x] partial export of structs, methods
[x] new as it is now is weird - need to go back to previous semantics and introduce
literals for slices, maps, channels - done
[x] determine if really necessary to disallow array assignment - allow array assignment
[x] semantics of statements - we just need to fill in the language, the semantics is mostly clear
[x] range statement: to be defined more reasonably
[x] need to be specific on (unsigned) integer operations: one must be able
to rely on wrap-around on overflow
[x] global var decls: "var a, b, c int = 0, 0, 0" is ok, but "var a, b, c = 0, 0, 0" is not
(seems inconsistent with "var a = 0", and ":=" notation)
[x] const decls: "const a, b = 1, 2" is not allowed - why not? Should be symmetric to vars.
[x] new(arraytype, n1, n2): spec only talks about length, not capacity
(should only use new(arraytype, n) - this will allow later
extension to multi-dim arrays w/o breaking the language) - documented
[x] should we have a shorter list of alias types? (byte, int, uint, float) - done
[x] reflection support
[x] syntax for var args
[x] Do composite literals create a new literal each time (gri thinks yes) (Russ is putting in a change
to this effect, essentially)
[x] comparison operators: can we compare interfaces?
[x] can we add methods to types defined in another package? (probably not)
[x] optional semicolons: too complicated and unclear
[x] anonymous types are written using a type name, which can be a qualified identifier.
this might be a problem when referring to such a field using the type name.
[x] nil and interfaces - can we test for nil, what does it mean, etc.
[x] talk about underflow/overflow of 2's complement numbers (defined vs not defined).
[x] change wording on array composite literals: the types are always fixed arrays
for array composites
[x] meaning of nil
[x] remove "any"
[x] methods for all types
[x] should binary <- be at lowest precedence level? when is a send/receive non-blocking? (NO - 9/19/08)
[x] func literal like a composite type - should probably require the '&' to get address (NO)
[x] & needed to get a function pointer from a function? (NO - there is the "func" keyword - 9/19/08)
-->
<h2>Introduction</h2>
<p>
This is a reference manual for the Go programming language. For
more information and other documents, see <a
href="/">the Go home page</a>.
</p>
<p>
Go is a general-purpose language designed with systems programming
in mind. It is strongly typed and garbage-collected, and has explicit
support for concurrent programming. Programs are constructed from
<i>packages</i>, whose properties allow efficient management of
dependencies. The existing implementations use a traditional
compile/link model to generate executable binaries.
</p>
<p>
The grammar is compact and regular, allowing for easy analysis by
automatic tools such as integrated development environments.
</p>
<hr/>
<h2>Notation</h2>
<p>
The syntax is specified using Extended Backus-Naur Form (EBNF):
</p>
<pre class="grammar">
Production = production_name "=" Expression .
Expression = Alternative { "|" Alternative } .
Alternative = Term { Term } .
Term = production_name | token [ "..." token ] | Group | Option | Repetition .
Group = "(" Expression ")" .
Option = "[" Expression ")" .
Repetition = "{" Expression "}" .
</pre>
<p>
Productions are expressions constructed from terms and the following
operators, in increasing precedence:
</p>
<pre class="grammar">
| alternation
() grouping
[] option (0 or 1 times)
{} repetition (0 to n times)
</pre>
<p>
Lower-case production names are used to identify lexical tokens.
Non-terminals are in CamelCase. Lexical symbols are enclosed in
double quotes <code>""</code> (the double quote symbol is written as
<code>'"'</code>).
</p>
<p>
The form <code>"a ... b"</code> represents the set of characters from
<code>a</code> through <code>b</code> as alternatives.
</p>
<hr/>
<h2>Source code representation</h2>
<p>
Source code is Unicode text encoded in UTF-8. The text is not
canonicalized, so a single accented code point is distinct from the
same character constructed from combining an accent and a letter;
those are treated as two code points. For simplicity, this document
will use the term <i>character</i> to refer to a Unicode code point.
</p>
<p>
Each code point is distinct; for instance, upper and lower case letters
are different characters.
</p>
<h3>Characters</h3>
<p>
The following terms are used to denote specific Unicode character classes:
</p>
<ul>
<li>unicode_char an arbitrary Unicode code point</li>
<li>unicode_letter a Unicode code point classified as "Letter"</li>
<li>capital_letter a Unicode code point classified as "Letter, uppercase"</li>
<li>unicode_digit a Unicode code point classified as "Digit"</li>
</ul>
(The Unicode Standard, Section 4.5 General Category - Normative.)
<h3>Letters and digits</h3>
<p>
The underscore character <code>_</code> (U+005F) is considered a letter.
</>
<pre class="grammar">
letter = unicode_letter | "_" .
decimal_digit = "0" ... "9" .
octal_digit = "0" ... "7" .
hex_digit = "0" ... "9" | "A" ... "F" | "a" ... "f" .
</pre>
<hr/>
<h2>Lexical elements</h2>
<h3>Comments</h3>
<p>
There are two forms of comments. The first starts at the character
sequence <code>//</code> and continues through the next newline. The
second starts at the character sequence <code>/*</code> and continues
through the character sequence <code>*/</code>. Comments do not nest.
</p>
<h3>Tokens</h3>
<p>
Tokens form the vocabulary of the Go language.
There are four classes: identifiers, keywords, operators
and delimiters, and literals. <i>White space</i>, formed from
blanks, tabs, and newlines, is ignored except as it separates tokens
that would otherwise combine into a single token. Comments
behave as white space. While breaking the input into tokens,
the next token is the longest sequence of characters that form a
valid token.
</p>
<h3>Identifiers</h3>
<p>
Identifiers name program entities such as variables and types.
An identifier is a sequence of one or more letters and digits.
The first character in an identifier must be a letter.
</p>
<pre class="grammar">
identifier = letter { letter | unicode_digit } .
</pre>
<pre>
a
_x9
ThisVariableIsExported
αβ
</pre>
Some identifiers are predeclared (§Predeclared identifiers).
<h3>Keywords</h3>
<p>
The following keywords are reserved and may not be used as identifiers.
</p>
<pre class="grammar">
break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var
</pre>
<h3>Operators and Delimiters</h3>
<p>
The following character sequences represent operators, delimiters, and other special tokens:
</p>
<pre class="grammar">
+ & += &= && == != ( )
- | -= |= || < <= [ ]
* ^ *= ^= <- > >= { }
/ << /= <<= ++ = := , ;
% >> %= >>= -- ! ... . :
</pre>
<h3>Integer literals</h3>
<p>
An integer literal is a sequence of one or more digits in the
corresponding base, which may be 8, 10, or 16. An optional prefix
sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
<code>0X</code> for hexadecimal. In hexadecimal literals, letters
<code>a-f</code> and <code>A-F</code> represent values 10 through 15.
</p>
<pre class="grammar">
int_lit = decimal_lit | octal_lit | hex_lit .
decimal_lit = ( "1" ... "9" ) { decimal_digit } .
octal_lit = "0" { octal_digit } .
hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } .
</pre>
<pre>
42
0600
0xBadFace
170141183460469231731687303715884105727
</pre>
<h3>Floating-point literals</h3>
<p>
A floating-point literal is a decimal representation of a floating-point
number. It has an integer part, a decimal point, a fractional part,
and an exponent part. The integer and fractional part comprise
decimal digits; the exponent part is an <code>e</code> or <code>E</code>
followed by an optionally signed decimal exponent. One of the
integer part or the fractional part may be elided; one of the decimal
point or the exponent may be elided.
</p>
<pre class="grammar">
float_lit = decimals "." [ decimals ] [ exponent ] |
decimals exponent |
"." decimals [ exponent ] .
decimals = decimal_digit { decimal_digit } .
exponent = ( "e" | "E" ) [ "+" | "-" ] decimals .
</pre>
<pre>
0.
2.71828
1.e+0
6.67428e-11
1E6
.25
.12345E+5
</pre>
<h3>Ideal numbers</h3>
<p>
Integer literals represent values of arbitrary precision, or <i>ideal
integers</i>. Similarly, floating-point literals represent values
of arbitrary precision, or <i>ideal floats</i>. These <i>ideal
numbers</i> have no size or type and cannot overflow. However,
when (used in an expression) assigned to a variable or typed constant,
the destination must be able to represent the assigned value.
</p>
<p>
Implementation restriction: A compiler may implement ideal numbers
by choosing an internal representation with at least twice the precision
of any machine type.
</p>
<h3>Character literals</h3>
<p>
A character literal represents an integer value, typically a
Unicode code point, as one or more characters enclosed in single
quotes. Within the quotes, any character may appear except single
quote and newline. A single quoted character represents itself,
while multi-character sequences beginning with a backslash encode
values in various formats.
</p>
<p>
The simplest form represents the single character within the quotes;
since Go source text is Unicode characters encoded in UTF-8, multiple
UTF-8-encoded bytes may represent a single integer value. For
instance, the literal <code>'a'</code> holds a single byte representing
a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
<code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
</p>
<p>
Several backslash escapes allow arbitrary values to be represented
as ASCII text. There are four ways to represent the integer value
as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
digits; <code>\u</code> followed by exactly four hexadecimal digits;
<code>\U</code> followed by exactly eight hexadecimal digits, and a
plain backslash <code>\</code> followed by exactly three octal digits.
In each case the value of the literal is the value represented by
the digits in the corresponding base.
</p>
<p>
Although these representations all result in an integer, they have
different valid ranges. Octal escapes must represent a value between
0 and 255 inclusive. (Hexadecimal escapes satisfy this condition
by construction). The `Unicode' escapes <code>\u</code> and <code>\U</code>
represent Unicode code points so within them some values are illegal,
in particular those above <code>0x10FFFF</code> and surrogate halves.
</p>
<p>
After a backslash, certain single-character escapes represent special values:
</p>
<pre class="grammar">
\a U+0007 alert or bell
\b U+0008 backspace
\f U+000C form feed
\n U+000A line feed or newline
\r U+000D carriage return
\t U+0009 horizontal tab
\v U+000b vertical tab
\\ U+005c backslash
\' U+0027 single quote (valid escape only within character literals)
\" U+0022 double quote (valid escape only within string literals)
</pre>
<p>
All other sequences are illegal inside character literals.
</p>
<pre class="grammar">
char_lit = "'" ( unicode_value | byte_value ) "'" .
unicode_value = unicode_char | little_u_value | big_u_value | escaped_char .
byte_value = octal_byte_value | hex_byte_value .
octal_byte_value = "\" octal_digit octal_digit octal_digit .
hex_byte_value = "\" "x" hex_digit hex_digit .
little_u_value = "\" "u" hex_digit hex_digit hex_digit hex_digit .
big_u_value = "\" "U" hex_digit hex_digit hex_digit hex_digit
hex_digit hex_digit hex_digit hex_digit .
escaped_char = "\" ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | "\" | "'" | """ ) .
</pre>
<pre>
'a'
'ä'
'本'
'\t'
'\000'
'\007'
'\377'
'\x07'
'\xff'
'\u12e4'
'\U00101234'
</pre>
<p>
The value of a character literal is an ideal integer, just as with
integer literals.
</p>
<h3>String literals</h3>
<p>
String literals represent constant values of type <code>string</code>.
There are two forms: raw string literals and interpreted string
literals.
</p>
<p>
Raw string literals are character sequences between back quotes
<code>``</code>. Within the quotes, any character is legal except
newline and back quote. The value of a raw string literal is the
string composed of the uninterpreted bytes between the quotes;
in particular, backslashes have no special meaning.
</p>
<p>
Interpreted string literals are character sequences between double
quotes <code>""</code>. The text between the quotes forms the
value of the literal, with backslash escapes interpreted as they
are in character literals (except that <code>\'</code> is illegal and
<code>\"</code> is legal). The three-digit octal (<code>\000</code>)
and two-digit hexadecimal (<code>\x00</code>) escapes represent individual
<i>bytes</i> of the resulting string; all other escapes represent
the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
<code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
the two bytes <code>0xc3 0xbf</code> of the UTF-8 encoding of character
U+00FF.
</p>
<pre class="grammar">
string_lit = raw_string_lit | interpreted_string_lit .
raw_string_lit = "`" { unicode_char } "`" .
interpreted_string_lit = """ { unicode_value | byte_value } """ .
</pre>
<pre>
`abc`
`\n`
"hello, world\n"
"\n"
""
"Hello, world!\n"
"日本語"
"\u65e5本\U00008a9e"
"\xff\u00FF"
</pre>
<p>
These examples all represent the same string:
</p>
<pre>
"日本語" // UTF-8 input text
`日本語` // UTF-8 input text as a raw literal
"\u65e5\u672c\u8a9e" // The explicit Unicode code points
"\U000065e5\U0000672c\U00008a9e" // The explicit Unicode code points
"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // The explicit UTF-8 bytes
</pre>
<p>
If the source code represents a character as two code points, such as
a combining form involving an accent and a letter, the result will be
an error if placed in a character literal (it is not a single code
point), and will appear as two code points if placed in a string
literal.
</p>
<hr/>
<h2>Types</h2>
<p>
A type determines the set of values and operations specific to values of that type.
A type may be specified by a (possibly qualified (§Qualified identifiers))
type name (§Type declarations) or a <i>type literal</i>,
which composes a new type in terms of previously declared types.
</p>
<pre class="grammar">
Type = TypeName | TypeLit | "(" Type ")" .
TypeName = QualifiedIdent.
TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
SliceType | MapType | ChannelType .
</pre>
<p>
<i>Basic types</i> such as <code>int</code> are predeclared (§Predeclared identifiers).
Other types may be constructed from these, recursively,
including arrays, structs, pointers, functions, interfaces, slices, maps, and
channels.
</p>
<p>
At any point in the source code, a type may be <i>complete</i> or
<i>incomplete</i>. An incomplete type is one whose size is not
yet known, such as a struct whose fields are not yet fully
defined or a forward declared type (§Forward declarations).
Most types are always complete; for instance, a pointer
type is always complete even if it points to an incomplete type
because the size of the pointer itself is always known.
(TODO: Need to figure out how forward declarations of
interface fit in here.)
</p>
<p>
The <i>interface</i> of a type is the set of methods bound to it
(§Method declarations); for pointer types, it is the interface
of the pointer base type (§Pointer types). All types have an interface;
if they have no methods, it is the <i>empty interface</i>.
</p>
<p>
The <i>static type</i> (or just <i>type</i>) of a variable is the
type defined by its declaration. Variables of interface type
(§Interface types) also have a distinct <i>dynamic type</i>, which
is the actual type of the value stored in the variable at run-time.
The dynamic type may vary during execution but is always compatible
with the static type of the interface variable. For non-interfaces
types, the dynamic type is always the static type.
</p>
<h3>Basic types</h3>
<p>
Basic types include traditional numeric types, booleans, and strings. All are predeclared.
</p>
<h3>Numeric types</h3>
<p>
The architecture-independent numeric types are:
</p>
<pre class="grammar">
uint8 the set of all unsigned 8-bit integers (0 to 255)
uint16 the set of all unsigned 16-bit integers (0 to 65535)
uint32 the set of all unsigned 32-bit integers (0 to 4294967295)
uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615)
int8 the set of all signed 8-bit integers (-128 to 127)
int16 the set of all signed 16-bit integers (-32768 to 32767)
int32 the set of all signed 32-bit integers (-2147483648 to 2147483647)
int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
float32 the set of all valid IEEE-754 32-bit floating point numbers
float64 the set of all valid IEEE-754 64-bit floating point numbers
byte familiar alias for uint8
</pre>
<p>
Integer types are represented in the usual binary format; the value of
an n-bit integer is n bits wide. A negative signed integer is represented
as the two's complement of its absolute value.
</p>
<p>
There is also a set of architecture-independent basic numeric types
whose size depends on the architecture:
</p>
<pre class="grammar">
uint at least 32 bits, at most the size of the largest uint type
int at least 32 bits, at most the size of the largest int type
float at least 32 bits, at most the size of the largest float type
uintptr smallest uint type large enough to store the uninterpreted
bits of a pointer value
</pre>
<p>
To avoid portability issues all numeric types are distinct except
<code>byte</code>, which is an alias for <code>uint8</code>.
Conversions
are required when different numeric types are mixed in an expression
or assignment. For instance, <code>int32</code> and <code>int</code>
are not the same type even though they may have the same size on a
particular architecture.
<h3>Booleans</h3>
The type <code>bool</code> comprises the Boolean truth values
represented by the predeclared constants <code>true</code>
and <code>false</code>.
<h3>Strings</h3>
<p>
The <code>string</code> type represents the set of textual string values.
Strings behave like arrays of bytes but are immutable: once created,
it is impossible to change the contents of a string.
<p>
The elements of strings have type <code>byte</code> and may be
accessed using the usual indexing operations (§Indexes). It is
illegal to take the address of such an element, that is, even if
<code>s[i]</code> is the <code>i</code><sup>th</sup> byte of a
string, <code>&s[i]</code> is invalid. The length of a string
can be computed by the function <code>len(s1)</code>.
</p>
<p>
A sequence of string literals is concatenated into a single string.
</p>
<pre class="grammar">
StringLit = string_lit { string_lit } .
</pre>
<pre>
"Alea iacta est."
"Alea " /* The die */ `iacta est` /* is cast */ "."
</pre>
<h3>Array types</h3>
<p>
An array is a numbered sequence of elements of a single
type, called the element type, which must be complete
(§Types). The number of elements is called the length and is never
negative.
</p>
<pre class="grammar">
ArrayType = "[" ArrayLength "]" ElementType .
ArrayLength = Expression .
ElementType = CompleteType .
</pre>
<p>
The length is part of the array's type and must must be a constant
expression (§Constant expressions) that evaluates to a non-negative
integer value. The length of array <code>a</code> can be discovered
using the built-in function <code>len(a)</code>, which is a
compile-time constant. The elements can be indexed by integer
indices 0 through the <code>len(a)-1</code> (§Indexes).
</p>
<pre>
[32]byte
[2*N] struct { x, y int32 }
[1000]*float64
</pre>
<h3>Slice types</h3>
<p>
A slice is a reference to a contiguous segment of an array and
contains a numbered sequence of elements from that array. A slice
type denotes the set of all slices of arrays of its element type.
A slice value may be <code>nil</code>.
</p>
<pre class="grammar">
SliceType = "[" "]" ElementType .
</pre>
<p>
Like arrays, slices are indexable and have a length. The length of a
slice <code>s</code> can be discovered by the built-in function
<code>len(s)</code>; unlike with arrays it may change during
execution. The elements can be addressed by integer indices 0
through <code>len(s)-1</code> (§Indexes). The slice index of a
given element may be less than the index of the same element in the
underlying array.
</p>
<p>
A slice, once initialized, is always associated with an underlying
array that holds its elements. A slice therfore shares storage
with its array and with other slices of the same array; by contrast,
distinct arrays always represent distinct storage.
</p>
<p>
The array underlying a slice may extend past the end of the slice.
The <i>capacity</i> is a measure of that extent: it is the sum of
the length of the slice and the length of the array beyond the slice;
a slice of length up to that capacity can be created by `slicing' a new
one from the original slice (§Slices).
The capacity of a slice <code>a</code> can be discovered using the
built-in function
</p>
<pre>
cap(s)
</pre>
<p>
and the relationship between <code>len()</code> and <code>cap()</code> is:
</p>
<pre>
0 <= len(a) <= cap(a)
</pre>
<p>
The value of an uninitialized slice is <code>nil</code>.
The length and capacity of a <code>nil</code> slice
are 0. A new, initialized slice value for a given element type <code>T</code> is
made using the built-in function <code>make</code>, which takes a slice type
and parameters specifying the length and optionally the capacity:
</p>
<pre>
make([]T, length)
make([]T, length, capacity)
</pre>
<p>
The <code>make()</code> call allocates a new, hidden array to which the returned
slice value refers. That is, calling <code>make</code>
</p>
<pre>
make([]T, length, capacity)
</pre>
<p>
produces the same slice as allocating an array and slicing it, so these two examples
result in the same slice:
</p>
<pre>
make([]int, 50, 100)
new([100]int)[0:50]
</pre>
<h3>Struct types</h3>
<p>
A struct is a sequence of named
elements, called fields, with various types. A struct type declares
an identifier and type for each field. Within a struct, field identifiers
must be unique and field types must be complete (§Types).
</p>
<pre class="grammar">
StructType = "struct" "{" [ FieldDeclList ] "}" .
FieldDeclList = FieldDecl { ";" FieldDecl } [ ";" ] .
FieldDecl = (IdentifierList CompleteType | [ "*" ] TypeName) [ Tag ] .
Tag = StringLit .
</pre>
<pre>
// An empty struct.
struct {}
// A struct with 5 fields.
struct {
x, y int;
u float;
A *[]int;
F func();
}
</pre>
<p>
A field declared with a type but no field identifier is an <i>anonymous field</i>.
Such a field type must be specified as
a type name <code>T</code> or as a pointer to a type name <code>*T</code>,
and <code>T</code> itself, may not be
a pointer or interface type. The unqualified type name acts as the field identifier.
</p>
<pre>
// A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
struct {
T1; // the field name is T1
*T2; // the field name is T2
P.T3; // the field name is T3
*P.T4; // the field name is T4
x, y int;
}
</pre>
<p>
The unqualified type name of an anonymous field must not conflict with the
field identifier (or unqualified type name for an anonymous field) of any
other field within the struct. The following declaration is illegal:
</p>
<pre>
struct {
T; // conflicts with anonymous field *T and *P.T
*T; // conflicts with anonymous field T and *P.T
*P.T; // conflicts with anonymous field T and *T
}
</pre>
<p>
Fields and methods (§Method declarations) of an anonymous field are
promoted to be ordinary fields and methods of the struct (§Selectors).
</p>
<p>
A field declaration may be followed by an optional string literal <i>tag</i>, which
becomes an attribute for all the identifiers in the corresponding
field declaration. The tags are made
visible through a reflection library (TODO: reference?)
but are otherwise ignored.
</p>
<pre>
// A struct corresponding to the EventIdMessage protocol buffer.
// The tag strings define the protocol buffer field numbers.
struct {
time_usec uint64 "field 1";
server_ip uint32 "field 2";
process_id uint32 "field 3";
}
</pre>
<h3>Pointer types</h3>
<p>
A pointer type denotes the set of all pointers to variables of a given
type, called the <i>base type</i> of the pointer.
A pointer value may be <code>nil</code>.
</p>
<pre class="grammar">
PointerType = "*" BaseType .
BaseType = Type .
</pre>
<pre>
*int
*map[string] *chan int
</pre>
<h3>Function types</h3>
<p>
A function type denotes the set of all functions with the same parameter
and result types.
A function value may be <code>nil</code>.
</p>
<pre class="grammar">
FunctionType = "func" Signature .
Signature = Parameters [ Result ] .
Result = Parameters | CompleteType .
Parameters = "(" [ ParameterList ] ")" .
ParameterList = ParameterDecl { "," ParameterDecl } .
ParameterDecl = [ IdentifierList ] ( CompleteType | "..." ) .
</pre>
<p>
Within a list of parameters or results, the names (IdentifierList)
must either all be present or all be absent. If present, each name
stands for one item (parameter or result) of the specified type; if absent, each
type stands for one item of that type. Parameter and result
lists are always parenthesized except that if there is exactly
one unnamed result that is not a function type it may writen as an unparenthesized type.
The types of parameters and results must be complete.
(TODO: is completeness necessary?)
</p>
<p>
For the last parameter only, instead of a type one may write
<code>...</code> to indicate that the function may be invoked with
zero or more additional arguments of any
type. If parameters of such a function are named, the final identifier
list must be a single name, that of the <code>...</code> parameter.
</p>
<pre>
func ()
func (x int)
func () int
func (string, float, ...)
func (a, b int, z float) bool
func (a, b int, z float) (bool)
func (a, b int, z float, opt ...) (success bool)
func (int, int, float) (float, *[]int)
func (n int) (func (p* T))
</pre>
<h3>Interface types</h3>
<p>
An interface type specifies an unordered set of methods. A variable
of interface type can store, dynamically, any value that implements
at least that set of methods.
An interface value may be <code>nil</code>.
</p>
<pre class="grammar">
InterfaceType = "interface" "{" [ MethodSpecList ] "}" .
MethodSpecList = MethodSpec { ";" MethodSpec } [ ";" ] .
MethodSpec = IdentifierList Signature | InterfaceTypeName .
InterfaceTypeName = TypeName .
</pre>
<pre>
// A simple File interface
interface {
Read, Write (b Buffer) bool;
Close ();
}
</pre>
<p>
Any type (including interface types) whose interface includes,
possibly as a subset, the complete set of methods of an interface <code>I</code>
is said to implement interface <code>I</code>.
For instance, if two types <code>S1</code> and <code>S2</code>
have the methods
</p>
<pre>
func (p T) Read(b Buffer) bool { return ... }
func (p T) Write(b Buffer) bool { return ... }
func (p T) Close() { ... }
</pre>
<p>
(where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
then the <code>File</code> interface is implemented by both <code>S1</code> and
<code>S2</code>, regardless of what other methods
<code>S1</code> and <code>S2</code> may have or share.
</p>
<p>
A type implements any interface comprising any subset of its methods
and may therefore implement several distinct interfaces. For
instance, all types implement the <i>empty interface</i>:
</p>
<pre>
interface { }
</pre>
<p>
Similarly, consider this interface specification,
which appears within a type declaration (§Type declarations)
to define an interface called <code>Lock</code>:
</p>
<pre>
type Lock interface {
Lock, Unlock ();
}
</pre>
<p>
If <code>S1</code> and <code>S2</code> also implement
</p>
<pre>
func (p T) Lock() { ... }
func (p T) Unlock() { ... }
</pre>
<p>
they implement the <code>Lock</code> interface as well
as the <code>File</code> interface.
</p>
<p>
An interface may contain an interface type name <code>T</code>
in place of a method specification.
In this notation, <code>T</code> must denote a different, complete interface type
and the effect is equivalent to enumerating the methods of <code>T</code> explicitly
in the interface.
</p>
<pre>
type ReadWrite interface {
Read, Write (b Buffer) bool;
}
type File interface {
ReadWrite; // same as enumerating the methods in ReadWrite
Lock; // same as enumerating the methods in Lock
Close();
}
</pre>
<h3>Map types</h3>
<p>
A map is an unordered group of elements of one type, called the
value type, indexed by a set of unique <i>keys</i> of another type,
called the key type. Both key and value types must be complete.
(§Types).
(TODO: is completeness necessary here?)
A map value may be <code>nil</code>.
</p>
<pre class="grammar">
MapType = "map" "[" KeyType "]" ValueType .
KeyType = CompleteType .
ValueType = CompleteType .
</pre>
<p>
The comparison operators <code>==</code> and <code>!=</code>
(§Comparison operators) must be fully defined for operands of the
key type; thus the key type must be a basic, pointer, interface,
map, or channel type. If the key type is an interface type, these
comparison operators must be defined for the dynamic key values;
failure will cause a run-time error.
</p>
<pre>
map [string] int
map [*T] struct { x, y float }
map [string] interface {}
</pre>
<p>
The number of elements is called the length and is never negative.
The length of a map <code>m</code> can be discovered using the
built-in function <code>len(m)</code> and may change during execution.
The value of an uninitialized map is <code>nil</code>.
</p>
<p>
Upon creation, a map is empty. Values may be added and removed
during execution using special forms of assignment (§Assignments).
A new, empty map value is made using the built-in
function <code>make</code>, which takes the map type and an optional
capacity hint as arguments:
</p>
<pre>
make(map[string] int)
make(map[string] int, 100)
</pre>
<p>
The initial capacity does not bound its size:
maps grow to accommodate the number of items
stored in them.
</p>
<h3>Channel types</h3>
<p>
A channel provides a mechanism for two concurrently executing functions
to synchronize execution and communicate by passing a value of a
specified element type. The element type must be complete (§Types).
(TODO: is completeness necessary here?)
A channel value may be <code>nil</code>.
</p>
<pre class="grammar">
ChannelType = Channel | SendChannel | RecvChannel .
Channel = "chan" ValueType .
SendChannel = "chan" "<-" ValueType .
RecvChannel = "<-" "chan" ValueType .
</pre>
<p>
Upon creation, a channel can be used both to send and to receive values.
By conversion or assignment, a channel may be constrained only to send or
to receive. This constraint is called a channel's <i>direction</i>; either
<i>send</i>, <i>receive</i>, or <i>bi-directional</i> (unconstrained).
</p>
<pre>
chan T // can be used to send and receive values of type T
chan <- float // can only be used to send floats
<-chan int // can only be used to receive ints
</pre>
<p>
The value of an uninitialized channel is <code>nil</code>. A new, initialized channel
value is made using the built-in function <code>make</code>,
which takes the channel type and an optional capacity as arguments:
</p>
<pre>
make(chan int, 100)
</pre>
<p>
The capacity, in number of elements, sets the size of the buffer in the channel. If the
capacity is greater than zero, the channel is asynchronous and, provided the
buffer is not full, sends can succeed without blocking. If the capacity is zero
or absent, the communication succeeds only when both a sender and receiver are ready.
</p>
<h2>General properties of types and values</h2>
<p>
Types may be <i>different</i>, <i>structurally equal</i> (or just <i>equal</i>),
or <i>identical</i>.
Go is <i>type safe</i>: different types cannot be mixed
in binary operations and values cannot be assigned to variables of different
types. Values can be assigned to variables of equal type.
</p>
<h3>Type equality and identity </h3>
<p>
Two type names denote equal types if the types in the corresponding declarations
are equal (§Declarations and Scope).
Two type literals specify equal types if they have the same
literal structure and corresponding components have equal types.
In detail:
</p>
<ul>
<li>Two pointer types are equal if they have equal base types.</li>
<li>Two array types are equal if they have equal element types and
the same array length.</li>
<li>Two struct types are equal if they have the same sequence of fields,
with the same names and equal types. Two anonymous fields are
considered to have the same name.</li>
<li>Two function types are equal if they have the same number of parameters
and result values and if corresponding parameter and result types are
the same. All "..." parameters have equal type.
Parameter and result names are not required to match.</li>
<li>Two slice types are equal if they have equal element types.</li>
<li>Two channel types are equal if they have equal value types and
the same direction.</li>
<li>Two map types are equal if they have equal key and value types.</li>
<li>Two interface types are equal if they have the same set of methods
with the same names and equal function types. The order
of the methods is irrelevant.</li>
</ul>
<p>
Type identity is more stringent than type equality.
It requires for type names
that they originate in the same type declaration, while for equality it requires
only that they originate in equal type declarations.
Also, the names of parameters and results must match for function types.
In all other respects, the definition of type identity is the
same as for type equality listed above but with ``identical''
substitued for ``equal''.
</p>
<p>
By definition, identical types are also equal types.
Two types are different if they are not equal.
</p>
<p>
Given the declarations
</p>
<pre>
type (
T0 []string;
T1 []string
T2 struct { a, b int };
T3 struct { a, c int };
T4 func (int, float) *T0
T5 func (x int, y float) *[]string
)
</pre>
<p>
these types are equal:
</p>
<pre>
T0 and T0
T0 and T1
T0 and []string
T4 and T5
T3 and struct { a int; c int }
</pre>
<p>
<code>T2</code> and <code>T3</code> are not equal because
they have different field names.
</p>
<p>
These types are identical:
</p>
<pre>
T0 and T0
[]int and []int
struct { a, b *T5 } and struct { a, b *T5 }
</pre>
<p>
<code>T0</code> and <code>T1</code> are equal but not
identical because they have distinct declarations.
</p>
<h3>Assignment compatibility</h3>
<p>
Values of any type may always be assigned to variables
of equal static type. Some types and values have conditions under which they may
be assigned to different types:
</p>
<ul>
<li>
The predeclared constant <code>nil</code> can be assigned to any
pointer, function, slice, map, channel, or interface variable.
<li>
Arrays can be assigned to slice variables with equal element type.
When assigning to a slice variable, the array is not copied but a
slice comprising the entire array is created.
</li>
<li>
A value can be assigned to an interface variable if the static
type of the value implements the interface.
</li>
<li>
A value of bidirectional channel type can be assigned to any channel
variable of equal channel value type.
</li>
</ul>
<h3>Comparison compatibility</h3>
<p>
Values of any type may be compared to other values of equal static
type. Values of numeric and string type may be compared using the
full range of comparison operators as described in §Comparison operators;
booleans may be compared only for equality or inequality.
</p>
<p>
Values of composite type may be
compared for equality or inequality using the <code>==</code> and
<code>!=</code> operators, with the following provisos:
</p>
<ul>
<li>
Arrays and structs may not be compared to anything.
</li>
<li>
A slice value may only be compared explicitly against <code>nil</code>.
A slice value is equal to <code>nil</code> if it has been assigned the explicit
value <code>nil</code> or if it is a variable (or array element,
field, etc.) that has not been modified since it was created
uninitialized.
</li>
<li>
Similarly, an interface value is equal to <code>nil</code> if it has
been assigned the explicit value <code>nil</code> or if it is a
variable (or array element, field, etc.) that has not been modified
since it was created uninitialized.
</li>
<li>
For types that can be compared to <code>nil</code>,
two values of the same type are equal if they both equal <code>nil</code>,
unequal if one equals <code>nil</code> and one does not.
</li>
<li>
Pointer values are equal if they point to the same location.
</li>
<li>
Function values are equal if they refer to the same function.
</li>
<li>
Channel and map values are equal if they were created by the same call to <code>make</code>
(§Making slices, maps, and channels).
</li>
<li>
Interface values may be compared if they have the same static type.
They will be equal only if they have the same dynamic type and the underlying values are equal.
</li>
</ul>
<hr/>
<h2>Declarations and Scope</h2>
<p>
A declaration binds an identifier to a language entity such as
a variable or function and specifies properties such as its type.
Every identifier in a program must be declared.
</p>
<pre class="grammar">
Declaration = ConstDecl | TypeDecl | VarDecl | FunctionDecl | MethodDecl .
</pre>
<p>
The <i>scope</i> of an identifier is the extent of source text within which the
identifier denotes the bound entity. No identifier may be declared twice in a
single scope, but inner blocks can declare a new entity with the same
identifier, in which case the scope created by the outer declaration excludes
that created by the inner.
</p>
<p>
There are levels of scoping in effect before each source file is compiled.
In order from outermost to innermost:
</p>
<ol>
<li>The <i>universe</i> scope contains all predeclared identifiers.</li>
<li>An implicit scope contains only the package name.</li>
<li>The <i>package-level</i> scope surrounds all declarations at the
top level of the file, that is, outside the body of any
function or method. That scope is shared across all
source files within the package (§Packages), allowing
package-level identifiers to be shared between source
files.</li>
</ol>
<p>
The scope of an identifier depends on the entity declared:
</p>
<ol>
<li> The scope of predeclared identifiers is the universe scope.</li>
<li> The scope of an identifier denoting a type, function or package
extends from the point of the identifier in the declaration
to the end of the innermost surrounding block.</li>
<li> The scope of a constant or variable extends textually from
the end of its declaration to the end of the innermost
surrounding block. If the variable is declared in the
<i>init</i> statement of an <code>if</code>, <code>for</code>,
or <code>switch </code> statement, the
innermost surrounding block is the block associated
with that statement.</li>
<li> The scope of a parameter or result is the body of the
corresponding function.</li>
<li> The scope of a field or method is selectors for the
corresponding type containing the field or method (§Selectors).</li>
<li> The scope of a label is a special scope emcompassing
the body of the innermost surrounding function, excluding
nested functions. Labels do not conflict with non-label identifiers.</li>
</ol>
<h3>Predeclared identifiers</h3>
<p>
The following identifiers are implicitly declared in the outermost scope:
</p>
<pre class="grammar">
Basic types:
bool byte float32 float64 int8 int16 int32 int64
string uint8 uint16 uint32 uint64
Architecture-specific convenience types:
float int uint uintptr
Constants:
true false iota nil
Functions:
cap len make new panic panicln print println
(TODO: typeof??)
Packages:
sys (TODO: does sys endure?)
</pre>
<h3>Exported identifiers</h3>
<p>
By default, identifiers are visible only within the package in which they are declared.
Some identifiers are <i>exported</i> and can be referenced using
<i>qualified identifiers</i> in other packages (§Qualified identifiers).
If an identifier satisfies these two conditions:
</p>
<ol>
<li>the first character of the identifier's name is a Unicode upper case letter;
<li>the identifier is declared at the package level or is a field or method of a type
declared at the top level;
</ol>
<p>
it will be exported automatically.
</p>
<h3>Const declarations</h3>
<p>
A constant declaration binds a list of identifiers (the names of
the constants) to the values of a list of constant expressions
(§Constant expressions). The number of identifiers must be equal
to the number of expressions, and the n<sup>th</sup> identifier on
the left is bound to value of the n<sup>th</sup> expression on the
right.
</p>
<pre class="grammar">
ConstDecl = "const" ( ConstSpec | "(" [ ConstSpecList ] ")" ) .
ConstSpecList = ConstSpec { ";" ConstSpec } [ ";" ] .
ConstSpec = IdentifierList [ CompleteType ] [ "=" ExpressionList ] .
IdentifierList = identifier { "," identifier } .
ExpressionList = Expression { "," Expression } .
CompleteType = Type .
</pre>
<p>
If the type (CompleteType) is omitted, the constants take the
individual types of the corresponding expressions, which may be
<i>ideal integer</i> or <i>ideal float</i> (§Ideal number). If the type
is present, all constants take the type specified, and the types
of all the expressions must be assignment-compatible
with that type.
</p>
<pre>
const Pi float64 = 3.14159265358979323846
const E = 2.718281828
const (
size int64 = 1024;
eof = -1;
)
const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo"
const u, v float = 0, 3 // u = 0.0, v = 3.0
</pre>
<p>
Within a parenthesized <code>const</code> declaration list the
expression list may be omitted from any but the first declaration.
Such an empty list is equivalent to the textual substitution of the
first preceding non-empty expression list.
(TODO: Substitute type from that declaration too?)
Omitting the list of expressions is therefore equivalent to
repeating the previous list. The number of identifiers must be equal
to the number of expressions in the previous list.
Together with the <code>iota</code> constant generator
(§Iota) this mechanism permits light-weight declaration of sequential values:
</p>
<pre>
const (
Sunday = iota;
Monday;
Tuesday;
Wednesday;
Thursday;
Friday;
Partyday;
numberOfDays; // this constant is not exported
)
</pre>
<h3>Iota</h3>
<p>
Within a constant declaration, the predeclared pseudo-constant
<code>iota</code> represents successive integers. It is reset to 0
whenever the reserved word <code>const</code> appears in the source
and increments with each semicolon. It can be used to construct a
set of related constants:
</p>
<pre>
const ( // iota is reset to 0
c0 = iota; // c0 == 0
c1 = iota; // c1 == 1
c2 = iota // c2 == 2
)
const (
a = 1 << iota; // a == 1 (iota has been reset)
b = 1 << iota; // b == 2
c = 1 << iota; // c == 4
)
const (
u = iota * 42; // u == 0 (ideal integer)
v float = iota * 42; // v == 42.0 (float)
w = iota * 42; // w == 84 (ideal integer)
)
const x = iota; // x == 0 (iota has been reset)
const y = iota; // y == 0 (iota has been reset)
</pre>
<p>
Within an ExpressionList, the value of each <code>iota</code> is the same because
it is only incremented at a semicolon:
</p>
<pre>
const (
bit0, mask0 = 1 << iota, 1 << iota - 1; // bit0 == 1, mask0 == 0
bit1, mask1; // bit1 == 2, mask1 == 1
bit2, mask2; // bit2 == 4, mask2 == 3
)
</pre>
<p>
This last example exploits the implicit repetition of the
last non-empty expression list.
</p>
<h3>Type declarations</h3>
<p>
A type declaration binds an identifier, the <i>type name</i>,
to a new type. <font color=red>TODO: what exactly is a "new type"?</font>
</p>
<pre class="grammar">
TypeDecl = "type" ( TypeSpec | "(" [ TypeSpecList ] ")" ) .
TypeSpecList = TypeSpec { ";" TypeSpec } [ ";" ] .
TypeSpec = identifier ( Type | "struct" | "interface" ) .
</pre>
<pre>
type IntArray [16] int
type (
Point struct { x, y float };
Polar Point
)
type Comparable interface
type TreeNode struct {
left, right *TreeNode;
value *Comparable;
}
type Comparable interface {
cmp(Comparable) int
}
</pre>
<h3>Variable declarations</h3>
<p>
A variable declaration creates a variable, binds an identifier to it and
gives it a type and optionally an initial value.
The type must be complete (§Types).
</p>
<pre class="grammar">
VarDecl = "var" ( VarSpec | "(" [ VarSpecList ] ")" ) .
VarSpecList = VarSpec { ";" VarSpec } [ ";" ] .
VarSpec = IdentifierList ( CompleteType [ "=" ExpressionList ] | "=" ExpressionList ) .
</pre>
<pre>
var i int
var U, V, W float
var k = 0
var x, y float = -1.0, -2.0
var (
i int;
u, v, s = 2.0, 3.0, "bar"
)
</pre>
<p>
If there are expressions, their number must be equal
to the number of identifiers, and the n<sup>th</sup> variable
is initialized to the value of the n<sup>th</sup> expression.
Otherwise, each variable is initialized to the <i>zero</i>
of the type (§The zero value).
The expressions can be general expressions; they need not be constants.
</p>
<p>
Either the type or the expression list must be present. If the
type is present, it sets the type of each variable and the expressions
(if any) must be assignment-compatible to that type. If the type
is absent, the variables take the types of the corresponding
expressions.
</p>
<p>
If the type is absent and the corresponding expression is a constant
expression of ideal integer or ideal float type, the type of the
declared variable is <code>int</code> or <code>float</code>
respectively:
</p>
<pre>
var i = 0 // i has type int
var f = 3.1415 // f has type float
</pre>
<h3>Short variable declarations</h3>
A <i>short variable declaration</i> uses the syntax
<pre class="grammar">
SimpleVarDecl = IdentifierList ":=" ExpressionList .
</pre>
and is shorthand for the declaration syntax
<pre class="grammar">
"var" IdentifierList = ExpressionList .
</pre>
<pre>
i, j := 0, 10;
f := func() int { return 7; }
ch := new(chan int);
</pre>
<p>
Unlike regular variable declarations, short variable declarations
can be used, by analogy with tuple assignment (§Assignments), to
receive the individual elements of a multi-valued expression such
as a call to a multi-valued function. In this form, the ExpressionList
must be a single such multi-valued expression, the number of
identifiers must equal the number of values, and the declared
variables will be assigned the corresponding values.
</p>
<pre>
r, w := os.Pipe(fd); // os.Pipe() returns two values
</pre>
<p>
Short variable declarations may appear only inside functions.
In some contexts such as the initializers for <code>if</code>,
<code>for</code>, or <code>switch</code> statements,
they can be used to declare local temporary variables (§Statements).
</p>
<h3>Function declarations</h3>
<p>
A function declaration binds an identifier to a function (§Function types).
</p>
<pre class="grammar">
FunctionDecl = "func" identifier Signature [ Block ] .
</pre>
<pre>
func min(x int, y int) int {
if x < y {
return x;
}
return y;
}
</pre>
<p>
A function must be declared or forward-declared before it can be invoked (§Forward declarations).
Implementation restriction: Functions can only be declared at the package level.
</p>
<h3>Method declarations</h3>
<p>
A method declaration binds an identifier to a method,
which is a function with a <i>receiver</i>.
</p>
<pre class="grammar">
MethodDecl = "func" Receiver identifier Signature [ Block ] .
Receiver = "(" [ identifier ] [ "*" ] TypeName ")" .
</pre>
<p>
The receiver type must be a type name or a pointer to a type name,
and that name is called the <i>receiver base type</i> or just <i>base type</i>.
The base type must not be a pointer type and must be
declared in the same source file as the method.
The method is said to be <i>bound</i> to the base type
and is visible only within selectors for that type
(§Type declarations, §Selectors).
</p>
<p>
All methods bound to a base type must have the same receiver type,
either all pointers to the base type or all the base type itself.
Given type <code>Point</code>, the declarations
</p>
<pre>
func (p *Point) Length() float {
return Math.sqrt(p.x * p.x + p.y * p.y);
}
func (p *Point) Scale(factor float) {
p.x = p.x * factor;
p.y = p.y * factor;
}
</pre>
<p>
bind the methods <code>Length</code> and <code>Scale</code>
to the base type <code>Point</code>.
</p>
<p>
If the
receiver's value is not referenced inside the the body of the method,
its identifier may be omitted in the declaration. The same applies in
general to parameters of functions and methods.
</p>
<p>
Methods can be declared
only after their base type is declared or forward-declared, and invoked
only after their own declaration or forward-declaration (§Forward declarations).
Implementation restriction: They can only be declared at package level.
</p>
<p>
The type of a method is the type of a function with the receiver as first
argument. For instance, the method <code>Scale</code> has type
</p>
<pre>
(p *Point, factor float)
</pre>
<p>
However, a function declared this way is not a method.
</p>
<h3>Forward declarations</h3>
<p>
Mutually-recursive types require that one be
<i>forward declared</i> so that it may be named in the other.
A forward declaration of a type omits the block containing the fields
or methods of the type.
</p>
<pre>
type List struct // forward declaration of List
type Item struct {
value int;
next *List;
}
type List struct {
head, tail *Item
}
</pre>
<p>
A forward-declared type is incomplete (§Types)
until it is fully declared. The full declaration must follow
before the end of the block containing the forward declaration;
it cannot be contained in an inner block.
</p>
<p>
Functions and methods may similarly be forward-declared by omitting their body.
</p>
<pre>
func F(a int) int // forward declaration of F
func G(a, b int) int {
return F(a) + F(b)
}
func F(a int) int {
if a <= 0 { return 0 }
return G(a-1, b+1)
}
</pre>
<hr/>
<h2>Expressions</h2>
<p>
An expression specifies the computation of a value by applying
operators and functions to operands. An expression has a value and
a type.
</p>
<h3>Operands</h3>
Operands denote the elementary values in an expression.
<pre class="grammar">
Operand = Literal | QualifiedIdent | "(" Expression ")" .
Literal = BasicLit | CompositeLit | FunctionLit .
BasicLit = int_lit | float_lit | char_lit | StringLit .
StringLit = string_lit { string_lit } .
</pre>
<h3>Constants</h3>
<p>
A <i>constant</i> is a literal of a basic type
(including the predeclared constants <code>true</code>, <code>false</code>
and <code>nil</code>
and values denoted by <code>iota</code>)
or a constant expression (§Constant expressions).
Constants have values that are known at compile time.
</p>
<h3>Qualified identifiers</h3>
<p>
A qualified identifier is an identifier qualified by a package name prefix.
</p>
<pre class="grammar">
QualifiedIdent = [ [ LocalPackageName "." ] PackageName "." ] identifier .
LocalPackageName = identifier .
PackageName = identifier .
</pre>
<p>
A qualified identifier accesses an identifier in
a separate package. The identifier must be exported by that package, which
means that it must begin with a Unicode upper case letter (§Exported identifiers).
</p>
<p>
The LocalPackageName is that of the package in which the qualified identifier
appears and is only necessary to access names hidden by intervening declarations
of a package-level identifier.
</p>
<pre>
Math.Sin
mypackage.hiddenName
mypackage.Math.Sin // if Math is declared in an intervening scope
</pre>
TODO: 6g does not implement LocalPackageName. Is this new?
Is it needed?
<h3>Composite literals</h3>
<p>
Composite literals construct values for structs, arrays, slices, and maps
and create a new value each time they are evaluated.
They consist of the type of the value
followed by a brace-bound list of expressions,
or a list of expression pairs for map literals.
</p>
<pre class="grammar">
CompositeLit = LiteralType "{" [ ( ExpressionList | ExprPairList ) [ "," ] ] "}" .
LiteralType = StructType | ArrayType | "[" "..." "]" ElementType |
SliceType | MapType | TypeName .
ExprPairList = ExprPair { "," ExprPair } .
ExprPair = Expression ":" Expression .
</pre>
<p>
The LiteralType must be a struct, array, slice, or map type.
(The grammar enforces this constraint except when the type is given
as a TypeName.)
The types of the expressions must be assignment compatible to
the respective field, element, and key types of the LiteralType;
there is no additional conversion.
</p>
<pre>
type Rat struct { num, den int }
type Num struct { r Rat; f float; s string }
</pre>
<p>
one may write
</p>
<pre>
pi := Num{Rat{22, 7}, 3.14159, "pi"};
</pre>
<p>
The length of an array literal is the length specified in the LiteralType.
If fewer elements than the length are provided in the literal, the missing
elements are set to the zero value for the array element type.
It is an error to provide more elements than specified in the type. The
notation <code>...</code> specifies an array length equal
to the number of elements in the literal.
</p>
<pre>
buffer := [10]string{}; // len(buffer) == 10
primes := [6]int{2, 3, 5, 7, 9, 11}; // len(primes) == 6
days := [...]string{"Sat", "Sun"}; // len(days) == 2
</pre>
<p>
A slice literal describes the entire underlying array literal.
Thus, the length and capacity of a slice literal is the number of elements
(of the array) provided in the literal. A slice literal has the form
</p>
<pre>
[]T{x1, x2, ... xn}
</pre>
<p>
and is a shortcut for a slice operation applied to an array literal:
</p>
<pre>
[n]T{x1, x2, ... xn}[0 : n]
</pre>
<p>
In map literals only, the list contains
key-value pairs separated by a colon:
</p>
<pre>
m := map[string]int{"good": 0, "bad": 1, "indifferent": 7};
</pre>
<p>
A parsing ambiguity arises when a composite literal using the
TypeName form of the LiteralType appears in the condition of an
"if", "for", or "switch" statement, because the braces surrounding
the expressions in the literal are confused with those introducing
a block of statements. To resolve the ambiguity in this rare case,
the composite literal must appear within
parentheses.
</p>
<pre>
if x == (T{a,b,c}[i]) { ... }
if (x == T{a,b,c}[i]) { ... }
</pre>
<h3>Function literals</h3>
<p>
A function literal represents an anonymous function.
It consists of a specification of the function type and a function body.
</p>
<pre class="grammar">
FunctionLit = "func" Signature Block .
Block = "{" StatementList "}" .
</pre>
<pre>
func (a, b int, z float) bool { return a*b < int(z) }
</pre>
<p>
A function literal can be assigned to a variable or invoked directly.
</p>
<pre>
f := func(x, y int) int { return x + y }
func(ch chan int) { ch <- ACK } (reply_chan)
</pre>
<p>
Function literals are <i>closures</i>: they may refer to variables
defined in a surrounding function. Those variables are then shared between
the surrounding function and the function literal, and they survive as long
as they are accessible.
</p>
<h3>Primary expressions</h3>
<pre class="grammar">
PrimaryExpr =
Operand |
PrimaryExpr Selector |
PrimaryExpr Index |
PrimaryExpr Slice |
PrimaryExpr TypeAssertion |
PrimaryExpr Call .
Selector = "." identifier .
Index = "[" Expression "]" .
Slice = "[" Expression ":" Expression "]" .
TypeAssertion = "." "(" Type ")" .
Call = "(" [ ExpressionList ] ")" .
</pre>
<pre>
x
2
(s + ".txt")
f(3.1415, true)
Point{1, 2}
m["foo"]
s[i : j + 1]
obj.color
Math.sin
f.p[i].x()
</pre>
<h3>Selectors</h3>
<p>
A primary expression of the form
</p>
<pre>
x.f
</pre>
<p>
denotes the field or method <code>f</code> of the value denoted by <code>x</code>
(or of <code>*x</code> if
<code>x</code> is of pointer type). The identifier <code>f</code>
is called the (field or method)
<i>selector</i>.
The type of the expression is the type of <code>f</code>.
</p>
<p>
A selector <code>f</code> may denote a field or method <code>f</code> of
a type <code>T</code>, or it may refer
to a field or method <code>f</code> of a nested anonymous field of
<code>T</code>.
The number of anonymous fields traversed
to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
The depth of a field or method <code>f</code>
declared in <code>T</code> is zero.
The depth of a field or method <code>f</code> declared in
an anonymous field <code>A</code> in <code>T</code> is the
depth of <code>f</code> in <code>A</code> plus one.
</p>
<p>
The following rules apply to selectors:
</p>
<ol>
<li>
For a value <code>x</code> of type <code>T</code> or <code>*T</code>
where <code>T</code> is not an interface type,
<code>x.f</code> denotes the field or method at the shallowest depth
in <code>T</code> where there
is such an <code>f</code>.
If there is not exactly one <code>f</code> with shallowest depth, the selector
expression is illegal.
</li>
<li>
For a variable <code>x</code> of type <code>I</code> or <code>*I</code>
where <code>I</code> is an interface type,
<code>x.f</code> denotes the actual method with name <code>f</code> of the value assigned
to <code>x</code> if there is such a method.
If no value or <code>nil</code> was assigned to <code>x</code>, <code>x.f</code> is illegal.
</li>
<li>
In all other cases, <code>x.f</code> is illegal.
</ol>
<p>
Selectors automatically dereference pointers as necessary.
If <code>x</code> is of pointer type, <code>x.y</code>
is shorthand for <code>(*x).y</code>; if <code>y</code>
is also of pointer type, <code>x.y.z</code> is shorthand
for <code>(*(*x).y).z</code>, and so on.
If <code>*x</code> is of pointer type, dereferencing
must be explicit;
only one level of automatic dereferencing is provided.
For an <code>x</code> of type <code>T</code> containing an
anonymous field declared as <code>*A</code>,
<code>x.f</code> is a shortcut for <code>(*x.A).f</code>.
</p>
<p>
For example, given the declarations:
</p>
<pre>
type T0 struct {
x int;
}
func (recv *T0) M0()
type T1 struct {
y int;
}
func (recv T1) M1()
type T2 struct {
z int;
T1;
*T0;
}
func (recv *T2) M2()
var p *T2; // with p != nil and p.T1 != nil
</pre>
<p>
one may write:
</p>
<pre>
p.z // (*p).z
p.y // ((*p).T1).y
p.x // (*(*p).T0).x
p.M2 // (*p).M2
p.M1 // ((*p).T1).M1
p.M0 // ((*p).T0).M0
</pre>
<font color=red>
TODO: Specify what happens to receivers.
</font>
<h3>Indexes</h3>
<p>
A primary expression of the form
</p>
<pre>
a[x]
</pre>
<p>
denotes the array or map element of <code>a</code> indexed by <code>x</code>.
The value <code>x</code> is called the
<i>array index</i> or <i>map key</i>, respectively. The following
rules apply:
</p>
<p>
For <code>a</code> of type <code>A</code> or <code>*A</code>
where <code>A</code> is an array type (§Array types):
</p>
<ul>
<li><code>x</code> must be an integer value and <code>0 <= x < len(a)</code>
<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
<code>a[x]</code> is the element type of <code>A</code>
</ul>
<p>
For <code>a</code> of type <code>M</code> or <code>*M</code>
where <code>M</code> is a map type (§Map types):
</p>
<ul>
<li><code>x</code>'s type must be equal to the key type of <code>M</code>
and the map must contain an entry with key <code>x</code> (but see special forms below)
<li><code>a[x]</code> is the map value with key <code>x</code>
and the type of <code>a[x]</code> is the value type of <code>M</code>
</ul>
<p>
Otherwise <code>a[x]</code> is illegal. If the index or key is out of range evaluating
an otherwise legal index expression, a run-time exception occurs.
</p>
<p>
However, if an index expression on a map <code>a</code> of type <code>map[K] V</code>
is used in an assignment of one of the special forms
</p>
<pre>
r, ok = a[x]
r, ok := a[x]
</pre>
<p>
the result of the index expression is a pair of values with types
<code>(K, bool)</code>.
If the key is present in the map,
the expression returns the pair <code>(a[x], true)</code>;
otherwise it returns <code>(Z, false)</code> where <code>Z</code> is
the zero value for <code>V</code> (§The zero value).
No run-time exception occurs in this case.
The index expression in this construct thus acts like a function call
returning a value and a boolean indicating success. (§Assignments)
</p>
<p>
Similarly, if an assignment to a map has the special form
</p>
<pre>
a[x] = r, ok
</pre>
<p>
and boolean <code>ok</code> has the value <code>false</code>,
the entry for key <code>x</code> is deleted from the map; if
<code>ok</code> is <code>true</code>, the construct acts like
a regular assignment to an element of the map.
</p>
<h3>Slices</h3>
<p>
Strings, arrays, and slices can be <i>sliced</i> to construct substrings or descriptors
of subarrays. The index expressions in the slice select which elements appear
in the result. The result has indexes starting at 0 and length equal to the
difference in the index values in the slice. After slicing the array <code>a</code>
</p>
<pre>
a := [4]int{1, 2, 3, 4};
s := a[1:3];
</pre>
<p>
the slice <code>s</code> has type <code>[]int</code>, length 2, capacity 3, and elements
</p>
<pre>
s[0] == 2
s[1] == 3
</pre>
<p>
The slice length must be non-negative.
For arrays or strings, the indexes
<li>lo</li> and <li>hi</li> must satisfy
0 <= <li>lo</li> <= <li>hi</li> <= length;
for slices, the upper bound is the capacity rather than the length.
<p>
If the sliced operand is a string, the result of the slice operation is another, new
string (§String types). If the sliced operand is an array or slice, the result
of the slice operation is a slice (§Slice types).
</p>
<h3>Type assertions</h3>
<p>
For an expression <code>x</code> and a type <code>T</code>, the primary expression
</p>
<pre>
x.(T)
</pre>
<p>
asserts that the value stored in <code>x</code> is of type <code>T</code>.
The notation <code>x.(T)</code> is called a <i>type assertion</i>.
The type of <code>x</code> must be an interface type.
</p>
<p>
More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
that the dynamic type of <code>x</code> is identical to the type <code>T</code>
(§Type equality and identity).
If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
of <code>T</code> implements the interface <code>T</code> (§Interface types).
<font color=red>TODO: gri wants an error if x is already of type T.</font>
</p>
<p>
If the type assertion holds, the value of the expression is the value
stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, a run-time
exception occurs. In other words, even though the dynamic type of <code>x</code>
is known only at run-time, the type of <code>x.(T)</code> is
known to be <code>T</code> in a correct program.
</p>
<p>
If a type assertion is used in an assignment of one of the special forms,
</p>
<pre>
v, ok = x.(T)
v, ok := x.(T)
</pre>
<p>
the result of the assertion is a pair of values with types <code>(T, bool)</code>.
If the assertion holds, the expression returns the pair <code>(x.(T), true)</code>;
otherwise, the expression returns <code>(Z, false)</code> where <code>Z</code>
is the zero value for type <code>T</code> (§The zero value).
No run-time exception occurs in this case.
The type assertion in this construct thus acts like a function call
returning a value and a boolean indicating success. (§Assignments)
</p>
<h3>Calls</h3>
<p>
Given an expression <code>f</code> of function type
<code>F</code>,
</p>
<pre>
f(a1, a2, ... an)
</pre>
<p>
calls <code>f</code> with arguments <code>a1, a2, ... an</code>.
The arguments must be single-valued expressions
assignment compatible with the parameters of
<code>F</code> and are evaluated before the function is called.
The type of the expression is the result type
of <code>F</code>.
A method invocation is similar but the method itself
is specified as a selector upon a value of the receiver type for
the method.
</p>
<pre>
Atan2(x, y) // function call
var pt *Point;
pt.Scale(3.5) // method call with receiver pt
</pre>
<p>
If the receiver type of the method is declared as a pointer of type <code>*T</code>,
the actual receiver may be a value of type <code>T</code>;
in such cases method invocation implicitly takes the
receiver's address:
</p>
<pre>
var p Point;
p.Scale(3.5)
</pre>
<p>
There is no distinct method type and there are no method literals.
</p>
<h3>Passing arguments to <code>...</code> parameters</h3>
<p>
When a function <code>f</code> has a <code>...</code> parameter,
it is always the last formal parameter. Within calls to <code>f</code>,
the arguments before the <code>...</code> are treated normally.
After those, an arbitrary number (including zero) of trailing
arguments may appear in the call and are bound to the <code>...</code>
parameter.
</p>
<p>
Within <code>f</code>, the <code>...</code> parameter has static
type <code>interface{}</code> (the empty interface). For each call,
its dynamic type is a structure whose sequential fields are the
trailing arguments of the call. That is, the actual arguments
provided for a <code>...</code> parameter are wrapped into a struct
that is passed to the function instead of the actual arguments.
Using the reflection library (TODO: reference), <code>f</code> may
unpack the elements of the dynamic type to recover the actual
arguments.
</p>
<p>
Given the function and call
</p>
<pre>
func Fprintf(f io.Write, format string, args ...)
Fprintf(os.Stdout, "%s %d", "hello", 23);
</pre>
<p>
Within <code>Fprintf</code>, the dynamic type of <code>args</code> for this
call will be, schematically,
<code> struct { string; int }</code>.
</p>
<p>
As a special case, if a function passes its own <code>...</code> parameter as the argument
for a <code>...</code> in a call to another function with a <code>...</code> parameter,
the parameter is not wrapped again but passed directly. In short, a formal <code>...</code>
parameter is passed unchanged as an actual <code>...</code> parameter.
<h3>Operators</h3>
<p>
Operators combine operands into expressions.
</p>
<pre class="grammar">
Expression = UnaryExpr | Expression binary_op UnaryExpr .
UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
binary_op = log_op | com_op | rel_op | add_op | mul_op .
log_op = "||" | "&&" .
com_op = "<-" .
rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" .
add_op = "+" | "-" | "|" | "^" .
mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" .
unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" .
</pre>
<p>
The operand types in binary operations must be equal, with the following exceptions:
</p>
<ul>
<li>If one operand has numeric type and the other operand is
an ideal number, the ideal number is converted to match the type of
the other operand (§Expressions).</li>
<li>If both operands are ideal numbers, the conversion is to ideal floats
if one of the operands is an ideal float
(relevant for <code>/</code> and <code>%</code>).</li>
<li>The right operand in a shift operation must be always be of unsigned integer type
or an ideal number that can be safely converted into an unsigned integer type
(§Arithmetic operators).</li>
<li>The operands in channel sends differ in type: one is always a channel and the
other is a variable or value of the channel's element type.</li>
<li>When comparing two operands of channel type, the channel value types
must be equal but the channel direction is ignored.</li>
</ul>
<p>
Unary operators have the highest precedence. They are evaluated from
right to left. As the <code>++</code> and <code>--</code> operators form
statements, not expressions, they fall
outside the unary operator hierarchy and apply
to the operand on the left.
As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
<p>
There are six precedence levels for binary operators.
Multiplication operators bind strongest, followed by addition
operators, comparison operators, communication operators,
<code>&&</code> (logical and), and finally <code>||</code> (logical or):
</p>
<pre class="grammar">
Precedence Operator
6 * / % << >> &
5 + - | ^
4 == != < <= > >=
3 <-
2 &&
1 ||
</pre>
<p>
Binary operators of the same precedence associate from left to right.
For instance, <code>x / y / z</code> is the same as <code>(x / y) / z</code>.
</p>
<p>
Examples:
</p>
<pre>
+x
23 + 3*x[i]
x <= f()
^a >> b
f() || g()
x == y + 1 && <-chan_ptr > 0
</pre>
<h3>Arithmetic operators</h3>
<p>
Arithmetic operators apply to numeric types and yield a result of the same
type as the first operand. The four standard arithmetic operators (<code>+</code>,
<code>-</code>, <code>*</code>, <code>/</code>) apply both to integer and
floating point types, while <code>+</code> applies also
to strings; all other arithmetic operators apply to integers only.
</p>
<pre class="grammar">
+ sum integers, floats, strings
- difference integers, floats
* product integers, floats
/ quotient integers, floats
% remainder integers
& bitwise and integers
| bitwise or integers
^ bitwise xor integers
<< left shift integer << unsigned integer
>> right shift integer >> unsigned integer
</pre>
<p>
Strings can be concatenated using the <code>+</code> operator
or the <code>+=</code> assignment operator:
</p>
<pre>
s := "hi" + string(c);
s += " and good bye";
</pre>
<p>
String addition creates a new string by concatenating the operands.
</p>
<p>
For integer values, <code>/</code> and <code>%</code> satisfy the following relationship:
</p>
<pre>
(a / b) * b + a % b == a
</pre>
<p>
with <code>(a / b)</code> truncated towards zero.
Examples:
</p>
<pre>
x y x / y x % y
5 3 1 2
-5 3 -1 -2
5 -3 -1 2
-5 -3 1 -2
</pre>
<p>
If the dividend is positive and the divisor is a constant power of 2,
the division may be replaced by a left shift, and computing the remainder may
be replaced by a bitwise "and" operation:
</p>
<pre>
x x / 4 x % 4 x >> 2 x & 3
11 2 3 2 3
-11 -2 -3 -3 1
</pre>
<p>
The shift operators shift the left operand by the shift count specified by the
right operand. They implement arithmetic shifts if the left operand is a signed
integer and logical shifts if it is an unsigned integer. The shift count must
be an unsigned integer. There is no upper limit on the shift count. Shifts behave
as if the left operand is shifted <code>n</code> times by 1 for a shift
count of <code>n</code>.
As a result, <code>x << 1</code> is the same as <code>x*2</code>
and <code>x >> 1</code> is the same as
<code>x/2</code> truncated towards negative infinity.
</p>
<p>
For integer operands, the unary operators
<code>+</code>, <code>-</code>, and <code>^</code> are defined as
follows:
</p>
<pre class="grammar">
+x is 0 + x
-x negation is 0 - x
^x bitwise complement is m ^ x with m = "all bits set to 1"
</pre>
<p>
For floating point numbers,
<code>+x</code> is the same as <code>x</code>,
while <code>-x</code> is the negation of <code>x</code>.
</p>
<h3>Integer overflow</h3>
<p>
For unsigned integer values, the operations <code>+</code>,
<code>-</code>, <code>*</code>, and <code><<</code> are
computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
the unsigned integer's type
(§Numeric types). Loosely speaking, these unsigned integer operations
discard high bits upon overflow, and programs may rely on ``wrap around''.
</p>
<p>
For signed integers, the operations <code>+</code>,
<code>-</code>, <code>*</code>, and <code><<</code> may legally
overflow and the resulting value exists and is deterministically defined
by the signed integer representation, the operation, and its operands.
No exception is raised as a result of overflow. A
compiler may not optimize code under the assumption that overflow does
not occur. For instance, it may not assume that <code>x < x + 1</code> is always true.
</p>
<h3>Comparison operators</h3>
<p>
Comparison operators yield a boolean result. All comparison operators apply
to basic types except bools.
The operators <code>==</code> and <code>!=</code> apply, at least in some cases,
to all types except arrays and structs.
</p>
<pre class="grammar">
== equal
!= not equal
< less
<= less or equal
> greater
>= greater or equal
</pre>
<p>
Numeric basic types are compared in the usual way.
</p>
<p>
Strings are compared byte-wise (lexically).
</p>
<p>
Booleans are equal if they are either both "true" or both "false".
</p>
<p>
The rules for comparison of composite types are described in the
section on §Comparison compatibility.
</p>
<h3>Logical operators</h3>
<p>
Logical operators apply to boolean operands and yield a boolean result.
The right operand is evaluated conditionally.
</p>
<pre class="grammar">
&& conditional and p && q is "if p then q else false"
|| conditional or p || q is "if p then true else q"
! not !p is "not p"
</pre>
<h3>Address operators</h3>
<!--TODO(r): This section is a mess. Skipping it for now.-->
<p>
<font color=red>TODO: Need to talk about unary "*", clean up section below.</font>
<p>
<font color=red>TODO: This text needs to be cleaned up and go elsewhere, there are no address
operators involved.
</font>
<p>
Methods are a form of function, and a method ``value'' has a function type.
Consider the type T with method M:
<pre>
type T struct {
a int;
}
func (tp *T) M(a int) int;
var t *T;
</pre>
To construct the value of method M, one writes
<pre>
t.M
</pre>
using the variable t (not the type T).
<font color=red>TODO: It makes perfect sense to be able to say T.M (in fact, it makes more
sense then t.M, since only the type T is needed to find the method M, i.e.,
its address). TBD.
</font>
The expression t.M is a function value with type
<pre>
func (t *T, a int) int
</pre>
and may be invoked only as a function, not as a method:
<pre>
var f func (t *T, a int) int;
f = t.M;
x := f(t, 7);
</pre>
Note that one does not write t.f(7); taking the value of a method demotes
it to a function.
In general, given type T with method M and variable t of type T,
the method invocation
<pre>
t.M(args)
</pre>
is equivalent to the function call
<pre>
(t.M)(t, args)
</pre>
<font color=red>
TODO: should probably describe the effect of (t.m) under §Expressions if t.m
denotes a method: Effect is as described above, converts into function.
</font>
<p>
If T is an interface type, the expression t.M does not determine which
underlying type's M is called until the point of the call itself. Thus given
T1 and T2, both implementing interface I with method M, the sequence
<pre>
var t1 *T1;
var t2 *T2;
var i I = t1;
m := i.M;
m(t2, 7);
</pre>
will invoke t2.M() even though m was constructed with an expression involving
t1. Effectively, the value of m is a function literal
<pre>
func (recv I, a int) {
recv.M(a);
}
</pre>
that is automatically created.
<p>
<font color=red>
TODO: Document implementation restriction: It is illegal to take the address
of a result parameter (e.g.: func f() (x int, p *int) { return 2, &x }).
(TBD: is it an implementation restriction or fact?)
</font>
<h3>Communication operators</h3>
<p>
The term <i>channel</i> means "variable of channel type" (§Channel types).
</p>
<p>
The send operation uses the binary operator "<-", which operates on
a channel and a value (expression):
</p>
<pre>
ch <- 3
</pre>
<p>
The send operation sends the value on the channel. Both the channel
and the expression are evaluated before communication begins.
Communication blocks until the send can proceed, at which point the
value is transmitted on the channel. A send can proceed if the
channel is asynchronous and there is room in its buffer or the
channel is synchronous and a receiver is ready.
</p>
<p>
If the send operation appears in an expression context, the value
of the expression is a boolean and the operation is non-blocking.
The value of the boolean reports true if the communication succeeded,
false if it did not. (The channel and
the expression to be sent are evaluated regardless.)
These two examples are equivalent:
</p>
<pre>
ok := ch <- 3;
if ok { print("sent") } else { print("not sent") }
if ch <- 3 { print("sent") } else { print("not sent") }
</pre>
<p>
In other words, if the program tests the value of a send operation,
the send is non-blocking and the value of the expression is the
success of the operation. If the program does not test the value,
the operation blocks until it succeeds.
</p>
<p>
The receive operation uses the prefix unary operator "<-".
The value of the expression is the value received, whose type
is the element type of the channel.
</p>
<pre>
<-ch
</pre>
<p>
The expression blocks until a value is available, which then can
be assigned to a variable or used like any other expression.
If the receive expression does not save the value, the value is
discarded.
</p>
<pre>
v1 := <-ch
v2 = <-ch
f(<-ch)
<-strobe // wait until clock pulse
</pre>
<p>
If a receive expression is used in a tuple assignment of the form
</p>
<pre>
x, ok = <-ch; // or: x, ok := <-ch
</pre>
<p>
the receive operation becomes non-blocking.
If the operation can proceeed, the boolean variable
<code>ok</code> will be set to <code>true</code>
and the value stored in <code>x</code>; otherwise
<code>ok</code> is set
to <code>false</code> and <code>x</code> is set to the
zero value for its type (§The zero value).
</p>
<p>
<font color=red>TODO: Probably in a separate section, communication semantices
need to be presented regarding send, receive, select, and goroutines.</font>
</p>
<h3>Constant expressions</h3>
<p>
Constant expressions may contain only constants, <code>iota</code>,
numeric literals, string literals, and
some constant-valued built-in functions such as <code>unsafe.Sizeof</code>
and <code>len</code> applied to an array.
In practice, constant expressions are those that can be evaluated at compile time.
<p>
The type of a constant expression is determined by the type of its
elements. If it contains only numeric literals, its type is <i>ideal
integer</i> or <i>ideal float</i> (§Ideal number). Whether it is an
integer or float depends on whether the value can be represented
precisely as an integer (123 vs. 1.23).
(TODO: Not precisely true; 1. is an ideal float.)
The nature of the arithmetic
operations within the expression depends, elementwise, on the values;
for example, 3/2 is an integer division yielding 1, while 3./2. is
a floating point division yielding 1.5. Thus
</p>
<pre>
const x = 3./2. + 3/2;
</pre>
<p>
yields a floating point constant of ideal float value 2.5 (1.5 +
1); its constituent expressions are evaluated using distinct rules
for division.
</p>
<p>
Intermediate values and the constants themselves
may require precision significantly larger than any concrete type
in the language. The following are legal declarations:
</p>
<pre>
const Huge = 1 << 100;
const Four int8 = Huge >> 98;
</pre>
<p>
A constant expression may appear in any context, such as assignment
to a variable of any numeric type, as long as the value of the
expression can be represented accurately in that context.
It is erroneous to assign a value with a non-zero fractional part
to an integer, or if the assignment would overflow or underflow,
or in general if the value cannot be represented by the type of
the variable.
For
instance, <code>3</code> can be assigned to any integer variable but also to any
floating point variable, while <code>-1e12</code> can be assigned to a
<code>float32</code>, <code>float64</code>, or even <code>int64</code>
but not <code>uint64</code> or <code>string</code>.
</p>
<hr/>
<h2>Statements</h2>
<p>
Statements control execution.
</p>
<pre class="grammar">
Statement = { Label ":" } UnlabeledStatement .
Label = identifier .
UnlabeledStatement =
Declaration | EmptyStat |
SimpleStat | GoStat | ReturnStat | BreakStat | ContinueStat | GotoStat |
FallthroughStat | Block | IfStat | SwitchStat | SelectStat | ForStat |
DeferStat .
SimpleStat =
ExpressionStat | IncDecStat | Assignment | SimpleVarDecl .
StatementList = Statement { Separator Statement } .
Separator = [ ";" ]
</pre>
<p>
Elements of a list of statements are separated by semicolons,
which may be omitted only if the previous statement:
</p>
<ul>
<li>ends with the closing parenthesis ")" of a list of declarations
(§Declarations and Scope); or</li>
<li>ends with the closing brace "}" of a type declaration
(§Type declarations); or </li>
<li>ends with the closing brace "}" of a block
(including "switch" and "select" statements).
</ul>
<p>
A labeled statement may be the target of a <code>goto</code>,
<code>break</code> or <code>continue</code> statement.
</p>
<pre>
Error: log.Fatal("error encountered")
</pre>
<h3>Empty statements</h3>
<p>
The empty statement does nothing.
</p>
<pre class="grammar">
EmptyStat = .
</pre>
<p>
A statement list can always in effect be terminated with a semicolon by
adding an empty statement.
</p>
<h3>Expression statements</h3>
<p>
Function calls, method calls, and channel operations
can appear in statement context.
</p>
<pre class="grammar">
ExpressionStat = Expression .
</pre>
<pre>
f(x+y)
<-ch
</pre>
<h3>IncDec statements</h3>
<p>
The "++" and "--" statements increment or decrement their operands
by the ideal numeric value 1. As with an assignment, the operand
must be a variable, pointer indirection, field selector or index expression.
</p>
<pre class="grammar">
IncDecStat = Expression ( "++" | "--" ) .
</pre>
<p>
The following assignment statements (§Assignments) are semantically
equivalent:
</p>
<pre class="grammar">
IncDec statement Assignment
x++ x += 1
x-- x -= 1
</pre>
<h3>Assignments</h3>
<pre class="grammar">
Assignment = ExpressionList assign_op ExpressionList .
assign_op = [ add_op | mul_op ] "=" .
</pre>
<p>
Each left-hand side operand must be a variable, pointer indirection,
field selector, or index expression.
</p>
<pre>
x = 1
*p = f()
a[i] = 23
k = <-ch
</pre>
<p>
An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
<code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
<code>y</code> but evalutates <code>x</code>
only once. The <i>op</i><code>=</code> construct is a single token.
</p>
<pre>
a[i] <<= 2
</pre>
<p>
A tuple assignment assigns the individual elements of a multi-valued
operation to a list of variables. There are two forms. In the
first, the right hand operand is a single multi-valued expression
such as a function evaluation or channel or map operation (§Channel
operations, §Map operations) or a type assertion (§Type assertions).
The number of operands on the left
hand side must match the number of values. For instance, If
<code>f</code> is a function returning two values,
</p>
<pre>
x, y = f()
</pre>
<p>
assigns the first value to <code>x</code> and the second to <code>y</code>.
</p>
<p>
In the second form, the number of operands on the left must equal the number
of expressions on the right, each of which must be single-valued.
The expressions on the right are evaluated before assigning to
any of the operands on the left, but otherwise the evaluation
order is unspecified.
</p>
<pre>
a, b = b, a // exchange a and b
</pre>
<p>
In assignments, the type of each value must be assignment compatible
(§Assignment compatibility) with the type of the
operand to which it is assigned.
</p>
<h3>If statements</h3>
<p>
"If" statements specify the conditional execution of two branches
according to the value of a boolean expression. If the expression
evaluates to true, the "if" branch is executed, otherwise, if
present, the "else" branch is executed. A missing condition
is equivalent to <code>true</code>.
</p>
<pre class="grammar">
IfStat = "if" [ [ SimpleStat ] ";" ] [ Expression ] Block [ "else" Statement ] .
</pre>
<pre>
if x > 0 {
return true;
}
</pre>
<p>
An "if" statement may include a simple statement before the expression.
The scope of any variables declared by that statement
extends to the end of the "if" statement
and the variables are initialized once before the statement is entered.
</p>
<pre>
if x := f(); x < y {
return x;
} else if x > z {
return z;
} else {
return y;
}
</pre>
<h3>Switch statements</h3>
<p>
"Switch" statements provide multi-way execution.
An expression is evaluated and compared to the "case"
expressions inside the "switch" to determine which branch
of the "switch" to execute.
A missing expression is equivalent to <code>true</code>.
</p>
<pre class="grammar">
SwitchStat = "switch" [ [ SimpleStat ] ";" ] [ Expression ] "{" { CaseClause } "}" .
CaseClause = SwitchCase ":" StatementList .
SwitchCase = "case" ExpressionList | "default" .
</pre>
<p>
The case expressions, which need not be constants,
are evaluated top-to-bottom; the first one that matches
triggers execution of the statements of the associated case;
the other cases are skipped.
If no case matches and there is a "default" case, its statements are executed.
There can be at most one default case and it may appear anywhere in the
"switch" statement.
</p>
<p>
In a case or default clause,
the last statement only may be a "fallthrough" statement
(§Fallthrough statement) to
indicate that control should flow from the end of this clause to
the first statement of the next clause.
Otherwise control flows to the end of the "switch" statement.
</p>
<p>
Each case clause effectively acts as a block for scoping purposes
(§Declarations and scope rules).
</p>
<p>
A "switch" statement may include a simple statement before the
expression.
The scope of any variables declared by that statement
extends to the end of the "switch" statement
and the variables are initialized once before the statement is entered.
</p>
<pre>
switch tag {
default: s3()
case 0, 1, 2, 3: s1()
case 4, 5, 6, 7: s2()
}
switch x := f(); {
case x < 0: return -x
default: return x
}
switch { // missing expression means "true"
case x < y: f1();
case x < z: f2();
case x == 4: f3();
}
</pre>
<h3>For statements</h3>
<p>
A "for" statement specifies repeated execution of a block. The iteration is
controlled by a condition, a "for" clause, or a "range" clause.
</p>
<pre class="grammar">
ForStat = "for" [ Condition | ForClause | RangeClause ] Block .
Condition = Expression .
</pre>
<p>
In its simplest form, a "for" statement specifies the repeated execution of
a block as long as a boolean condition evaluates to true.
The condition is evaluated before each iteration.
If the condition is absent, it is equivalent to <code>true</code>.
</p>
<pre>
for a < b {
a *= 2
}
</pre>
<p>
A "for" statement with a "for" clause is also controlled by its condition, but
additionally it may specify an <i>init</i>
and a <i>post</i> statement, such as an assignment,
an increment or decrement statement. The init statement (but not the post
statement) may also be a short variable declaration; the scope of the variables
it declares ends at the end of the statement
(§Declarations and scope rules).
</p>
<pre class="grammar">
ForClause = [ InitStat ] ";" [ Condition ] ";" [ PostStat ] .
InitStat = SimpleStat .
PostStat = SimpleStat .
</pre>
<pre>
for i := 0; i < 10; i++ {
f(i)
}
</pre>
<p>
If non-empty, the init statement is executed once before evaluating the
condition for the first iteration;
the post statement is executed after each execution of the block (and
only if the block was executed).
Any element of the "for" clause may be empty but the semicolons are
required unless there is only a condition.
If the condition is absent, it is equivalent to <code>true</code>.
</p>
<pre>
for ; cond ; { S() } is the same as for cond { S() }
for true { S() } is the same as for { S() }
</pre>
<p>
A "for" statement with a "range" clause
iterates through all entries of an array, slice or map.
For each entry it first assigns the current index or key to an iteration
variable - or the current (index, element) or (key, value) pair to a pair
of iteration variables - and then executes the block.
</p>
<pre class="grammar">
RangeClause = IdentifierList ( "=" | ":=" ) "range" Expression .
</pre>
<p>
The type of the right-hand expression in the "range" clause must be an array,
slice or map, or a pointer to an array, slice or map.
The slice or map must not be <code>nil</code> (TODO: really?).
The identifier list must contain one or two identifiers denoting the
iteration variables. On each iteration,
the first variable is set to the array or slice index or
map key, and the second variable, if present, is set to the corresponding
array element or map value.
The types of the array or slice index (always <code>int</code>)
and element, or of the map key and value respectively,
must be assignment compatible to the iteration variables.
</p>
<p>
The iteration variables may be declared by the "range" clause (":="), in which
case their scope ends at the end of the "for" statement (§Declarations and
scope rules). In this case their types are set to
<code>int</code> and the array element type, or the map key and value types, respectively.
If the iteration variables are declared outside the "for" statement,
after execution their values will be those of the last iteration.
</p>
<pre>
var a [10]string;
m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6};
for i, s := range a {
// type of i is int
// type of s is string
// s == a[i]
g(i, s)
}
var key string;
var val interface {}; // value type of m is assignment-compatible to val
for key, value = range m {
h(key, value)
}
// key == last map key encountered in iteration
// val == map[key]
</pre>
<p>
If map entries that have not yet been processed are deleted during iteration,
they will not be processed. If map entries are inserted during iteration, the
behavior is implementation-dependent, but each entry will be processed at most once.
</p>
<h3>Go statements</h3>
<p>
A "go" statement starts the execution of a function or method call
as an independent concurrent thread of control, or <i>goroutine</i>,
within the same address space.
</p>
<pre class="grammar">
GoStat = "go" Expression .
</pre>
<p>
The expression must be a call, and
unlike with a regular call, program execution does not wait
for the invoked function to complete.
</p>
<pre>
go Server()
go func(ch chan <- bool) { for { sleep(10); ch <- true; }} (c)
</pre>
<h3>Select statements</h3>
<p>
A "select" statement chooses which of a set of possible communications
will proceed. It looks similar to a "switch" statement but with the
cases all referring to communication operations.
</p>
<pre class="grammar">
SelectStat = "select" "{" { CommClause } "}" .
CommClause = CommCase ":" StatementList .
CommCase = "case" ( SendExpr | RecvExpr) | "default" .
SendExpr = Expression "<-" Expression .
RecvExpr = [ Expression ( "=" | ":=" ) ] "<-" Expression .
</pre>
<p>
Each communication clause acts as a block for the purpose of scoping
(§Declarations and scope rules).
</p>
<p>
For all the send and receive expressions in the "select"
statement, the channel expression is evaluated. Any expressions
that appear on the right hand side of send expressions are also
evaluated. If any of the resulting channels can proceed, one is
chosen and the corresponding communication and statements are
evaluated. Otherwise, if there is a default case, that executes;
if not, the statement blocks until one of the communications can
complete. The channels and send expressions are not re-evaluated.
A channel pointer may be <code>nil</code>,
which is equivalent to that case not
being present in the select statement
except, if a send, its expression is still evaluated.
</p>
<p>
Since all the channels and send expressions are evaluated, any side
effects in that evaluation will occur for all the communications
in the "select" statement.
</p>
<p>
If multiple cases can proceed, a uniform fair choice is made to decide
which single communication will execute.
<p>
The receive case may declare a new variable using a short variable declaration
(§Short variable declarations).
The scope of such variables continues to the end of the
respective case's statements.
</p>
<pre>
var c, c1, c2 chan int;
var i1, i2 int;
select {
case i1 = <-c1:
print("received ", i1, " from c1\n");
case c2 <- i2:
print("sent ", i2, " to c2\n");
default:
print("no communication\n");
}
for { // send random sequence of bits to c
select {
case c <- 0: // note: no statement, no fallthrough, no folding of cases
case c <- 1:
}
}
var ca chan interface {};
var i int;
var f float;
select {
case i = <-ca:
print("received int ", i, " from ca\n");
case f = <-ca:
print("received float ", f, " from ca\n");
}
</pre>
<font color=red>
TODO: Make semantics more precise.
</font>
<h3>Return statements</h3>
<p>
A "return" statement terminates execution of the containing function
and optionally provides a result value or values to the caller.
</p>
<pre class="grammar">
ReturnStat = "return" [ ExpressionList ] .
</pre>
<pre>
func procedure() {
return
}
</pre>
<p>
There are two ways to return values from a function with a result
type. The first is to explicitly list the return value or values
in the "return" statement.
Normally, the expressions
must be single-valued and assignment-compatible to the elements of
the result type of the function.
</p>
<pre>
func simple_f() int {
return 2
}
func complex_f1() (re float, im float) {
return -7.0, -4.0
}
</pre>
<p>
However, if the expression list in the "return" statement is a single call
to a multi-valued function, the values returned from the called function
will be returned from this one. The result types of the current function
and the called function must match.
</p>
<pre>
func complex_f2() (re float, im float) {
return complex_f1()
}
</pre>
<p>
The second way to return values is to use the elements of the
result list of the function as variables. When the function begins
execution, these variables are initialized to the zero values for
their type (§The zero value). The function can assign them as
necessary; if the "return" provides no values, those of the variables
will be returned to the caller.
</p>
<pre>
func complex_f3() (re float, im float) {
re = 7.0;
im = 4.0;
return;
}
</pre>
<p>
TODO: Define when return is required.
</p>
<h3>Break statements</h3>
<p>
A "break" statement terminates execution of the innermost
"for", "switch" or "select" statement.
</p>
<pre class="grammar">
BreakStat = "break" [ Label ].
</pre>
<p>
If there is a label, it must be that of an enclosing
"for", "switch" or "select" statement, and that is the one whose execution
terminates
(§For statements, §Switch statements, §Select statements).
</p>
<pre>
L: for i < n {
switch i {
case 5: break L
}
}
</pre>
<h3>Continue statements</h3>
<p>
A "continue" statement begins the next iteration of the
innermost "for" loop at the post statement (§For statements).
</p>
<pre class="grammar">
ContinueStat = "continue" [ Label ].
</pre>
<p>
The optional label is analogous to that of a "break" statement.
</p>
<h3>Goto statements</h3>
<p>
A "goto" statement transfers control to the statement with the corresponding label.
</p>
<pre class="grammar">
GotoStat = "goto" Label .
</pre>
<pre>
goto Error
</pre>
<p>
Executing the "goto" statement must not cause any variables to come into
scope that were not already in scope at the point of the goto. For
instance, this example:
</p>
<pre>
goto L; // BAD
v := 3;
L:
</pre>
<p>
is erroneous because the jump to label <code>L</code> skips
the creation of <code>v</code>.
(TODO: Eliminate in favor of used and not set errors?)
</p>
<h3>Fallthrough statements</h3>
<p>
A "fallthrough" statement transfers control to the first statement of the
next case clause in a "switch" statement (§Switch statements). It may
be used only as the final non-empty statement in a case or default clause in a
"switch" statement.
</p>
<pre class="grammar">
FallthroughStat = "fallthrough" .
</pre>
<h3>Defer statements</h3>
<p>
A "defer" statement invokes a function whose execution is deferred to the moment
the surrounding function returns.
</p>
<pre class="grammar">
DeferStat = "defer" Expression .
</pre>
<p>
The expression must be a function or method call.
Each time the "defer" statement
executes, the parameters to the function call are evaluated and saved anew but the
function is not invoked. Immediately before the innermost function surrounding
the "defer" statement returns, but after its return value (if any) is evaluated,
each deferred function is executed with its saved parameters. Deferred functions
are executed in LIFO order.
</p>
<pre>
lock(l);
defer unlock(l); // unlocking happens before surrounding function returns
// prints 3 2 1 0 before surrounding function returns
for i := 0; i <= 3; i++ {
defer fmt.Print(i);
}
</pre>
<hr/>
<h2>Predeclared functions</h2>
<ul>
<li>cap
<li>convert
<li>len
<li>make
<li>new
<li>panic
<li>panicln
<li>print
<li>println
<li>typeof
</ul>
<h3>Length and capacity</h3>
<pre class="grammar">
Call Argument type Result
len(s) string, *string string length (in bytes)
[n]T, *[n]T array length (== n)
[]T, *[]T slice length
map[K]T, *map[K]T map length
chan T number of elements in channel buffer
cap(s) []T, *[]T capacity of s
map[K]T, *map[K]T capacity of s
chan T channel buffer capacity
</pre>
<p>
The type of the result is always <code>int</code> and the
implementation guarantees that
the result always fits into an <code>int</code>.
<p>
The capacity of a slice or map is the number of elements for which there is
space allocated in the underlying array (for a slice) or map. For a slice
<code>s</code>, at any time the following relationship holds:
<pre>
0 <= len(s) <= cap(s)
</pre>
<h3>Conversions</h3>
<p>
<font color=red>TODO: We need to finalize the details of conversions.</font>
<br/>
Conversions look like function calls of the form
</p>
<pre class="grammar">
T(value)
</pre>
<p>
where <code>T</code> is a type
and <code>value</code> is an expression
that can be converted to a value
of result type <code>T</code>.
<p>
The following conversion rules apply:
</p>
<ul>
<li>
1) Between equal types. The conversion always succeeds.
</li>
<li>
2) Between integer types. If the value is a signed quantity, it is
sign extended to implicit infinite precision; otherwise it is zero
extended. It is then truncated to fit in the result type size.
For example, <code>uint32(int8(0xFF))</code> is <code>0xFFFFFFFF</code>.
The conversion always yields a valid value; there is no signal for overflow.
</li>
<li>
3) Between integer and floating point types, or between floating point
types. To avoid overdefining the properties of the conversion, for
now it is defined as a ``best effort'' conversion. The conversion
always succeeds but the value may be a NaN or other problematic
result. <font color=red>TODO: clarify?</font>
</li>
<li>
4) Strings permit two special conversions.
</li>
<li>
4a) Converting an integer value yields a string containing the UTF-8
representation of the integer.
(TODO: this one could be done just as well by a library.)
<pre>
string(0x65e5) // "\u65e5"
</pre>
</li>
<li>
4b) Converting an array or slice of bytes yields a string whose successive
bytes are those of the array/slice.
<pre>
string([]byte{'h', 'e', 'l', 'l', 'o'}) // "hello"
</pre>
</li>
</ul>
<p>
There is no linguistic mechanism to convert between pointers and integers.
The <code>unsafe</code> package
implements this functionality under
restricted circumstances (§Package <code>unsafe</code>).
</p>
<h3>Allocation</h3>
<p>
The built-in function <code>new</code> takes a type <code>T</code> and
returns a value of type <code>*T</code>.
The memory is initialized as described in the section on initial values
(§The zero value).
</p>
<pre>
new(T)
</pre>
<p>
For instance
</p>
<pre>
type S struct { a int; b float }
new(S)
</pre>
<p>
dynamically allocates memory for a variable of type <code>S</code>,
initializes it (<code>a=0</code>, <code>b=0.0</code>),
and returns a value of type <code>*S</code> containing the address
of the memory.
</p>
<h3>Making slices, maps and channels</h3>
<p>
Slices, maps and channels are reference types that do not require the
extra indirection of an allocation with <code>new</code>.
The built-in function <code>make</code> takes a type <code>T</code>,
which must be a slice, map or channel type,
optionally followed by a type-specific list of expressions.
It returns a value of type <code>T</code> (not <code>*T</code>).
The memory is initialized as described in the section on initial values
(§The zero value).
</p>
<pre>
make(T [, optional list of expressions])
</pre>
<p>
For instance
</p>
<pre>
make(map[string] int)
</pre>
<p>
creates a new map value and initializes it to an empty map.
</p>
<p>
The parameters affect sizes for allocating slices, maps, and
buffered channels:
</p>
<pre>
s := make([]int, 10, 100); # slice with len(s) == 10, cap(s) == 100
c := make(chan int, 10); # channel with a buffer size of 10
m := make(map[string] int, 100); # map with initial space for 100 elements
</pre>
<hr/>
<h2>Packages</h2>
<p>
Go programs are constructed by linking together <i>packages</i>.
A package is in turn constructed from one or more source files that
together provide an interface to a set of types, constants, functions,
and variables. Those elements may be <i>imported</i> and used in
another package.
</p>
<h3>Source file organization</h3>
<p>
Each source file consists of a package clause defining the package
to which it belongs, followed by a possibly empty set of import
declarations that declare packages whose contents it wishes to use,
followed by a possibly empty set of declarations of functions,
types, variables, and constants. The source text following the
package clause acts as a block for scoping (§Declarations and scope
rules).
</p>
<pre class="grammar">
SourceFile = PackageClause { ImportDecl [ ";" ] } { Declaration [ ";" ] } .
</pre>
<h3>Package clause</h3>
<p>
A package clause begins each source file and defines the package
to which the file belongs.
</p>
<pre class="grammar">
PackageClause = "package" PackageName .
</pre>
<pre>
package math
</pre>
<p>
A set of files sharing the same PackageName form the implementation of a package.
An implementation may require that all source files for a package inhabit the same directory.
</p>
<h3>Import</h3>
<p>
A source file gains access to exported identifiers (§Exported
identifiers) from another package through an import declaration.
In the general form, an import declaration provides an identifier
that code in the source file may use to access the imported package's
contents and a file name referring to the (compiled) implementation of
the package. The file name may be relative to a repository of
installed packages.
</p>
<pre class="grammar">
ImportDecl = "import" ( ImportSpec | "(" [ ImportSpecList ] ")" ) .
ImportSpecList = ImportSpec { ";" ImportSpec } [ ";" ] .
ImportSpec = [ "." | PackageName ] PackageFileName .
PackageFileName = StringLit .
</pre>
<p>
After an import, in the usual case an exported name <i>N</i> from the imported
package <i>P</i> may be accessed by the qualified identifier
<i>P</i><code>.</code><i>N</i> (§Qualified identifiers). The actual
name <i>P</i> depends on the form of the import declaration. If
an explicit package name <code>p1</code> is provided, the qualified
identifer will have the form <code>p1.</code><i>N</i>. If no name
is provided in the import declaration, <i>P</i> will be the package
name declared within the source files of the imported package.
Finally, if the import declaration uses an explicit period
(<code>.</code>) for the package name, <i>N</i> will appear
in the package-level scope of the current file and the qualified name is
unnecessary and erroneous. In this form, it is an error if the import introduces
a name conflict.
</p>
<p>
In this table, assume we have compiled a package named
<code>math</code>, which exports function <code>Sin</code>, and
installed the compiled package in file
<code>"lib/math"</code>.
</p>
<pre class="grammar">
Import syntax Local name of Sin
import M "lib/math" M.Sin
import "lib/math" math.Sin
import . "lib/math" Sin
</pre>
<h3>Multi-file packages</h3>
<p>
If a package is constructed from multiple source files, all names
at package-level scope, not just exported names, are visible to all the
files in the package. An import declaration is still necessary to
declare intention to use the names,
but the imported names do not need a qualified identifer to be
accessed.
</p>
<p>
The compilation of a multi-file package may require
that the files be compiled and installed in an order that satisfies
the resolution of names imported within the package.
</p>
<p>
If source file <code>math1.go</code> contains
</p>
<pre>
package math
const twoPi = 6.283185307179586
function Sin(x float) float { return ... }
</pre>
<p>
and file <code>"math2.go"</code> begins
</p>
<pre>
package math
import "lib/math"
</pre>
<p>
then, provided <code>"math1.go"</code> is compiled first and
installed in <code>"lib/math"</code>, <code>math2.go</code>
may refer directly to <code>Sin</code> and <code>twoPi</code>
without a qualified identifier.
</p>
<h3>An example package</h3>
<p>
Here is a complete Go package that implements a concurrent prime sieve.
</p>
<pre>
package main
import "fmt"
// Send the sequence 2, 3, 4, ... to channel 'ch'.
func generate(ch chan <- int) {
for i := 2; ; i++ {
ch <- i // Send 'i' to channel 'ch'.
}
}
// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filter(in chan <- int, out <-chan int, prime int) {
for {
i := <-in; // Receive value of new variable 'i' from 'in'.
if i % prime != 0 {
out <- i // Send 'i' to channel 'out'.
}
}
}
// The prime sieve: Daisy-chain filter processes together.
func sieve() {
ch := make(chan int); // Create a new channel.
go generate(ch); // Start generate() as a subprocess.
for {
prime := <-ch;
fmt.Print(prime, "\n");
ch1 := make(chan int);
go filter(ch, ch1, prime);
ch = ch1
}
}
func main() {
sieve()
}
</pre>
<hr/>
<h2>Program initialization and execution</h2>
<h3>The zero value</h3>
<p>
When memory is allocated to store a value, either through a declaration
or <code>new()</code>, and no explicit initialization is provided, the memory is
given a default initialization. Each element of such a value is
set to the zero value for its type: <code>false</code> for booleans,
<code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
for strings, and <code>nil</code> for pointers and interfaces.
This initialization is done recursively, so for instance each element of an
array of structs will have its fields zeroed if no value is specified.
</p>
<p>
These two simple declarations are equivalent:
</p>
<pre>
var i int;
var i int = 0;
</pre>
<p>
After
</p>
<pre>
type T struct { i int; f float; next *T };
t := new(T);
</pre>
<p>
the following holds:
</p>
<pre>
t.i == 0
t.f == 0.0
t.next == nil
</pre>
<p>
The same would also be true after
</p>
<pre>
var t T
</pre>
<h3>Program execution</h3>
<p>
A package with no imports is initialized by assigning initial values to
all its package-level variables in declaration order and then calling any
package-level function with the name and signature of
</p>
<pre>
func init()
</pre>
<p>
defined in its source. Since a package may contain more
than one source file, there may be more than one
<code>init()</code> function in a package, but
only one per source file.
</p>
<p>
Initialization code may contain "go" statements, but the functions
they invoke do not begin execution until initialization of the entire
program is complete. Therefore, all initialization code is run in a single
goroutine.
</p>
<p>
An <code>init()</code> function cannot be referred to from anywhere
in a program. In particular, <code>init()</code> cannot be called explicitly,
nor can a pointer to <code>init</code> be assigned to a function variable.
</p>
<p>
If a package has imports, the imported packages are initialized
before initializing the package itself. If multiple packages import
a package <code>P</code>, <code>P</code> will be initialized only once.
</p>
<p>
The importing of packages, by construction, guarantees that there can
be no cyclic dependencies in initialization.
</p>
<p>
A complete program, possibly created by linking multiple packages,
must have one package called <code>main</code>, with a function
</p>
<pre>
func main() { ... }
</pre>
<p>
defined.
The function <code>main.main()</code> takes no arguments and returns no value.
</p>
<p>
Program execution begins by initializing the <code>main</code> package and then
invoking <code>main.main()</code>.
</p>
<p>
When <code>main.main()</code> returns, the program exits.
</p>
<hr/>
<h2>System considerations</h2>
<h3>Package <code>unsafe</code></h3>
<p>
The built-in package <code>unsafe</code>, known to the compiler,
provides facilities for low-level programming including operations
that violate the type system. A package using <code>unsafe</code>
must be vetted manually for type safety. The package provides the
following interface:
</p>
<pre class="grammar">
package unsafe
const Maxalign int
type Pointer *any // "any" is shorthand for any Go type; it is not a real type.
func Alignof(variable any) int
func Offsetof(selector any) int
func Sizeof(variable any) int
</pre>
<p>
Any pointer or value of type <code>uintptr</code> can be converted into
a <code>Pointer</code> and vice versa.
</p>
<p>
The function <code>Sizeof</code> takes an expression denoting a
variable of any (complete) type and returns the size of the variable in bytes.
</p>
<p>
The function <code>Offsetof</code> takes a selector (§Selectors) denoting a struct
field of any type and returns the field offset in bytes relative to the
struct's address. For a struct <code>s</code> with field <code>f</code>:
</p>
<pre>
uintptr(unsafe.Pointer(&s)) + uintptr(unsafe.Offsetof(s.f)) == uintptr(unsafe.Pointer(&s.f))
</pre>
<p>
Computer architectures may require memory addresses to be <i>aligned</i>;
that is, for addresses of a variable to be a multiple of a factor,
the variable's type's <i>alignment</i>. The function <code>Alignof</code>
takes an expression denoting a variable of any type and returns the
alignment of the (type of the) variable in bytes. For a variable
<code>x</code>:
</p>
<pre>
uintptr(unsafe.Pointer(&x)) % uintptr(unsafe.Alignof(x)) == 0
</pre>
<p>
The maximum alignment is given by the constant <code>Maxalign</code>.
It usually corresponds to the value of <code>Sizeof(x)</code> for
a variable <code>x</code> of the largest numeric type (8 for a
<code>float64</code>), but may
be smaller on systems with weaker alignment restrictions.
</p>
<p>
Calls to <code>Alignof</code>, <code>Offsetof</code>, and
<code>Sizeof</code> are constant expressions of type <code>int</code>.
</p>
<h3>Size and alignment guarantees</h3>
For the numeric types (§Numeric types), the following sizes are guaranteed:
<pre class="grammar">
type size in bytes
byte, uint8, int8 1
uint16, int16 2
uint32, int32, float32 4
uint64, int64, float64 8
</pre>
<p>
The following minimal alignment properties are guaranteed:
</p>
<ol>
<li>For a variable <code>x</code> of any type: <code>1 <= unsafe.Alignof(x) <= unsafe.Maxalign</code>.
<li>For a variable <code>x</code> of numeric type: <code>unsafe.Alignof(x)</code> is the smaller
of <code>unsafe.Sizeof(x)</code> and <code>unsafe.Maxalign</code>, but at least 1.
<li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of x, but at least 1.
<li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
<code>unsafe.Alignof(x[0])</code>, but at least 1.
</ol>
<hr/>
<h2><font color=red>Differences between this doc and implementation - TODO</font></h2>
<p>
<font color=red>
Implementation accepts only ASCII digits for digits; doc says Unicode.
<br/>
Implementation does not allow p.x where p is the local package name.
<br/>
Implementation does not honor the restriction on goto statements and targets (no intervening declarations).
<br/>
cap() does not work on maps or chans.
<br/>
len() does not work on chans.
<br/>
Conversions work for any type; doc says only numeric types and strings.
</font>
</p>
</div>
</body>
</html>
|