summaryrefslogtreecommitdiff
path: root/doc/go_spec.html
blob: 5cd890ab932ce3c967beccc30ae8626adb28c589 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
<!-- title The Go Programming Language Specification -->
<!-- subtitle Version of June 1, 2010 -->

<!--
TODO
[ ] need language about function/method calls and parameter passing rules
[ ] last paragraph of #Assignments (constant promotion) should be elsewhere
    and mention assignment to empty interface.
[ ] need to say something about "scope" of selectors?
[ ] clarify what a field name is in struct declarations
    (struct{T} vs struct {T T} vs struct {t T})
[ ] need explicit language about the result type of operations
[ ] may want to have some examples for the types of shift operations
[ ] should string(1<<s) and float(1<<s) be valid?
[ ] should probably write something about evaluation order of statements even
	though obvious
[ ] specify iteration direction for range clause
[ ] review language on implicit dereferencing
[ ] clarify what it means for two functions to be "the same" when comparing them
-->


<h2 id="Introduction">Introduction</h2>

<p>
This is a reference manual for the Go programming language. For
more information and other documents, see <a href="http://golang.org/">http://golang.org</a>.
</p>

<p>
Go is a general-purpose language designed with systems programming
in mind. It is strongly typed and garbage-collected and has explicit
support for concurrent programming.  Programs are constructed from
<i>packages</i>, whose properties allow efficient management of
dependencies. The existing implementations use a traditional
compile/link model to generate executable binaries.
</p>

<p>
The grammar is compact and regular, allowing for easy analysis by
automatic tools such as integrated development environments.
</p>

<h2 id="Notation">Notation</h2>
<p>
The syntax is specified using Extended Backus-Naur Form (EBNF):
</p>

<pre class="grammar">
Production  = production_name "=" Expression "." .
Expression  = Alternative { "|" Alternative } .
Alternative = Term { Term } .
Term        = production_name | token [ "..." token ] | Group | Option | Repetition .
Group       = "(" Expression ")" .
Option      = "[" Expression "]" .
Repetition  = "{" Expression "}" .
</pre>

<p>
Productions are expressions constructed from terms and the following
operators, in increasing precedence:
</p>
<pre class="grammar">
|   alternation
()  grouping
[]  option (0 or 1 times)
{}  repetition (0 to n times)
</pre>

<p>
Lower-case production names are used to identify lexical tokens.
Non-terminals are in CamelCase. Lexical symbols are enclosed in
double quotes <code>""</code> or back quotes <code>``</code>.
</p>

<p>
The form <code>a ... b</code> represents the set of characters from
<code>a</code> through <code>b</code> as alternatives.
</p>

<h2 id="Source_code_representation">Source code representation</h2>

<p>
Source code is Unicode text encoded in
<a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
canonicalized, so a single accented code point is distinct from the
same character constructed from combining an accent and a letter;
those are treated as two code points.  For simplicity, this document
will use the term <i>character</i> to refer to a Unicode code point.
</p>
<p>
Each code point is distinct; for instance, upper and lower case letters
are different characters.
</p>
<p>
Implementation restriction: For compatibility with other tools, a
compiler may disallow the NUL character (U+0000) in the source text.
</p>

<h3 id="Characters">Characters</h3>

<p>
The following terms are used to denote specific Unicode character classes:
</p>
<pre class="ebnf">
unicode_char   = /* an arbitrary Unicode code point */ .
unicode_letter = /* a Unicode code point classified as "Letter" */ .
unicode_digit  = /* a Unicode code point classified as "Digit" */ .
</pre>

<p>
In <a href="http://www.unicode.org/versions/Unicode5.2.0/">The Unicode Standard 5.2</a>,
Section 4.5 General Category-Normative
defines a set of character categories.  Go treats
those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
and those in category Nd as Unicode digits.
</p>

<h3 id="Letters_and_digits">Letters and digits</h3>

<p>
The underscore character <code>_</code> (U+005F) is considered a letter.
</p>
<pre class="ebnf">
letter        = unicode_letter | "_" .
decimal_digit = "0" ... "9" .
octal_digit   = "0" ... "7" .
hex_digit     = "0" ... "9" | "A" ... "F" | "a" ... "f" .
</pre>

<h2 id="Lexical_elements">Lexical elements</h2>

<h3 id="Comments">Comments</h3>

<p>
There are two forms of comments:
</p>

<ol>
<li>
<i>Line comments</i> start with the character sequence <code>//</code>
and continue through the next newline. A line comment acts like a newline.
</li>
<li>
<i>General comments</i> start with the character sequence <code>/*</code>
and continue through the character sequence <code>*/</code>. A general
comment that spans multiple lines acts like a newline, otherwise it acts
like a space.
</li>
</ol>

<p>
Comments do not nest.
</p>


<h3 id="Tokens">Tokens</h3>

<p>
Tokens form the vocabulary of the Go language.
There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
spaces (U+0020), horizontal tabs (U+0009),
carriage returns (U+000D), and newlines (U+000A),
is ignored except as it separates tokens
that would otherwise combine into a single token. Also, a newline
may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
While breaking the input into tokens,
the next token is the longest sequence of characters that form a
valid token.
</p>

<h3 id="Semicolons">Semicolons</h3>

<p>
The formal grammar uses semicolons <code>";"</code> as terminators in
a number of productions. Go programs may omit most of these semicolons
using the following two rules:
</p>

<ol>
<li>
<p>
When the input is broken into tokens, a semicolon is automatically inserted
into the token stream at the end of a non-blank line if the line's final
token is
</p>
<ul>
	<li>an
	    <a href="#Identifiers">identifier</a>
	</li>
	
	<li>an
	    <a href="#Integer_literals">integer</a>,
	    <a href="#Floating-point_literals">floating-point</a>,
	    <a href="#Imaginary_literals">imaginary</a>,
	    <a href="#Character_literals">character</a>, or
	    <a href="#String_literals">string</a> literal
	</li>
	
	<li>one of the <a href="#Keywords">keywords</a>
	    <code>break</code>,
	    <code>continue</code>,
	    <code>fallthrough</code>, or
	    <code>return</code>
	</li>
	
	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
	    <code>++</code>,
	    <code>--</code>,
	    <code>)</code>,
	    <code>]</code>, or
	    <code>}</code>
	</li>
</ul>
</li>

<li>
To allow complex statements to occupy a single line, a semicolon
may be omitted before a closing <code>")"</code> or <code>"}"</code>.
</li>
</ol>

<p>
To reflect idiomatic use, code examples in this document elide semicolons
using these rules.
</p>


<h3 id="Identifiers">Identifiers</h3>

<p>
Identifiers name program entities such as variables and types.
An identifier is a sequence of one or more letters and digits.
The first character in an identifier must be a letter.
</p>
<pre class="ebnf">
identifier = letter { letter | unicode_digit } .
</pre>
<pre>
a
_x9
ThisVariableIsExported
αβ
</pre>

<p>
Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
</p>


<h3 id="Keywords">Keywords</h3>

<p>
The following keywords are reserved and may not be used as identifiers.
</p>
<pre class="grammar">
break        default      func         interface    select
case         defer        go           map          struct
chan         else         goto         package      switch
const        fallthrough  if           range        type
continue     for          import       return       var
</pre>

<h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>

<p>
The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
</p>
<pre class="grammar">
+    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
-    |     -=    |=     ||    &lt;     &lt;=    [    ]
*    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
/    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
%    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
     &amp;^          &amp;^=
</pre>

<h3 id="Integer_literals">Integer literals</h3>

<p>
An integer literal is a sequence of digits representing an
<a href="#Constants">integer constant</a>.
An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
<code>0X</code> for hexadecimal.  In hexadecimal literals, letters
<code>a-f</code> and <code>A-F</code> represent values 10 through 15.
</p>
<pre class="ebnf">
int_lit     = decimal_lit | octal_lit | hex_lit .
decimal_lit = ( "1" ... "9" ) { decimal_digit } .
octal_lit   = "0" { octal_digit } .
hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
</pre>

<pre>
42
0600
0xBadFace
170141183460469231731687303715884105727
</pre>

<h3 id="Floating-point_literals">Floating-point literals</h3>
<p>
A floating-point literal is a decimal representation of a
<a href="#Constants">floating-point constant</a>.
It has an integer part, a decimal point, a fractional part,
and an exponent part.  The integer and fractional part comprise
decimal digits; the exponent part is an <code>e</code> or <code>E</code>
followed by an optionally signed decimal exponent.  One of the
integer part or the fractional part may be elided; one of the decimal
point or the exponent may be elided.
</p>
<pre class="ebnf">
float_lit = decimals "." [ decimals ] [ exponent ] |
            decimals exponent |
            "." decimals [ exponent ] .
decimals  = decimal_digit { decimal_digit } .
exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
</pre>

<pre>
0.
72.40
072.40  // == 72.40
2.71828
1.e+0
6.67428e-11
1E6
.25
.12345E+5
</pre>

<h3 id="Imaginary_literals">Imaginary literals</h3>
<p>
An imaginary literal is a decimal representation of the imaginary part of a
<a href="#Constants">complex constant</a>.
It consists of a
<a href="#Floating-point_literals">floating-point literal</a>
or decimal integer followed
by the lower-case letter <code>i</code>.
</p>
<pre class="ebnf">
imaginary_lit = (decimals | float_lit) "i" .
</pre>

<pre>
0i
011i  // == 11i
0.i
2.71828i
1.e+0i
6.67428e-11i
1E6i
.25i
.12345E+5i
</pre>


<h3 id="Character_literals">Character literals</h3>

<p>
A character literal represents an <a href="#Constants">integer constant</a>,
typically a Unicode code point, as one or more characters enclosed in single
quotes.  Within the quotes, any character may appear except single
quote and newline. A single quoted character represents itself,
while multi-character sequences beginning with a backslash encode
values in various formats.
</p>
<p>
The simplest form represents the single character within the quotes;
since Go source text is Unicode characters encoded in UTF-8, multiple
UTF-8-encoded bytes may represent a single integer value.  For
instance, the literal <code>'a'</code> holds a single byte representing
a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
<code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
</p>
<p>
Several backslash escapes allow arbitrary values to be represented
as ASCII text.  There are four ways to represent the integer value
as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
digits; <code>\u</code> followed by exactly four hexadecimal digits;
<code>\U</code> followed by exactly eight hexadecimal digits, and a
plain backslash <code>\</code> followed by exactly three octal digits.
In each case the value of the literal is the value represented by
the digits in the corresponding base.
</p>
<p>
Although these representations all result in an integer, they have
different valid ranges.  Octal escapes must represent a value between
0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
by construction. The escapes <code>\u</code> and <code>\U</code>
represent Unicode code points so within them some values are illegal,
in particular those above <code>0x10FFFF</code> and surrogate halves.
</p>
<p>
After a backslash, certain single-character escapes represent special values:
</p>
<pre class="grammar">
\a   U+0007 alert or bell
\b   U+0008 backspace
\f   U+000C form feed
\n   U+000A line feed or newline
\r   U+000D carriage return
\t   U+0009 horizontal tab
\v   U+000b vertical tab
\\   U+005c backslash
\'   U+0027 single quote  (valid escape only within character literals)
\"   U+0022 double quote  (valid escape only within string literals)
</pre>
<p>
All other sequences starting with a backslash are illegal inside character literals.
</p>
<pre class="ebnf">
char_lit         = "'" ( unicode_value | byte_value ) "'" .
unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
byte_value       = octal_byte_value | hex_byte_value .
octal_byte_value = `\` octal_digit octal_digit octal_digit .
hex_byte_value   = `\` "x" hex_digit hex_digit .
little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
                           hex_digit hex_digit hex_digit hex_digit .
escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
</pre>

<pre>
'a'
'ä'
'本'
'\t'
'\000'
'\007'
'\377'
'\x07'
'\xff'
'\u12e4'
'\U00101234'
</pre>


<h3 id="String_literals">String literals</h3>

<p>
A string literal represents a <a href="#Constants">string constant</a>
obtained from concatenating a sequence of characters. There are two forms:
raw string literals and interpreted string literals.
</p>
<p>
Raw string literals are character sequences between back quotes
<code>``</code>.  Within the quotes, any character is legal except
back quote. The value of a raw string literal is the
string composed of the uninterpreted characters between the quotes;
in particular, backslashes have no special meaning and the string may
span multiple lines.
</p>
<p>
Interpreted string literals are character sequences between double
quotes <code>&quot;&quot;</code>. The text between the quotes,
which may not span multiple lines, forms the
value of the literal, with backslash escapes interpreted as they
are in character literals (except that <code>\'</code> is illegal and
<code>\"</code> is legal).  The three-digit octal (<code>\</code><i>nnn</i>)
and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
<i>bytes</i> of the resulting string; all other escapes represent
the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
<code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
U+00FF.
</p>

<pre class="ebnf">
string_lit             = raw_string_lit | interpreted_string_lit .
raw_string_lit         = "`" { unicode_char } "`" .
interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
</pre>

<pre>
`abc`  // same as "abc"
`\n
\n`    // same as "\\n\n\\n"
"\n"
""
"Hello, world!\n"
"日本語"
"\u65e5本\U00008a9e"
"\xff\u00FF"
</pre>

<p>
These examples all represent the same string:
</p>

<pre>
"日本語"                                 // UTF-8 input text
`日本語`                                 // UTF-8 input text as a raw literal
"\u65e5\u672c\u8a9e"                    // The explicit Unicode code points
"\U000065e5\U0000672c\U00008a9e"        // The explicit Unicode code points
"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // The explicit UTF-8 bytes
</pre>

<p>
If the source code represents a character as two code points, such as
a combining form involving an accent and a letter, the result will be
an error if placed in a character literal (it is not a single code
point), and will appear as two code points if placed in a string
literal.
</p>


<h2 id="Constants">Constants</h2>

<p>There are <i>boolean constants</i>, <i>integer constants</i>,
<i>floating-point constants</i>, <i>complex constants</i>,
and <i>string constants</i>. Integer, floating-point,
and complex constants are
collectively called <i>numeric constants</i>.
</p>

<p>
A constant value is represented by an
<a href="#Integer_literals">integer</a>,
<a href="#Floating-point_literals">floating-point</a>,
<a href="#Imaginary_literals">imaginary</a>,
<a href="#Character_literals">character</a>, or
<a href="#String_literals">string</a> literal,
an identifier denoting a constant,
a <a href="#Constant_expressions">constant expression</a>, or
the result value of some built-in functions such as <code>unsafe.Sizeof</code>
and <code>cap</code> or <code>len</code> applied to an array,
<code>len</code> applied to a string constant,
<code>real</code> and <code>imag</code> applied to a complex constant
and <code>cmplx</code> applied to numeric constants.
The boolean truth values are represented by the predeclared constants
<code>true</code> and <code>false</code>. The predeclared identifier
<a href="#Iota">iota</a> denotes an integer constant.
</p>

<p>
In general, complex constants are a form of
<a href="#Constant_expressions">constant expression</a>
and are discussed in that section.
</p>

<p>
Numeric constants represent values of arbitrary precision and do not overflow.
</p>

<p>
Constants may be <a href="#Types">typed</a> or untyped.
Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
and certain <a href="#Constant_expressions">constant expressions</a>
containing only untyped constant operands are untyped.
</p>

<p>
A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
or <a href="#Conversions">conversion</a>, or implicitly when used in a
<a href="#Variable_declarations">variable declaration</a> or an
<a href="#Assignments">assignment</a> or as an
operand in an <a href="#Expressions">expression</a>.
It is an error if the constant value
cannot be accurately represented as a value of the respective type.
For instance, <code>3.0</code> can be given any integer or any
floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
not <code>int32</code> or <code>string</code>.
</p>

<p>
There are no constants denoting the IEEE-754 infinity and not-a-number values,
but the <a href="/pkg/math/"><code>math</code> package</a>'s
<a href="/pkg/math/#Inf">Inf</a>,
<a href="/pkg/math/#NaN">NaN</a>,
<a href="/pkg/math/#IsInf">IsInf</a>, and
<a href="/pkg/math/#IsNaN">IsNaN</a>
functions return and test for those values at run time.
</p>

<p>
Implementation restriction: A compiler may implement numeric constants by choosing
an internal representation with at least twice as many bits as any machine type;
for floating-point values, both the mantissa and exponent must be twice as large.
</p>


<h2 id="Types">Types</h2>

<p>
A type determines the set of values and operations specific to values of that
type.  A type may be specified by a (possibly qualified) <i>type name</i>
(§<a href="#Qualified_identifier">Qualified identifier</a>, §<a href="#Type_declarations">Type declarations</a>) or a <i>type literal</i>,
which composes a new type from previously declared types.
</p>

<pre class="ebnf">
Type      = TypeName | TypeLit | "(" Type ")" .
TypeName  = QualifiedIdent.
TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
	    SliceType | MapType | ChannelType .
</pre>

<p>
Named instances of the boolean, numeric, and string types are
<a href="#Predeclared_identifiers">predeclared</a>.
<i>Composite types</i>&mdash;array, struct, pointer, function,
interface, slice, map, and channel types&mdash;may be constructed using
type literals.
</p>

<p>
A type may have a <i>method set</i> associated with it
(§<a href="#Interface_types">Interface types</a>, §<a href="#Method_declarations">Method declarations</a>).
The method set of an <a href="#Interface_types">interface type</a> is its interface.
The method set of any other named type <code>T</code>
consists of all methods with receiver type <code>T</code>.
The method set of the corresponding pointer type <code>*T</code>
is the set of all methods with receiver <code>*T</code> or <code>T</code>
(that is, it also contains the method set of <code>T</code>).
Any other type has an empty method set.
In a method set, each method must have a unique name.
</p>
<p>
The <i>static type</i> (or just <i>type</i>) of a variable is the
type defined by its declaration.  Variables of interface type
also have a distinct <i>dynamic type</i>, which
is the actual type of the value stored in the variable at run-time.
The dynamic type may vary during execution but is always assignment compatible
to the static type of the interface variable.  For non-interface
types, the dynamic type is always the static type.
</p>


<h3 id="Boolean_types">Boolean types</h3>

A <i>boolean type</i> represents the set of Boolean truth values
denoted by the predeclared constants <code>true</code>
and <code>false</code>. The predeclared boolean type is <code>bool</code>.


<h3 id="Numeric_types">Numeric types</h3>

<p>
A <i>numeric type</i> represents sets of integer or floating-point values.
The predeclared architecture-independent numeric types are:
</p>

<pre class="grammar">
uint8       the set of all unsigned  8-bit integers (0 to 255)
uint16      the set of all unsigned 16-bit integers (0 to 65535)
uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)

int8        the set of all signed  8-bit integers (-128 to 127)
int16       the set of all signed 16-bit integers (-32768 to 32767)
int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)

float32     the set of all IEEE-754 32-bit floating-point numbers
float64     the set of all IEEE-754 64-bit floating-point numbers

complex64   the set of all complex numbers with float32 real and imaginary parts
complex128  the set of all complex numbers with float64 real and imaginary parts

byte        familiar alias for uint8
</pre>

<p>
The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
<a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
</p>

<p>
There is also a set of predeclared numeric types with implementation-specific sizes:
</p>

<pre class="grammar">
uint     either 32 or 64 bits
int      either 32 or 64 bits
float    either 32 or 64 bits
complex  real and imaginary parts have type float
uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
</pre>

<p>
To avoid portability issues all numeric types are distinct except
<code>byte</code>, which is an alias for <code>uint8</code>.
Conversions
are required when incompatible numeric types are mixed in an expression
or assignment. For instance, <code>int32</code> and <code>int</code>
are not the same type even though they may have the same size on a
particular architecture.


<h3 id="String_types">String types</h3>

<p>
A <i>string type</i> represents the set of string values.
Strings behave like arrays of bytes but are immutable: once created,
it is impossible to change the contents of a string.
The predeclared string type is <code>string</code>.

<p>
The elements of strings have type <code>byte</code> and may be
accessed using the usual <a href="#Indexes">indexing operations</a>.  It is
illegal to take the address of such an element; if
<code>s[i]</code> is the <i>i</i>th byte of a
string, <code>&amp;s[i]</code> is invalid.  The length of string
<code>s</code> can be discovered using the built-in function
<code>len</code>. The length is a compile-time constant if <code>s</code>
is a string literal.
</p>


<h3 id="Array_types">Array types</h3>

<p>
An array is a numbered sequence of elements of a single
type, called the element type.
The number of elements is called the length and is never
negative.
</p>

<pre class="ebnf">
ArrayType   = "[" ArrayLength "]" ElementType .
ArrayLength = Expression .
ElementType = Type .
</pre>

<p>
The length is part of the array's type and must be a
<a href="#Constant_expressions">constant expression</a> that evaluates to a non-negative
integer value.  The length of array <code>a</code> can be discovered
using the built-in function <code>len(a)</code>, which is a
compile-time constant.  The elements can be indexed by integer
indices 0 through the <code>len(a)-1</code> (§<a href="#Indexes">Indexes</a>).
Array types are always one-dimensional but may be composed to form
multi-dimensional types.
</p>

<pre>
[32]byte
[2*N] struct { x, y int32 }
[1000]*float64
[3][5]int
[2][2][2]float64  // same as [2]([2]([2]float64))
</pre>

<h3 id="Slice_types">Slice types</h3>

<p>
A slice is a reference to a contiguous segment of an array and
contains a numbered sequence of elements from that array.  A slice
type denotes the set of all slices of arrays of its element type.
A slice value may be <code>nil</code>.
</p>

<pre class="ebnf">
SliceType = "[" "]" ElementType .
</pre>

<p>
Like arrays, slices are indexable and have a length.  The length of a
slice <code>s</code> can be discovered by the built-in function
<code>len(s)</code>; unlike with arrays it may change during
execution.  The elements can be addressed by integer indices 0
through <code>len(s)-1</code> (§<a href="#Indexes">Indexes</a>).  The slice index of a
given element may be less than the index of the same element in the
underlying array.
</p>
<p>
A slice, once initialized, is always associated with an underlying
array that holds its elements.  A slice therefore shares storage
with its array and with other slices of the same array; by contrast,
distinct arrays always represent distinct storage.
</p>
<p>
The array underlying a slice may extend past the end of the slice.
The <i>capacity</i> is a measure of that extent: it is the sum of
the length of the slice and the length of the array beyond the slice;
a slice of length up to that capacity can be created by `slicing' a new
one from the original slice (§<a href="#Slices">Slices</a>).
The capacity of a slice <code>a</code> can be discovered using the
built-in function <code>cap(a)</code> and the relationship between
<code>len()</code> and <code>cap()</code> is:
</p>

<pre>
0 <= len(a) <= cap(a)
</pre>

<p>
The value of an uninitialized slice is <code>nil</code>.
The length and capacity of a <code>nil</code> slice
are 0. A new, initialized slice value for a given element type <code>T</code> is
made using the built-in function <code>make</code>, which takes a slice type
and parameters specifying the length and optionally the capacity:
</p>

<pre>
make([]T, length)
make([]T, length, capacity)
</pre>

<p>
The <code>make()</code> call allocates a new, hidden array to which the returned
slice value refers. That is, executing
</p>

<pre>
make([]T, length, capacity)
</pre>

<p>
produces the same slice as allocating an array and slicing it, so these two examples
result in the same slice:
</p>

<pre>
make([]int, 50, 100)
new([100]int)[0:50]
</pre>

<p>
Like arrays, slices are always one-dimensional but may be composed to construct
higher-dimensional objects.
With arrays of arrays, the inner arrays are, by construction, always the same length;
however with slices of slices (or arrays of slices), the lengths may vary dynamically.
Moreover, the inner slices must be allocated individually (with <code>make</code>).
</p>

<h3 id="Struct_types">Struct types</h3>

<p>
A struct is a sequence of named elements, called fields, each of which has a
name and a type. Field names may be specified explicitly (IdentifierList) or
implicitly (AnonymousField).
Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
be unique.
</p>

<pre class="ebnf">
StructType     = "struct" "{" { FieldDecl ";" } "}" .
FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
AnonymousField = [ "*" ] TypeName .
Tag            = string_lit .
</pre>

<pre>
// An empty struct.
struct {}

// A struct with 6 fields.
struct {
	x, y int
	u float
	_ float  // padding
	A *[]int
	F func()
}
</pre>

<p>
A field declared with a type but no explicit field name is an <i>anonymous field</i>.
Such a field type must be specified as
a type name <code>T</code> or as a pointer to a type name <code>*T</code>,
and <code>T</code> itself may not be
a pointer type. The unqualified type name acts as the field name.
</p>

<pre>
// A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
struct {
	T1        // field name is T1
	*T2       // field name is T2
	P.T3      // field name is T3
	*P.T4     // field name is T4
	x, y int  // field names are x and y
}
</pre>

<p>
The following declaration is illegal because field names must be unique
in a struct type:
</p>

<pre>
struct {
	T         // conflicts with anonymous field *T and *P.T
	*T        // conflicts with anonymous field T and *P.T
	*P.T      // conflicts with anonymous field T and *T
}
</pre>

<p>
Fields and methods (§<a href="#Method_declarations">Method declarations</a>) of an anonymous field are
promoted to be ordinary fields and methods of the struct (§<a href="#Selectors">Selectors</a>).
The following rules apply for a struct type named <code>S</code> and
a type named <code>T</code>:
</p>
<ul>
	<li>If <code>S</code> contains an anonymous field <code>T</code>, the
	    method set of <code>S</code> includes the method set of <code>T</code>.
	</li>

	<li>If <code>S</code> contains an anonymous field <code>*T</code>, the
	    method set of <code>S</code> includes the method set of <code>*T</code>
	    (which itself includes the method set of <code>T</code>).
	</li>

	<li>If <code>S</code> contains an anonymous field <code>T</code> or
	    <code>*T</code>, the method set of <code>*S</code> includes the
	    method set of <code>*T</code> (which itself includes the method
	    set of <code>T</code>).
	</li>
</ul>
<p>
A field declaration may be followed by an optional string literal <i>tag</i>,
which becomes an attribute for all the fields in the corresponding
field declaration. The tags are made
visible through a <a href="#Package_unsafe">reflection interface</a>
but are otherwise ignored.
</p>

<pre>
// A struct corresponding to the TimeStamp protocol buffer.
// The tag strings define the protocol buffer field numbers.
struct {
	microsec  uint64 "field 1"
	serverIP6 uint64 "field 2"
	process   string "field 3"
}
</pre>

<h3 id="Pointer_types">Pointer types</h3>

<p>
A pointer type denotes the set of all pointers to variables of a given
type, called the <i>base type</i> of the pointer.
A pointer value may be <code>nil</code>.
</p>

<pre class="ebnf">
PointerType = "*" BaseType .
BaseType = Type .
</pre>

<pre>
*int
*map[string] *chan int
</pre>

<h3 id="Function_types">Function types</h3>

<p>
A function type denotes the set of all functions with the same parameter
and result types.
A function value may be <code>nil</code>.
</p>

<pre class="ebnf">
FunctionType   = "func" Signature .
Signature      = Parameters [ Result ] .
Result         = Parameters | Type .
Parameters     = "(" [ ParameterList [ "," ] ] ")" .
ParameterList  = ParameterDecl { "," ParameterDecl } .
ParameterDecl  = [ IdentifierList ] ( Type | "..." [ Type ] ) .
</pre>

<p>
Within a list of parameters or results, the names (IdentifierList)
must either all be present or all be absent. If present, each name
stands for one item (parameter or result) of the specified type; if absent, each
type stands for one item of that type.  Parameter and result
lists are always parenthesized except that if there is exactly
one unnamed result it may written as an unparenthesized type.
</p>
<p>
For the last parameter only, instead of a type one may write
<code>...</code> or <code>...  T</code> to indicate that the function
may be invoked with zero or more additional arguments.  If the type
<code>T</code> is present in the parameter declaration, the additional
arguments must all be
<a href="#Assignment_compatibility">assignment compatible</a>
with type <code>T</code>; otherwise they may be of any type.
</p>

<pre>
func()
func(x int)
func() int
func(string, float, ...)
func(prefix string, values ... int)
func(a, b int, z float) bool
func(a, b int, z float) (bool)
func(a, b int, z float, opt ...) (success bool)
func(int, int, float) (float, *[]int)
func(n int) func(p *T)
</pre>


<h3 id="Interface_types">Interface types</h3>

<p>
An interface type specifies a <a href="#Types">method set</a> called its <i>interface</i>.
A variable of interface type can store a value of any type with a method set
that is any superset of the interface. Such a type is said to
<i>implement the interface</i>. An interface value may be <code>nil</code>.
</p>

<pre class="ebnf">
InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
MethodSpec         = MethodName Signature | InterfaceTypeName .
MethodName         = identifier .
InterfaceTypeName  = TypeName .
</pre>

<p>
As with all method sets, in an interface type, each method must have a unique name.
</p>

<pre>
// A simple File interface
interface {
	Read(b Buffer) bool
	Write(b Buffer) bool
	Close()
}
</pre>

<p>
More than one type may implement an interface.
For instance, if two types <code>S1</code> and <code>S2</code>
have the method set
</p>

<pre>
func (p T) Read(b Buffer) bool { return ... }
func (p T) Write(b Buffer) bool { return ... }
func (p T) Close() { ... }
</pre>

<p>
(where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
then the <code>File</code> interface is implemented by both <code>S1</code> and
<code>S2</code>, regardless of what other methods
<code>S1</code> and <code>S2</code> may have or share.
</p>

<p>
A type implements any interface comprising any subset of its methods
and may therefore implement several distinct interfaces. For
instance, all types implement the <i>empty interface</i>:
</p>

<pre>
interface{}
</pre>

<p>
Similarly, consider this interface specification,
which appears within a <a href="#Type_declarations">type declaration</a>
to define an interface called <code>Lock</code>:
</p>

<pre>
type Lock interface {
	Lock()
	Unlock()
}
</pre>

<p>
If <code>S1</code> and <code>S2</code> also implement
</p>

<pre>
func (p T) Lock() { ... }
func (p T) Unlock() { ... }
</pre>

<p>
they implement the <code>Lock</code> interface as well
as the <code>File</code> interface.
</p>
<p>
An interface may contain an interface type name <code>T</code>
in place of a method specification.
The effect is equivalent to enumerating the methods of <code>T</code> explicitly
in the interface.
</p>

<pre>
type ReadWrite interface {
	Read(b Buffer) bool
	Write(b Buffer) bool
}

type File interface {
	ReadWrite  // same as enumerating the methods in ReadWrite
	Lock       // same as enumerating the methods in Lock
	Close()
}
</pre>

<h3 id="Map_types">Map types</h3>

<p>
A map is an unordered group of elements of one type, called the
element type, indexed by a set of unique <i>keys</i> of another type,
called the key type.
A map value may be <code>nil</code>.

</p>

<pre class="ebnf">
MapType     = "map" "[" KeyType "]" ElementType .
KeyType     = Type .
</pre>

<p>
The comparison operators <code>==</code> and <code>!=</code>
(§<a href="#Comparison_operators">Comparison operators</a>) must be fully defined
for operands of the key type; thus the key type must not be a struct, array or slice.
If the key type is an interface type, these
comparison operators must be defined for the dynamic key values;
failure will cause a <a href="#Run_time_panics">run-time panic</a>.

</p>

<pre>
map [string] int
map [*T] struct { x, y float }
map [string] interface {}
</pre>

<p>
The number of elements is called the length and is never negative.
The length of a map <code>m</code> can be discovered using the
built-in function <code>len(m)</code> and may change during execution.
Values may be added and removed
during execution using special forms of <a href="#Assignments">assignment</a>.
</p>
<p>
The value of an uninitialized map is <code>nil</code>.
A new, empty map value is made using the built-in
function <code>make</code>, which takes the map type and an optional
capacity hint as arguments:
</p>

<pre>
make(map[string] int)
make(map[string] int, 100)
</pre>

<p>
The initial capacity does not bound its size:
maps grow to accommodate the number of items
stored in them.
</p>

<h3 id="Channel_types">Channel types</h3>

<p>
A channel provides a mechanism for two concurrently executing functions
to synchronize execution and communicate by passing a value of a
specified element type.
A value of channel type may be <code>nil</code>.
</p>

<pre class="ebnf">
ChannelType = ( "chan" [ "&lt;-" ] | "&lt;-" "chan" ) ElementType .
</pre>

<p>
The <code>&lt;-</code> operator specifies the channel <i>direction</i>,
<i>send</i> or <i>receive</i>. If no direction is given, the channel is
<i>bi-directional</i>.
A channel may be constrained only to send or only to receive by
<a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
</p>

<pre>
chan T         // can be used to send and receive values of type T
chan&lt;- float   // can only be used to send floats
&lt;-chan int     // can only be used to receive ints
</pre>

<p>
The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
possible:
</p>

<pre>
chan&lt;- chan int     // same as chan&lt;- (chan int)
chan&lt;- &lt;-chan int   // same as chan&lt;- (&lt;-chan int)
&lt;-chan &lt;-chan int   // same as &lt;-chan (&lt;-chan int)
chan (&lt;-chan int)
</pre>

<p>
The value of an uninitialized channel is <code>nil</code>. A new, initialized channel
value can be made using the built-in function
<a href="#Making_slices_maps_and_channels"><code>make</code></a>,
which takes the channel type and an optional capacity as arguments:
</p>

<pre>
make(chan int, 100)
</pre>

<p>
The capacity, in number of elements, sets the size of the buffer in the channel. If the
capacity is greater than zero, the channel is asynchronous: provided the
buffer is not full, sends can succeed without blocking. If the capacity is zero
or absent, the communication succeeds only when both a sender and receiver are ready.
</p>

<p>
A channel may be closed and tested for closure with the built-in functions
<a href="#Close_and_closed"><code>close</code> and <code>closed</code></a>.
</p>

<h2 id="Properties_of_types_and_values">Properties of types and values</h2>

<p>
Two types are either <i>identical</i> or <i>different</i>, and they are
either <i>compatible</i> or <i>incompatible</i>.
Identical types are always compatible, but compatible types need not be identical.
</p>

<h3 id="Type_identity_and_compatibility">Type identity and compatibility</h3>

<h4 id="Type_identity">Type identity</h4>

<p>
Two named types are identical if their type names originate in the same
type declaration (§<a href="#Declarations_and_scope">Declarations and scope</a>).
A named and an unnamed type are always different. Two unnamed types are identical
if the corresponding type literals are identical; that is if they have the same
literal structure and corresponding components have identical types. In detail:
</p>

<ul>
	<li>Two array types are identical if they have identical element types and
	    the same array length.</li>

	<li>Two slice types are identical if they have identical element types.</li>

	<li>Two struct types are identical if they have the same sequence of fields,
	    and if corresponding fields have the same names and identical types.
	    Two anonymous fields are considered to have the same name. Lower-case field
	    names from different packages are always different.</li>

	<li>Two pointer types are identical if they have identical base types.</li>

	<li>Two function types are identical if they have the same number of parameters
	    and result values and if corresponding parameter and result types are
	    identical. All "..." parameters without a specified type are defined to have
	    identical type.  All "..." parameters with specified identical type
	    <code>T</code> are defined to have identical type.
	    Parameter and result names are not required to match.</li>

	<li>Two interface types are identical if they have the same set of methods
	    with the same names and identical function types. Lower-case method names from
	    different packages are always different. The order of the methods is irrelevant.</li>

	<li>Two map types are identical if they have identical key and value types.</li>

	<li>Two channel types are identical if they have identical value types and
	    the same direction.</li>
</ul>

<h4 id="Type_compatibility">Type compatibility</h4>

<p>
Type compatibility is less stringent than type identity: All identical types are
compatible, but additionally a named and an unnamed type are compatible if the
respective type literals are identical.
</p>

<p>
Given the declarations
</p>

<pre>
type (
	T0 []string
	T1 []string
	T2 struct { a, b int }
	T3 struct { a, c int }
	T4 func(int, float) *T0
	T5 func(x int, y float) *[]string
)
</pre>

<p>
these types are identical:
</p>

<pre>
T0 and T0
[]int and []int
struct { a, b *T5 } and struct { a, b *T5 }
func(x int, y float) *[]string and func(int, float) (result *[]string)
</pre>

<p>
<code>T0</code> and <code>T1</code> are neither identical nor compatible
because they are named types with distinct declarations.
</p>

<p>
These types are compatible:
</p>

<pre>
T0 and T0
T0 and []string
T3 and struct { a int; c int }
T4 and func(x int, y float) (result *T0)
</pre>

<p>
<code>T2</code> and <code>struct { a, c int }</code> are incompatible because
they have different field names; <code>T4</code> and
<code>func(x int, y float) *[]string</code> are incompatible because the
respective type literals are different.
</p>

<h3 id="Assignment_compatibility">Assignment compatibility</h3>

<p>
A value <code>v</code> of static type <code>V</code> is <i>assignment compatible</i>
with a type <code>T</code> if one or more of the following conditions applies:
</p>

<ul>
<li>
<code>V</code> is compatible with <code>T</code>.
</li>
<li>
<code>T</code> is an interface type and
<code>V</code> <a href="#Interface_types">implements</a> <code>T</code>.
</li>
<li>
<code>V</code> is a bidirectional channel and <code>T</code> is a channel type
with identical element type and at least one of <code>V</code> or <code>T</code> is unnamed.
</li>
</ul>

<p>
If <code>T</code> is a struct type, either all fields of <code>T</code>
must be <a href="#Exported_identifiers">exported</a>, or the assignment must be in
the same package in which <code>T</code> is declared.
In other words, a struct value can be assigned to a struct variable only if
every field of the struct may be legally assigned individually by the program.
</p>

<p>
An untyped <a href="#Constants">constant</a> <code>v</code>
is assignment compatible with type <code>T</code> if <code>v</code>
can be represented accurately as a value of type <code>T</code>.
</p>

<p>
The predeclared identifier <code>nil</code> is assignment compatible with any
pointer, function, slice, map, channel, or interface type and
represents the <a href="#The_zero_value">zero value</a> for that type.
</p>

<p>
Any value may be assigned to the <a href="#Blank_identifier">blank identifier</a>.
</p>


<h2 id="Blocks">Blocks</h2>

<p>
A <i>block</i> is a sequence of declarations and statements within matching
brace brackets.
</p>

<pre class="ebnf">
Block = "{" { Statement ";" } "}" .
</pre>

<p>
In addition to explicit blocks in the source code, there are implicit blocks:
</p>

<ol>
	<li>The <i>universe block</i> encompasses all Go source text.</li>

	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
	    Go source text for that package.</li>

	<li>Each file has a <i>file block</i> containing all Go source text
	    in that file.</li>

	<li>Each <code>if</code>, <code>for</code>, and <code>switch</code>
	    statement is considered to be in its own implicit block.</li>

	<li>Each clause in a <code>switch</code> or <code>select</code> statement
	    acts as an implicit block.</li>
</ol>

<p>
Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
</p>


<h2 id="Declarations_and_scope">Declarations and scope</h2>

<p>
A declaration binds a non-<a href="#Blank_identifier">blank</a>
identifier to a constant, type, variable, function, or package.
Every identifier in a program must be declared.
No identifier may be declared twice in the same block, and
no identifier may be declared in both the file and package block.
</p>

<pre class="ebnf">
Declaration   = ConstDecl | TypeDecl | VarDecl .
TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
</pre>

<p>
The <i>scope</i> of a declared identifier is the extent of source text in which
the identifier denotes the specified constant, type, variable, function, or package.
</p>

<p>
Go is lexically scoped using blocks:
</p>

<ol>
	<li>The scope of a predeclared identifier is the universe block.</li>

	<li>The scope of an identifier denoting a constant, type, variable,
	    or function declared at top level (outside any function) is the
	    package block.</li>

	<li>The scope of an imported package identifier is the file block
	    of the file containing the import declaration.</li>

	<li>The scope of an identifier denoting a function parameter or
	    result variable is the function body.</li>

	<li>The scope of a constant or variable identifier declared
	    inside a function begins at the end of the ConstSpec or VarSpec
	    and ends at the end of the innermost containing block.</li>

	<li>The scope of a type identifier declared inside a function
	    begins at the identifier in the TypeSpec
	    and ends at the end of the innermost containing block.</li>
</ol>

<p>
An identifier declared in a block may be redeclared in an inner block.
While the identifier of the inner declaration is in scope, it denotes
the entity declared by the inner declaration.
</p>

<p>
The <a href="#Package_clause">package clause</a> is not a declaration; the package name
does not appear in any scope. Its purpose is to identify the files belonging
to the same <a href="#Packages">package</a> and to specify the default package name for import
declarations.
</p>


<h3 id="Label_scopes">Label scopes</h3>

<p>
Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
used in the <code>break</code>, <code>continue</code>, and <code>goto</code>
statements (§<a href="#Break_statements">Break statements</a>, §<a href="#Continue_statements">Continue statements</a>, §<a href="#Goto_statements">Goto statements</a>).
In contrast to other identifiers, labels are not block scoped and do
not conflict with identifiers that are not labels. The scope of a label
is the body of the function in which it is declared and excludes
the body of any nested function.
</p>


<h3 id="Predeclared_identifiers">Predeclared identifiers</h3>

<p>
The following identifiers are implicitly declared in the universe block:
</p>
<pre class="grammar">
Basic types:
	bool byte float32 float64 int8 int16 int32 int64
	string uint8 uint16 uint32 uint64

Architecture-specific convenience types:
	float int uint uintptr

Constants:
	true false iota

Zero value:
	nil

Functions:
	cap close closed cmplx copy imag len make
	new panic print println real
</pre>


<h3 id="Exported_identifiers">Exported identifiers</h3>

<p>
An identifier may be <i>exported</i> to permit access to it from another package
using a <a href="#Qualified_identifiers">qualified identifier</a>. An identifier
is exported if both:
</p>
<ol>
	<li>the first character of the identifier's name is a Unicode upper case letter (Unicode class "Lu"); and</li>
	<li>the identifier is declared in the <a href="#Blocks">package block</a> or denotes a field or method of a type
	    declared in that block.</li>
</ol>
<p>
All other identifiers are not exported.
</p>


<h3 id="Blank_identifier">Blank identifier</h3>

<p>
The <i>blank identifier</i>, represented by the underscore character <code>_</code>, may be used in a declaration like
any other identifier but the declaration does not introduce a new binding.
</p>


<h3 id="Constant_declarations">Constant declarations</h3>

<p>
A constant declaration binds a list of identifiers (the names of
the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
The number of identifiers must be equal
to the number of expressions, and the <i>n</i>th identifier on
the left is bound to the value of the <i>n</i>th expression on the
right.
</p>

<pre class="ebnf">
ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .

IdentifierList = identifier { "," identifier } .
ExpressionList = Expression { "," Expression } .
</pre>

<p>
If the type is present, all constants take the type specified, and
the expressions must be <a href="#Assignment_compatibility">assignment compatible</a> with that type.
If the type is omitted, the constants take the
individual types of the corresponding expressions.
If the expression values are untyped <a href="#Constants">constants</a>,
the declared constants remain untyped and the constant identifiers
denote the constant values. For instance, if the expression is a
floating-point literal, the constant identifier denotes a floating-point
constant, even if the literal's fractional part is zero.
</p>

<pre>
const Pi float64 = 3.14159265358979323846
const zero = 0.0             // untyped floating-point constant
const (
	size int64 = 1024
	eof = -1             // untyped integer constant
)
const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
const u, v float = 0, 3      // u = 0.0, v = 3.0
</pre>

<p>
Within a parenthesized <code>const</code> declaration list the
expression list may be omitted from any but the first declaration.
Such an empty list is equivalent to the textual substitution of the
first preceding non-empty expression list and its type if any.
Omitting the list of expressions is therefore equivalent to
repeating the previous list.  The number of identifiers must be equal
to the number of expressions in the previous list.
Together with the <a href="#Iota"><code>iota</code> constant generator</a>
this mechanism permits light-weight declaration of sequential values:
</p>

<pre>
const (
	Sunday = iota
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Partyday
	numberOfDays  // this constant is not exported
)
</pre>


<h3 id="Iota">Iota</h3>

<p>
Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
<code>iota</code> represents successive untyped integer <a href="#Constants">
constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
It can be used to construct a set of related constants:
</p>

<pre>
const (  // iota is reset to 0
	c0 = iota  // c0 == 0
	c1 = iota  // c1 == 1
	c2 = iota  // c2 == 2
)

const (
	a = 1 &lt;&lt; iota  // a == 1 (iota has been reset)
	b = 1 &lt;&lt; iota  // b == 2
	c = 1 &lt;&lt; iota  // c == 4
)

const (
	u       = iota * 42  // u == 0     (untyped integer constant)
	v float = iota * 42  // v == 42.0  (float constant)
	w       = iota * 42  // w == 84    (untyped integer constant)
)

const x = iota  // x == 0 (iota has been reset)
const y = iota  // y == 0 (iota has been reset)
</pre>

<p>
Within an ExpressionList, the value of each <code>iota</code> is the same because
it is only incremented after each ConstSpec:
</p>

<pre>
const (
	bit0, mask0 = 1 &lt;&lt; iota, 1 &lt;&lt; iota - 1  // bit0 == 1, mask0 == 0
	bit1, mask1                             // bit1 == 2, mask1 == 1
	_, _                                    // skips iota == 2
	bit3, mask3                             // bit3 == 8, mask3 == 7
)
</pre>

<p>
This last example exploits the implicit repetition of the
last non-empty expression list.
</p>


<h3 id="Type_declarations">Type declarations</h3>

<p>
A type declaration binds an identifier, the <i>type name</i>, to a new type
that has the same definition (element, fields, channel direction, etc.) as
an existing type.  The new type is
<a href="#Properties_of_types_and_values">compatible</a> with, but
<a href="#Properties_of_types_and_values">different</a> from, the existing type.
</p>

<pre class="ebnf">
TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
TypeSpec     = identifier Type .
</pre>

<pre>
type IntArray [16]int

type (
	Point struct { x, y float }
	Polar Point
)

type TreeNode struct {
	left, right *TreeNode
	value *Comparable
}

type Cipher interface {
	BlockSize() int
	Encrypt(src, dst []byte)
	Decrypt(src, dst []byte)
}
</pre>

<p>
The declared type does not inherit any <a href="#Method_declarations">methods</a>
bound to the existing type, but the <a href="#Types">method set</a>
of an interface type or of elements of a composite type remains unchanged:
</p>

<pre>
// A Mutex is a data type with two methods Lock and Unlock.
type Mutex struct         { /* Mutex fields */ }
func (m *Mutex) Lock()    { /* Lock implementation */ }
func (m *Mutex) Unlock()  { /* Unlock implementation */ }

// NewMutex has the same composition as Mutex but its method set is empty.
type NewMutex Mutex

// The method set of *PrintableMutex contains the methods
// Lock and Unlock bound to its anonymous field Mutex.
type PrintableMutex struct {
	Mutex
}

// MyCipher is an interface type that has the same method set as Cipher.
type MyCipher Cipher
</pre>

<p>
A type declaration may be used to define a different boolean, numeric, or string
type and attach methods to it:
</p>

<pre>
type TimeZone int

const (
	EST TimeZone = -(5 + iota)
	CST
	MST
	PST
)

func (tz TimeZone) String() string {
	return fmt.Sprintf("GMT+%dh", tz)
}
</pre>


<h3 id="Variable_declarations">Variable declarations</h3>

<p>
A variable declaration creates a variable, binds an identifier to it and
gives it a type and optionally an initial value.
</p>
<pre class="ebnf">
VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
</pre>

<pre>
var i int
var U, V, W float
var k = 0
var x, y float = -1, -2
var (
	i int
	u, v, s = 2.0, 3.0, "bar"
)
var re, im = complexSqrt(-1)
var _, found = entries[name]  // map lookup; only interested in "found"
</pre>

<p>
If a list of expressions is given, the variables are initialized
by assigning the expressions to the variables (§<a href="#Assignments">Assignments</a>)
in order; all expressions must be consumed and all variables initialized from them.
Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
</p>

<p>
If the type is present, each variable is given that type.
Otherwise, the types are deduced from the assignment
of the expression list.
</p>

<p>
If the type is absent and the corresponding expression evaluates to an
untyped <a href="#Constants">constant</a>, the type of the declared variable
is <code>bool</code>, <code>int</code>, <code>float</code>, or <code>string</code>
respectively, depending on whether the value is a boolean, integer,
floating-point, or string constant:
</p>

<pre>
var b = true    // t has type bool
var i = 0       // i has type int
var f = 3.0     // f has type float
var s = "OMDB"  // s has type string
</pre>

<h3 id="Short_variable_declarations">Short variable declarations</h3>

<p>
A <i>short variable declaration</i> uses the syntax:
</p>

<pre class="ebnf">
ShortVarDecl = IdentifierList ":=" ExpressionList .
</pre>

<p>
It is a shorthand for a regular variable declaration with
initializer expressions but no types:
</p>

<pre class="grammar">
"var" IdentifierList = ExpressionList .
</pre>

<pre>
i, j := 0, 10
f := func() int { return 7 }
ch := make(chan int)
r, w := os.Pipe(fd)  // os.Pipe() returns two values
_, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
</pre>

<p>
Unlike regular variable declarations, a short variable declaration may redeclare variables provided they
were originally declared in the same block with the same type, and at
least one of the non-<a href="#Blank_identifier">blank</a> variables is new.  As a consequence, redeclaration
can only appear in a multi-variable short declaration.
Redeclaration does not introduce a new
variable; it just assigns a new value to the original.
</p>

<pre>
field1, offset := nextField(str, 0)
field2, offset := nextField(str, offset)  // redeclares offset
</pre>

<p>
Short variable declarations may appear only inside functions.
In some contexts such as the initializers for <code>if</code>,
<code>for</code>, or <code>switch</code> statements,
they can be used to declare local temporary variables (§<a href="#Statements">Statements</a>).
</p>

<h3 id="Function_declarations">Function declarations</h3>

<p>
A function declaration binds an identifier to a function (§<a href="#Function_types">Function types</a>).
</p>

<pre class="ebnf">
FunctionDecl = "func" identifier Signature [ Body ] .
Body         = Block.
</pre>

<p>
A function declaration may omit the body. Such a declaration provides the
signature for a function implemented outside Go, such as an assembly routine.
</p>

<pre>
func min(x int, y int) int {
	if x &lt; y {
		return x
	}
	return y
}

func flushICache(begin, end uintptr)  // implemented externally
</pre>

<h3 id="Method_declarations">Method declarations</h3>

<p>
A method is a function with a <i>receiver</i>.
A method declaration binds an identifier to a method.
</p>
<pre class="ebnf">
MethodDecl   = "func" Receiver MethodName Signature [ Body ] .
Receiver     = "(" [ identifier ] [ "*" ] BaseTypeName ")" .
BaseTypeName = identifier .
</pre>

<p>
The receiver type must be of the form <code>T</code> or <code>*T</code> where
<code>T</code> is a type name. <code>T</code> is called the
<i>receiver base type</i> or just <i>base type</i>.
The base type must not be a pointer or interface type and must be
declared in the same package as the method.
The method is said to be <i>bound</i> to the base type
and is visible only within selectors for that type
(§<a href="#Type_declarations">Type declarations</a>, §<a href="#Selectors">Selectors</a>).
</p>

<p>
Given type <code>Point</code>, the declarations
</p>

<pre>
func (p *Point) Length() float {
	return Math.sqrt(p.x * p.x + p.y * p.y)
}

func (p *Point) Scale(factor float) {
	p.x = p.x * factor
	p.y = p.y * factor
}
</pre>

<p>
bind the methods <code>Length</code> and <code>Scale</code>,
with receiver type <code>*Point</code>,
to the base type <code>Point</code>.
</p>

<p>
If the receiver's value is not referenced inside the body of the method,
its identifier may be omitted in the declaration. The same applies in
general to parameters of functions and methods.
</p>

<p>
The type of a method is the type of a function with the receiver as first
argument.  For instance, the method <code>Scale</code> has type
</p>

<pre>
(p *Point, factor float)
</pre>

<p>
However, a function declared this way is not a method.
</p>


<h2 id="Expressions">Expressions</h2>

<p>
An expression specifies the computation of a value by applying
operators and functions to operands.
</p>

<h3 id="Operands">Operands</h3>

<p>
Operands denote the elementary values in an expression.
</p>

<pre class="ebnf">
Operand    = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" .
Literal    = BasicLit | CompositeLit | FunctionLit .
BasicLit   = int_lit | float_lit | imaginary_lit | char_lit | string_lit .
</pre>


<h3 id="Qualified_identifiers">Qualified identifiers</h3>

<p>
A qualified identifier is a non-<a href="#Blank_identifier">blank</a> identifier qualified by a package name prefix.
</p>

<pre class="ebnf">
QualifiedIdent = [ PackageName "." ] identifier .
</pre>

<p>
A qualified identifier accesses an identifier in a separate package.
The identifier must be <a href="#Exported_identifiers">exported</a> by that
package, which means that it must begin with a Unicode upper case letter.
</p>

<pre>
math.Sin
</pre>

<!---
<p>
<span class="alert">TODO: Unify this section with Selectors - it's the same syntax.</span>
</p>
--->

<h3 id="Composite_literals">Composite literals</h3>

<p>
Composite literals construct values for structs, arrays, slices, and maps
and create a new value each time they are evaluated.
They consist of the type of the value
followed by a brace-bound list of composite elements. An element may be
a single expression or a key-value pair.
</p>

<pre class="ebnf">
CompositeLit  = LiteralType "{" [ ElementList [ "," ] ] "}" .
LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
                SliceType | MapType | TypeName | "(" LiteralType ")" .
ElementList   = Element { "," Element } .
Element       = [ Key ":" ] Value .
Key           = FieldName | ElementIndex .
FieldName     = identifier .
ElementIndex  = Expression .
Value         = Expression .
</pre>

<p>
The LiteralType must be a struct, array, slice, or map type
(the grammar enforces this constraint except when the type is given
as a TypeName).
The types of the expressions must be <a href="#Assignment_compatibility">assignment compatible</a> with
the respective field, element, and key types of the LiteralType;
there is no additional conversion.
The key is interpreted as a field name for struct literals,
an index expression for array and slice literals, and a key for map literals.
For map literals, all elements must have a key. It is an error
to specify multiple elements with the same field name or
constant key value.
</p>

<p>
For struct literals the following rules apply:
</p>
<ul>
	<li>A key must be a field name declared in the LiteralType.
	</li>
	<li>A literal that does not contain any keys must
	    list an element for each struct field in the
	    order in which the fields are declared.
	</li>
	<li>If any element has a key, every element must have a key.
	</li>
	<li>A literal that contains keys does not need to
	    have an element for each struct field. Omitted fields
	    get the zero value for that field.
	</li>
	<li>A literal may omit the element list; such a literal evaluates
		to the zero value for its type.
	</li>
	<li>It is an error to specify an element for a non-exported
	    field of a struct belonging to a different package.
	</li>
</ul>

<p>
Given the declarations
</p>
<pre>
type Point struct { x, y, z float }
type Line struct { p, q Point }
</pre>

<p>
one may write
</p>

<pre>
origin := Point{}                            // zero value for Point
line := Line{origin, Point{y: -4, z: 12.3}}  // zero value for line.q.x
</pre>

<p>
For array and slice literals the following rules apply:
</p>
<ul>
	<li>Each element has an associated integer index marking
	    its position in the array.
	</li>
	<li>An element with a key uses the key as its index; the
	    key must be a constant integer expression.
	</li>
	<li>An element without a key uses the previous element's index plus one.
	    If the first element has no key, its index is zero.
	</li>
</ul>

<p>
Taking the address of a composite literal (§<a href="#Address_operators">Address operators</a>)
generates a unique pointer to an instance of the literal's value.
</p>
<pre>
var pointer *Point = &amp;Point{y: 1000}
</pre>

<p>
The length of an array literal is the length specified in the LiteralType.
If fewer elements than the length are provided in the literal, the missing
elements are set to the zero value for the array element type.
It is an error to provide elements with index values outside the index range
of the array. The notation <code>...</code> specifies an array length equal
to the maximum element index plus one.
</p>

<pre>
buffer := [10]string{}               // len(buffer) == 10
intSet := [6]int{1, 2, 3, 5}         // len(intSet) == 6
days := [...]string{"Sat", "Sun"}    // len(days) == 2
</pre>

<p>
A slice literal describes the entire underlying array literal.
Thus, the length and capacity of a slice literal are the maximum
element index plus one. A slice literal has the form
</p>

<pre>
[]T{x1, x2, ... xn}
</pre>

<p>
and is a shortcut for a slice operation applied to an array literal:
</p>

<pre>
[n]T{x1, x2, ... xn}[0 : n]
</pre>

<p>
A parsing ambiguity arises when a composite literal using the
TypeName form of the LiteralType appears in the condition of an
"if", "for", or "switch" statement, because the braces surrounding
the expressions in the literal are confused with those introducing
a block of statements. To resolve the ambiguity in this rare case,
the composite literal must appear within
parentheses.
</p>

<pre>
if x == (T{a,b,c}[i]) { ... }
if (x == T{a,b,c}[i]) { ... }
</pre>

<p>
Examples of valid array, slice, and map literals:
</p>

<pre>
// list of prime numbers
primes := []int{2, 3, 5, 7, 9, 11, 13, 17, 19, 991}

// vowels[ch] is true if ch is a vowel
vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}

// the array [10]float{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
filter := [10]float{-1, 4: -0.1, -0.1, 9: -1}

// frequencies in Hz for equal-tempered scale (A4 = 440Hz)
noteFrequency := map[string]float{
	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
	"G0": 24.50, "A0": 27.50, "B0": 30.87,
}
</pre>


<h3 id="Function_literals">Function literals</h3>

<p>
A function literal represents an anonymous function.
It consists of a specification of the function type and a function body.
</p>

<pre class="ebnf">
FunctionLit = FunctionType Body .
</pre>

<pre>
func(a, b int, z float) bool { return a*b &lt; int(z) }
</pre>

<p>
A function literal can be assigned to a variable or invoked directly.
</p>

<pre>
f := func(x, y int) int { return x + y }
func(ch chan int) { ch &lt;- ACK } (reply_chan)
</pre>

<p>
Function literals are <i>closures</i>: they may refer to variables
defined in a surrounding function. Those variables are then shared between
the surrounding function and the function literal, and they survive as long
as they are accessible.
</p>


<h3 id="Primary_expressions">Primary expressions</h3>

<p>
Primary expressions are the operands for unary and binary expressions.
</p>

<pre class="ebnf">
PrimaryExpr =
	Operand |
	Conversion |
	BuiltinCall |
	PrimaryExpr Selector |
	PrimaryExpr Index |
	PrimaryExpr Slice |
	PrimaryExpr TypeAssertion |
	PrimaryExpr Call .

Selector       = "." identifier .
Index          = "[" Expression "]" .
Slice          = "[" Expression ":" [ Expression ] "]" .
TypeAssertion  = "." "(" Type ")" .
Call           = "(" [ ExpressionList [ "," ] ] ")" .
</pre>


<pre>
x
2
(s + ".txt")
f(3.1415, true)
Point{1, 2}
m["foo"]
s[i : j + 1]
obj.color
Math.sin
f.p[i].x()
</pre>


<h3 id="Selectors">Selectors</h3>

<p>
A primary expression of the form
</p>

<pre>
x.f
</pre>

<p>
denotes the field or method <code>f</code> of the value denoted by <code>x</code>
(or of <code>*x</code> if
<code>x</code> is of pointer type). The identifier <code>f</code>
is called the (field or method)
<i>selector</i>; it must not be the <a href="#Blank_identifier">blank identifier</a>.
The type of the expression is the type of <code>f</code>.
</p>
<p>
A selector <code>f</code> may denote a field or method <code>f</code> of
a type <code>T</code>, or it may refer
to a field or method <code>f</code> of a nested anonymous field of
<code>T</code>.
The number of anonymous fields traversed
to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
The depth of a field or method <code>f</code>
declared in <code>T</code> is zero.
The depth of a field or method <code>f</code> declared in
an anonymous field <code>A</code> in <code>T</code> is the
depth of <code>f</code> in <code>A</code> plus one.
</p>
<p>
The following rules apply to selectors:
</p>
<ol>
<li>
For a value <code>x</code> of type <code>T</code> or <code>*T</code>
where <code>T</code> is not an interface type,
<code>x.f</code> denotes the field or method at the shallowest depth
in <code>T</code> where there
is such an <code>f</code>.
If there is not exactly one <code>f</code> with shallowest depth, the selector
expression is illegal.
</li>
<li>
For a variable <code>x</code> of type <code>I</code> or <code>*I</code>
where <code>I</code> is an interface type,
<code>x.f</code> denotes the actual method with name <code>f</code> of the value assigned
to <code>x</code> if there is such a method.
If no value or <code>nil</code> was assigned to <code>x</code>, <code>x.f</code> is illegal.
</li>
<li>
In all other cases, <code>x.f</code> is illegal.
</li>
</ol>
<p>
Selectors automatically dereference pointers.
If <code>x</code> is of pointer type, <code>x.y</code>
is shorthand for <code>(*x).y</code>; if <code>y</code>
is also of pointer type, <code>x.y.z</code> is shorthand
for <code>(*(*x).y).z</code>, and so on.
If <code>*x</code> is of pointer type, dereferencing
must be explicit;
only one level of automatic dereferencing is provided.
For an <code>x</code> of type <code>T</code> containing an
anonymous field declared as <code>*A</code>,
<code>x.f</code> is a shortcut for <code>(*x.A).f</code>.
</p>
<p>
For example, given the declarations:
</p>

<pre>
type T0 struct {
	x int
}

func (recv *T0) M0()

type T1 struct {
	y int
}

func (recv T1) M1()

type T2 struct {
	z int
	T1
	*T0
}

func (recv *T2) M2()

var p *T2  // with p != nil and p.T1 != nil
</pre>

<p>
one may write:
</p>

<pre>
p.z         // (*p).z
p.y         // ((*p).T1).y
p.x         // (*(*p).T0).x

p.M2        // (*p).M2
p.M1        // ((*p).T1).M1
p.M0        // ((*p).T0).M0
</pre>


<!---
<span class="alert">
TODO: Specify what happens to receivers.
</span>
--->


<h3 id="Indexes">Indexes</h3>

<p>
A primary expression of the form
</p>

<pre>
a[x]
</pre>

<p>
denotes the element of the array, slice, string or map <code>a</code> indexed by <code>x</code>.
The value <code>x</code> is called the
<i>index</i> or <i>map key</i>, respectively. The following
rules apply:
</p>

<p>
For <code>a</code> of type <code>A</code> or <code>*A</code>
where <code>A</code> is an <a href="#Array_types">array type</a>,
or for <code>a</code> of type <code>S</code> where <code>S</code> is a <a href="#Slice_types">slice type</a>:
</p>
<ul>
	<li><code>x</code> must be an integer value and <code>0 &lt;= x &lt; len(a)</code></li>
	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
	  <code>a[x]</code> is the element type of <code>A</code></li>
	<li>if the index <code>x</code> is out of range,
	a <a href="#Run_time_panics">run-time panic</a> occurs</li>
</ul>

<p>
For <code>a</code> of type <code>T</code>
where <code>T</code> is a <a href="#String_types">string type</a>:
</p>
<ul>
	<li><code>x</code> must be an integer value and <code>0 &lt;= x &lt; len(a)</code></li>
	<li><code>a[x]</code> is the byte at index <code>x</code> and the type of
	  <code>a[x]</code> is <code>byte</code></li>
	<li><code>a[x]</code> may not be assigned to</li>
	<li>if the index <code>x</code> is out of range,
	a <a href="#Run_time_panics">run-time panic</a> occurs</li>
</ul>

<p>
For <code>a</code> of type <code>M</code>
where <code>M</code> is a <a href="#Map_types">map type</a>:
</p>
<ul>
	<li><code>x</code>'s type must be
	<a href="#Assignment_compatibility">assignment compatible</a>
	with the key type of <code>M</code></li>
	<li>if the map contains an entry with key <code>x</code>,
	  <code>a[x]</code> is the map value with key <code>x</code>
	  and the type of <code>a[x]</code> is the value type of <code>M</code></li>
	<li>if the map does not contain such an entry,
	  <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
	  for the value type of <code>M</code></li>
</ul>

<p>
Otherwise <code>a[x]</code> is illegal.
</p>

<p>
An index expression on a map <code>a</code> of type <code>map[K]V</code>
may be used in an assignment or initialization of the special form
</p>

<pre>
v, ok = a[x]
v, ok := a[x]
var v, ok = a[x]
</pre>

<p>
where the result of the index expression is a pair of values with types
<code>(V, bool)</code>. In this form, the value of <code>ok</code> is
<code>true</code> if the key <code>x</code> is present in the map, and
<code>false</code> otherwise. The value of <code>v</code> is the value
<code>a[x]</code> as in the single-result form.
</p>

<p>
Similarly, if an assignment to a map has the special form
</p>

<pre>
a[x] = v, ok
</pre>

<p>
and boolean <code>ok</code> has the value <code>false</code>,
the entry for key <code>x</code> is deleted from the map; if
<code>ok</code> is <code>true</code>, the construct acts like
a regular assignment to an element of the map.
</p>


<h3 id="Slices">Slices</h3>

<p>
For a string, array, or slice <code>a</code>, the primary expression
</p>

<pre>
a[lo : hi]
</pre>

<p>
constructs a substring or slice. The index expressions <code>lo</code> and
<code>hi</code> select which elements appear in the result. The result has
indexes starting at 0 and length equal to
<code>hi</code>&nbsp;-&nbsp;<code>lo</code>.
After slicing the array <code>a</code>
</p>

<pre>
a := [5]int{1, 2, 3, 4, 5}
s := a[1:4]
</pre>

<p>
the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
</p>

<pre>
s[0] == 2
s[1] == 3
s[2] == 4
</pre>

<p>
For convenience, the <code>hi</code> expression may be omitted; the notation
<code>a[lo :]</code> is shorthand for <code>a[lo : len(a)]</code>.
For arrays or strings, the indexes
<code>lo</code> and <code>hi</code> must satisfy
0 &lt;= <code>lo</code> &lt;= <code>hi</code> &lt;= length;
for slices, the upper bound is the capacity rather than the length.
</p>

<p>
If the sliced operand is a string or slice, the result of the slice operation
is a string or slice of the same type.
If the sliced operand is an array, the result of the slice operation is a slice
with the same element type as the array.
</p>


<h3 id="Type_assertions">Type assertions</h3>

<p>
For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
and a type <code>T</code>, the primary expression
</p>

<pre>
x.(T)
</pre>

<p>
asserts that <code>x</code> is not <code>nil</code>
and that the value stored in <code>x</code> is of type <code>T</code>.
The notation <code>x.(T)</code> is called a <i>type assertion</i>.
</p>
<p>
More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
that the dynamic type of <code>x</code> is identical to the type <code>T</code>
(§<a href="#Type_identity">Type identity and compatibility</a>).
If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
of <code>x</code> implements the interface <code>T</code> (§<a href="#Interface_types">Interface types</a>).
</p>
<p>
If the type assertion holds, the value of the expression is the value
stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
a <a href="#Run_time_panics">run-time panic</a> occurs.
In other words, even though the dynamic type of <code>x</code>
is known only at run-time, the type of <code>x.(T)</code> is
known to be <code>T</code> in a correct program.
</p>
<p>
If a type assertion is used in an assignment or initialization of the form
</p>

<pre>
v, ok = x.(T)
v, ok := x.(T)
var v, ok = x.(T)
</pre>

<p>
the result of the assertion is a pair of values with types <code>(T, bool)</code>.
If the assertion holds, the expression returns the pair <code>(x.(T), true)</code>;
otherwise, the expression returns <code>(Z, false)</code> where <code>Z</code>
is the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
No run-time panic occurs in this case.
The type assertion in this construct thus acts like a function call
returning a value and a boolean indicating success.  (§<a href="#Assignments">Assignments</a>)
</p>


<h3 id="Calls">Calls</h3>

<p>
Given an expression <code>f</code> of function type
<code>F</code>,
</p>

<pre>
f(a1, a2, ... an)
</pre>

<p>
calls <code>f</code> with arguments <code>a1, a2, ... an</code>.
Except for one special case, arguments must be single-valued expressions
<a href="#Assignment_compatibility">assignment compatible</a> with the parameter types of
<code>F</code> and are evaluated before the function is called.
The type of the expression is the result type
of <code>F</code>.
A method invocation is similar but the method itself
is specified as a selector upon a value of the receiver type for
the method.
</p>

<pre>
math.Atan2(x, y)    // function call
var pt *Point
pt.Scale(3.5)  // method call with receiver pt
</pre>

<p>
As a special case, if the return parameters of a function or method
<code>g</code> are equal in number and individually assignment
compatible with the parameters of another function or method
<code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
will invoke <code>f</code> after binding the return values of
<code>g</code> to the parameters of <code>f</code> in order.  The call
of <code>f</code> must contain no parameters other than the call of <code>g</code>.
If <code>f</code> has a final <code>...</code> parameter, it is
assigned the return values of <code>g</code> that remain after
assignment of regular parameters.
</p>

<pre>
func Split(s string, pos int) (string, string) {
	return s[0:pos], s[pos:]
}

func Join(s, t string) string {
	return s + t
}

if Join(Split(value, len(value)/2)) != value {
	log.Crash("test fails")
}
</pre>

<p>
A method call <code>x.m()</code> is valid if the method set of
(the type of) <code>x</code> contains <code>m</code> and the
argument list can be assigned to the parameter list of <code>m</code>.
If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
set contains <code>m</code>, <code>x.m()</code> is shorthand
for <code>(&amp;x).m()</code>:
</p>

<pre>
var p Point
p.Scale(3.5)
</pre>

<p>
There is no distinct method type and there are no method literals.
</p>

<h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>

<p>
When a function <code>f</code> has a <code>...</code> parameter,
it is always the last formal parameter. Within calls to <code>f</code>,
the arguments before the <code>...</code> are treated normally.
After those, an arbitrary number (including zero) of trailing
arguments may appear in the call and are bound to the <code>...</code>
parameter.
</p>

<p>
Within <code>f</code>, a <code>...</code> parameter with no
specified type has static type <code>interface{}</code> (the empty
interface). For each call, its dynamic type is a structure whose
sequential fields are the trailing arguments of the call.  That is,
the actual arguments provided for a <code>...</code> parameter are
wrapped into a struct that is passed to the function instead of the
actual arguments.  Using the <a href="#Package_unsafe">reflection</a>
interface, <code>f</code> may unpack the elements of the dynamic
type to recover the actual arguments.
</p>

<p>
Given the function and call
</p>
<pre>
func Fprintf(f io.Writer, format string, args ...)
Fprintf(os.Stdout, "%s %d", "hello", 23)
</pre>

<p>
Within <code>Fprintf</code>, the dynamic type of <code>args</code> for this
call will be, schematically,
<code> struct { string; int }</code>.
</p>

<p>
If the final parameter of <code>f</code> has type <code>... T</code>,
within the function it is equivalent to a parameter of type
<code>[]T</code>.  At each call of <code>f</code>, the actual
arguments provided for the <code>... T</code> parameter are placed
into a new slice of type <code>[]T</code> whose successive elements are
the actual arguments.  The length of the slice is therefore the
number of arguments bound to the <code>... T</code> parameter and
may differ for each call site.
</p>

<p>
Given the function and call
</p>
<pre>
func Greeting(prefix string, who ... string)
Greeting("hello:", "Joe", "Anna", "Eileen")
</pre>

<p>
Within <code>Greeting</code>, <code>who</code> will have value
<code>[]string{"Joe", "Anna", "Eileen")</code>
</p>


<p>
As a special case, if a function passes its own <code>...</code> parameter,
with or without specified type, as the argument
for a <code>...</code> in a call to another function with a <code>...</code> parameter
of identical type,
the parameter is not wrapped again but passed directly. In short, a formal <code>...</code>
parameter is passed unchanged as an actual <code>...</code> parameter provided the
types match.
</p>

<h3 id="Operators">Operators</h3>

<p>
Operators combine operands into expressions.
</p>

<pre class="ebnf">
Expression = UnaryExpr | Expression binary_op UnaryExpr .
UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .

binary_op  = log_op | com_op | rel_op | add_op | mul_op .
log_op     = "||" | "&amp;&amp;" .
com_op     = "&lt;-" .
rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
add_op     = "+" | "-" | "|" | "^" .
mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .

unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
</pre>

<p>
Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
For other binary operators, the operand types must be identical
(§<a href="#Properties_of_types_and_values">Properties of types and values</a>)
unless the operation involves channels, shifts, or untyped <a href="#Constants">constants</a>.
For operations involving constants only, see the section on
<a href="#Constant_expressions">constant expressions</a>.
</p>

<p>
In a channel send, the first operand is always a channel and the second
must be a value <a href="#Assignment_compatibility">assignment compatible</a>
with the channel's element type.
</p>

<p>
Except for shift operations,
if one operand is an untyped <a href="#Constants">constant</a>
and the other operand is not, the constant is <a href="#Conversions">converted</a>
to the type of the other operand.
</p>

<p>
The right operand in a shift operation must have unsigned integer type
or be an untyped constant that can be converted to unsigned integer type.
</p>

<p>
If the left operand of a non-constant shift operation is an untyped constant,
the type of constant is what it would be if the shift operation were replaced by
the left operand alone.
</p>

<pre>
var s uint = 33
var i = 1&lt;&lt;s          // 1 has type int
var j = int32(1&lt;&lt;s)   // 1 has type int32; j == 0
var u = uint64(1&lt;&lt;s)  // 1 has type uint64; u == 1&lt;&lt;33
var f = float(1&lt;&lt;s)   // illegal: 1 has type float, cannot shift
var g = float(1&lt;&lt;33)  // legal; 1&lt;&lt;33 is a constant shift operation; g == 1&lt;&lt;33
</pre>

<h3 id="Operator_precedence">Operator precedence</h3>
<p>
Unary operators have the highest precedence.
As the  <code>++</code> and <code>--</code> operators form
statements, not expressions, they fall
outside the operator hierarchy.
As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
<p>
There are six precedence levels for binary operators.
Multiplication operators bind strongest, followed by addition
operators, comparison operators, <code>&lt;-</code> (channel send),
<code>&amp;&amp;</code> (logical and), and finally <code>||</code> (logical or):
</p>

<pre class="grammar">
Precedence    Operator
    6             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
    5             +  -  |  ^
    4             ==  !=  &lt;  &lt;=  >  >=
    3             &lt;-
    2             &amp;&amp;
    1             ||
</pre>

<p>
Binary operators of the same precedence associate from left to right.
For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
</p>

<pre>
+x
23 + 3*x[i]
x &lt;= f()
^a &gt;&gt; b
f() || g()
x == y+1 &amp;&amp; &lt;-chan_ptr > 0
</pre>


<h3 id="Arithmetic_operators">Arithmetic operators</h3>
<p>
Arithmetic operators apply to numeric values and yield a result of the same
type as the first operand. The four standard arithmetic operators (<code>+</code>,
<code>-</code>,  <code>*</code>, <code>/</code>) apply to integer,
floating-point, and complex types; <code>+</code> also applies
to strings. All other arithmetic operators apply to integers only.
</p>

<pre class="grammar">
+    sum                    integers, floats, complex values, strings
-    difference             integers, floats, complex values
*    product                integers, floats, complex values
/    quotient               integers, floats, complex values
%    remainder              integers

&amp;    bitwise and            integers
|    bitwise or             integers
^    bitwise xor            integers
&amp;^   bit clear (and not)    integers

&lt;&lt;   left shift             integer &lt;&lt; unsigned integer
&gt;&gt;   right shift            integer &gt;&gt; unsigned integer
</pre>

<p>
Strings can be concatenated using the <code>+</code> operator
or the <code>+=</code> assignment operator:
</p>

<pre>
s := "hi" + string(c)
s += " and good bye"
</pre>

<p>
String addition creates a new string by concatenating the operands.
</p>
<p>
For integer values, <code>/</code> and <code>%</code> satisfy the following relationship:
</p>

<pre>
(a / b) * b + a % b == a
</pre>

<p>
with <code>(a / b)</code> truncated towards zero.
</p>

<pre>
 x     y     x / y     x % y
 5     3       1         2
-5     3      -1        -2
 5    -3      -1         2
-5    -3       1        -2
</pre>

<p>
If the divisor is zero, a <a href="#Run_time_panics">run-time panic</a> occurs.
If the dividend is positive and the divisor is a constant power of 2,
the division may be replaced by a right shift, and computing the remainder may
be replaced by a bitwise "and" operation:
</p>

<pre>
 x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
 11      2         3         2          3
-11     -2        -3        -3          1
</pre>

<p>
The shift operators shift the left operand by the shift count specified by the
right operand. They implement arithmetic shifts if the left operand is a signed
integer and logical shifts if it is an unsigned integer. The shift count must
be an unsigned integer. There is no upper limit on the shift count. Shifts behave
as if the left operand is shifted <code>n</code> times by 1 for a shift
count of <code>n</code>.
As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
and <code>x &gt;&gt; 1</code> is the same as
<code>x/2</code> but truncated towards negative infinity.
</p>

<p>
For integer operands, the unary operators
<code>+</code>, <code>-</code>, and <code>^</code> are defined as
follows:
</p>

<pre class="grammar">
+x                          is 0 + x
-x    negation              is 0 - x
^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
                                      and  m = -1 for signed x
</pre>

<p>
For floating-point numbers,
<code>+x</code> is the same as <code>x</code>,
while <code>-x</code> is the negation of <code>x</code>.
The result of a floating-point division by zero is not specified beyond the
IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
occurs is implementation-specific.
</p>

<h3 id="Integer_overflow">Integer overflow</h3>

<p>
For unsigned integer values, the operations <code>+</code>,
<code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
the unsigned integer's type
(§<a href="#Numeric_types">Numeric types</a>). Loosely speaking, these unsigned integer operations
discard high bits upon overflow, and programs may rely on ``wrap around''.
</p>
<p>
For signed integers, the operations <code>+</code>,
<code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
overflow and the resulting value exists and is deterministically defined
by the signed integer representation, the operation, and its operands.
No exception is raised as a result of overflow. A
compiler may not optimize code under the assumption that overflow does
not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
</p>


<h3 id="Comparison_operators">Comparison operators</h3>

<p>
Comparison operators compare two operands and yield a value of type <code>bool</code>.
</p>

<pre class="grammar">
==    equal
!=    not equal
<     less
<=    less or equal
>     greater
>=    greater or equal
</pre>

<p>
The operands must be <i>comparable</i>; that is, the first operand
must be <a href="#Assignment_compatibility">assignment compatible</a>
with the type of the second operand, or vice versa.
<p>
</p>
The operators <code>==</code> and <code>!=</code> apply
to operands of all types except arrays and structs.
All other comparison operators apply only to integer, floating-point
and string values. The result of a comparison is defined as follows:
</p>

<ul>
	<li>
	Integer values are compared in the usual way.
	</li>
	<li>
	Floating point values are compared as defined by the IEEE-754
	standard.
	</li>
	<li>
	Two complex values <code>u</code>, <code>v</code> are
	equal if both <code>real(u) == real(v)</code> and
	<code>imag(u) == imag(v)</code>.
	</li>
	<li>
	String values are compared byte-wise (lexically).
	</li>
	<li>
	Boolean values are are equal if they are either both
	<code>true</code> or both <code>false</code>.
	</li>
	<li>
	Pointer values are equal if they point to the same location
	or if both are <code>nil</code>.
	</li>
	<li>
	Function values are equal if they refer to the same function
	or if both are <code>nil</code>.
	</li>
	<li>
	A slice value may only be compared to <code>nil</code>.
	</li>
	<li>
	Channel and map values are equal if they were created by the same call to <code>make</code>
	(§<a href="#Making_slices_maps_and_channels">Making slices, maps, and channels</a>)
	or if both are <code>nil</code>.
	</li>
	<li>
	Interface values are equal if they have identical dynamic types and
	equal dynamic values or if both are <code>nil</code>.
	</li>
	<li>
	An interface value <code>x</code> is equal to a non-interface value
	<code>y</code> if the dynamic type of <code>x</code> is identical to
	the static type of <code>y</code> and the dynamic value of <code>x</code>
	is equal to <code>y</code>.
	</li>
	<li>
	A pointer, function, slice, channel, map, or interface value is equal
	to <code>nil</code> if it has been assigned the explicit value
	<code>nil</code>, if it is uninitialized, or if it has been assigned
	another value equal to <code>nil</code>.
	</li>
</ul>


<h3 id="Logical_operators">Logical operators</h3>

<p>
Logical operators apply to <a href="#Boolean_types">boolean</a> values
and yield a result of the same type as the operands.
The right operand is evaluated conditionally.
</p>

<pre class="grammar">
&amp;&amp;    conditional and    p &amp;&amp; q  is  "if p then q else false"
||    conditional or     p || q  is  "if p then true else q"
!     not                !p      is  "not p"
</pre>


<h3 id="Address_operators">Address operators</h3>

<p>
The address-of operator <code>&amp;</code> generates the address of its operand,
which must be <i>addressable</i>,
that is, either a variable, pointer indirection, or slice indexing
operation;
or a field selector of an addressable struct operand;
or an array indexing operation of an addressable array.
Given an operand of pointer type, the pointer indirection
operator <code>*</code> retrieves the value pointed
to by the operand.
</p>

<pre>
&amp;x
&amp;a[f(2)]
*p
*pf(x)
</pre>

<h3 id="Communication_operators">Communication operators</h3>

<p>
The term <i>channel</i> means "value of <a href="#Channel_types">channel type</a>".
</p>
<p>
The send operation uses the binary operator "&lt;-", which operates on
a channel and a value (expression):
</p>

<pre>
ch &lt;- 3
</pre>

<p>
The send operation sends the value on the channel.  Both the channel
and the expression are evaluated before communication begins.
Communication blocks until the send can proceed, at which point the
value is transmitted on the channel.
A send on an unbuffered channel can proceed if a receiver is ready.
A send on a buffered channel can proceed if there is room in the buffer.
</p>
<p>
If the send operation appears in an expression context, the value
of the expression is a boolean and the operation is non-blocking.
The value of the boolean reports true if the communication succeeded,
false if it did not. (The channel and
the expression to be sent are evaluated regardless.)
These two examples are equivalent:
</p>

<pre>
ok := ch &lt;- 3
if ok { print("sent") } else { print("not sent") }

if ch &lt;- 3 { print("sent") } else { print("not sent") }
</pre>

<p>
In other words, if the program tests the value of a send operation,
the send is non-blocking and the value of the expression is the
success of the operation.  If the program does not test the value,
the operation blocks until it succeeds.
</p>
<p>
The receive operation uses the prefix unary operator "&lt;-".
The value of the expression is the value received, whose type
is the element type of the channel.
</p>

<pre>
&lt;-ch
</pre>

<p>
The expression blocks until a value is available, which then can
be assigned to a variable or used like any other expression.
If the receive expression does not save the value, the value is
discarded.
</p>

<pre>
v1 := &lt;-ch
v2 = &lt;-ch
f(&lt;-ch)
&lt;-strobe  // wait until clock pulse
</pre>

<p>
If a receive expression is used in an assignment or initialization of the form
</p>

<pre>
x, ok = &lt;-ch
x, ok := &lt;-ch
var x, ok = &lt;-ch
</pre>

<p>
the receive operation becomes non-blocking.
If the operation can proceed, the boolean variable
<code>ok</code> will be set to <code>true</code>
and the value stored in <code>x</code>; otherwise
<code>ok</code> is set
to <code>false</code> and <code>x</code> is set to the
zero value for its type (§<a href="#The_zero_value">The zero value</a>).
</p>

<!---
<p>
<span class="alert">TODO: Probably in a separate section, communication semantics
need to be presented regarding send, receive, select, and goroutines.</span>
</p>
--->

<h3 id="Method_expressions">Method expressions</h3>

<p>
If <code>M</code> is in the method set of type <code>T</code>,
<code>T.M</code> is a function that is callable as a regular function
with the same arguments as <code>M</code> prefixed by an additional
argument that is the receiver of the method.
</p>

<pre class="ebnf">
MethodExpr    = ReceiverType "." MethodName .
ReceiverType  = TypeName | "(" "*" TypeName ")" .
</pre>

<p>
Consider a struct type <code>T</code> with two methods,
<code>Mv</code>, whose receiver is of type <code>T</code>, and
<code>Mp</code>, whose receiver is of type <code>*T</code>.
</p>

<pre>
type T struct {
	a int
}
func (tv  T) Mv(a int)   int   { return 0 }  // value receiver
func (tp *T) Mp(f float) float { return 1 }  // pointer receiver
var t T
</pre>

<p>
The expression
</p>

<pre>
T.Mv
</pre>

<p>
yields a function equivalent to <code>Mv</code> but
with an explicit receiver as its first argument; it has signature
</p>

<pre>
func(tv T, a int) int
</pre>

<p>
That function may be called normally with an explicit receiver, so
these three invocations are equivalent:
</p>

<pre>
t.Mv(7)
T.Mv(t, 7)
f := T.Mv; f(t, 7)
</pre>

<p>
Similarly, the expression
</p>

<pre>
(*T).Mp
</pre>

<p>
yields a function value representing <code>Mp</code> with signature
</p>

<pre>
func(tp *T, f float) float
</pre>

<p>
For a method with a value receiver, one can derive a function
with an explicit pointer receiver, so
</p>

<pre>
(*T).Mv
</pre>

<p>
yields a function value representing <code>Mv</code> with signature
</p>

<pre>
func(tv *T, a int) int
</pre>

<p>
Such a function indirects through the receiver to create a value
to pass as the receiver to the underlying method;
the method does not overwrite the value whose address is passed in
the function call.
</p>

<p>
The final case, a value-receiver function for a pointer-receiver method,
is illegal because pointer-receiver methods are not in the method set
of the value type.
</p>

<p>
Function values derived from methods are called with function call syntax;
the receiver is provided as the first argument to the call.
That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
as <code>f(t, 7)</code> not <code>t.f(7)</code>.
To construct a function that binds the receiver, use a
<a href="#Function_literals">closure</a>.
</p>

<p>
It is legal to derive a function value from a method of an interface type.
The resulting function takes an explicit receiver of that interface type.
</p>

<h3 id="Conversions">Conversions</h3>

<p>
Conversions are expressions of the form <code>T(x)</code>
where <code>T</code> is a type and <code>x</code> is an expression
that can be converted to type <code>T</code>.
</p>

<pre class="ebnf">
Conversion = Type "(" Expression ")" .
</pre>

<p>
If the type starts with an operator it must be parenthesized:
</p>

<pre>
*Point(p)        // same as *(Point(p))
(*Point)(p)      // p is converted to (*Point)
&lt;-chan int(c)    // same as &lt;-(chan int(c))
(&lt;-chan int)(c)  // c is converted to (&lt;-chan int)
</pre>

<p>
In general, a conversion is permitted if
</p>
<ol>
<li>
the value of <code>x</code> would be
<a href="#Assignment_compatibility">assignment compatible</a> with type
<code>T</code> if <code>T</code> were unnamed
</li>
<li>
<code>x</code> is of an unnamed pointer type and type <code>T</code> is another
unnamed pointer type and the previous rule applies to the pointer base types.
</li>
</ol>
<p>
Such a conversion changes the type but not the representation of <code>x</code>.
</p>

<p>
Specific rules apply to conversions where <code>T</code> is a
numeric or string type, or where <code>x</code> is of string type.
These conversions may change the representation of a value and incur a run-time cost.
</p>

<h4>Conversions between integer types</h4>
<p>
If the value is a signed quantity, it is
sign extended to implicit infinite precision; otherwise it is zero
extended.  It is then truncated to fit in the result type's size.
For example, if <code>x := uint16(0x10F0)</code>, then <code>uint32(int8(x)) == 0xFFFFFFF0</code>.
The conversion always yields a valid value; there is no indication of overflow.
</p>

<h4>Conversions involving floating point and complex types</h4>
<ol>
<li>
When converting a floating-point number to an integer, the fraction is discarded
(truncation towards zero).
</li>
<li>
A value of complex type may be converted to a different complex type,
but there is no conversion between complex and any other type.
</li>
<li>
When converting a number to a floating-point or complex type,
the result value is rounded
to the precision specified by the destination type.
For instance, the value of a variable <code>x</code> of type <code>float32</code>
may be stored using additional precision beyond that of an IEEE-754 32-bit number,
but float32(x) represents the result of rounding <code>x</code>'s value to
32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
of precision, but <code>float32(x + 0.1)</code> does not.
</li>
</ol>

<p>
In all conversions involving floating-point or complex values,
if the result type cannot represent the value the conversion
succeeds but the result value is
implementation-dependent.
</p>

<h4>Conversions to and from a string type</h4>

<ol>
<li>
Converting a signed or unsigned integer value to a string type yields a
string containing the UTF-8 representation of the integer.
Negative values are converted to <code>"\uFFFD"</code>.

<pre>
string('a')           // "a"
string(-1)            // "\ufffd" == "\xef\xbf\xbd "
string(0xf8)          // "\u00f8" == "ø" == "\xc3\xb8"
type MyString string
MyString(0x65e5)      // "\u65e5" == "" == "\xe6\x97\xa5"
</pre>
</li>

<li>
Converting a value of type <code>[]byte</code> (or
the equivalent <code>[]uint8</code>) to a string type yields a
string whose successive bytes are the elements of the slice.  If
the slice value is <code>nil</code>, the result is the empty string.

<pre>
string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
</pre>
</li>

<li>
Converting a value of type <code>[]int</code> to a string type yields
a string that is the concatenation of the individual integers
converted to strings.  If the slice value is <code>nil</code>, the
result is the empty string.
<pre>
string([]int{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
</pre>
</li>

<li>
Converting a value of a string type to <code>[]byte</code> (or <code>[]uint8</code>)
yields a slice whose successive elements are the bytes of the string.
If the string is empty, the result is <code>[]byte(nil)</code>.

<pre>
[]byte("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
</pre>
</li>

<li>
Converting a value of a string type to <code>[]int</code> yields a
slice containing the individual Unicode code points of the string.
If the string is empty, the result is <code>[]int(nil)</code>.
<pre>
[]int(MyString("白鵬翔"))  // []int{0x767d, 0x9d6c, 0x7fd4}
</pre>
</li>
</ol>

<p>
There is no linguistic mechanism to convert between pointers and integers.
The package <a href="#Package_unsafe"><code>unsafe</code></a>
implements this functionality under
restricted circumstances.
</p>

<h3 id="Constant_expressions">Constant expressions</h3>

<p>
Constant expressions may contain only <a href="#Constants">constant</a>
operands and are evaluated at compile-time.
</p>

<p>
Untyped boolean, numeric, and string constants may be used as operands
wherever it is legal to use an operand of boolean, numeric, or string type,
respectively. Except for shift operations, if the operands of a binary operation
are an untyped integer constant and an untyped floating-point constant,
the integer constant is converted to an untyped floating-point constant
(relevant for <code>/</code> and <code>%</code>).
Similarly,
untyped integer or floating-point constants may be used as operands
wherever it is legal to use an operand of complex type;
the integer or floating point constant is converted to a
complex constant with a zero imaginary part.
</p>

<p>
Applying an operator to untyped constants results in an untyped
constant of the same kind (that is, a boolean, integer, floating-point,
complex, or string constant), except for
<a href="#Comparison_operators">comparison operators</a>, which result in
a constant of type <code>bool</code>.
</p>

<p>
Imaginary literals are untyped complex constants (with zero real part)
and may be combined in binary
operations with untyped integer and floating-point constants; the
result is an untyped complex constant.
Complex constants are always constructed from
constant expressions involving imaginary
literals or constants derived from them, or calls of the built-in function
<a href="#Complex_numbers"><code>cmplx</code></a>.
</p>

<pre>
const Σ = 1 - 0.707i
const Δ = Σ + 2.0e-4 - 1/1i
const Φ = iota * 1i
const iΓ = cmplx(0, Γ)
</pre>

<p>
Constant expressions are always evaluated exactly; intermediate values and the
constants themselves may require precision significantly larger than supported
by any predeclared type in the language. The following are legal declarations:
</p>

<pre>
const Huge = 1 &lt;&lt; 100
const Four int8 = Huge &gt;&gt; 98
</pre>

<p>
The values of <i>typed</i> constants must always be accurately representable as values
of the constant type. The following constant expressions are illegal:
</p>

<pre>
uint(-1)       // -1 cannot be represented as a uint
int(3.14)      // 3.14 cannot be represented as an int
int64(Huge)    // 1&lt;&lt;100 cannot be represented as an int64
Four * 300     // 300 cannot be represented as an int8
Four * 100     // 400 cannot be represented as an int8
</pre>

<p>
The mask used by the unary bitwise complement operator <code>^</code> matches
the rule for non-constants: the mask is all 1s for unsigned constants
and -1 for signed and untyped constants.
</p>

<pre>
^1          // untyped integer constant, equal to -2
uint8(^1)   // error, same as uint8(-2), out of range
^uint8(1)   // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
int8(^1)    // same as int8(-2)
^int8(1)    // same as -1 ^ int8(1) = -2
</pre>

<!---
<p>
<span class="alert">
TODO: perhaps ^ should be disallowed on non-uints instead of assuming twos complement.
Also it may be possible to make typed constants more like variables, at the cost of fewer
overflow etc. errors being caught.
</span>
</p>
--->

<h3 id="Order_of_evaluation">Order of evaluation</h3>

<p>
When evaluating the elements of an assignment or expression,
all function calls, method calls and
communication operations are evaluated in lexical left-to-right
order.
</p>

<p>
For example, in the assignment
</p>
<pre>
y[f()], ok = g(h(), i() + x[j()], &lt;-c), k()
</pre>
<p>
the function calls and communication happen in the order
<code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
<code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
However, the order of those events compared to the evaluation
and indexing of <code>x</code> and the evaluation
of <code>y</code> is not specified.
</p>

<p>
Floating-point operations within a single expression are evaluated according to
the associativity of the operators.  Explicit parentheses affect the evaluation
by overriding the default associativity.
In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
is performed before adding <code>x</code>.
</p>

<h2 id="Statements">Statements</h2>

<p>
Statements control execution.
</p>

<pre class="ebnf">
Statement =
	Declaration | LabeledStmt | SimpleStmt |
	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
	DeferStmt .

SimpleStmt = EmptyStmt | ExpressionStmt | IncDecStmt | Assignment | ShortVarDecl .
</pre>


<h3 id="Empty_statements">Empty statements</h3>

<p>
The empty statement does nothing.
</p>

<pre class="ebnf">
EmptyStmt = .
</pre>


<h3 id="Labeled_statements">Labeled statements</h3>

<p>
A labeled statement may be the target of a <code>goto</code>,
<code>break</code> or <code>continue</code> statement.
</p>

<pre class="ebnf">
LabeledStmt = Label ":" Statement .
Label       = identifier .
</pre>

<pre>
Error: log.Crash("error encountered")
</pre>


<h3 id="Expression_statements">Expression statements</h3>

<p>
Function calls, method calls, and channel operations
can appear in statement context.
</p>


<pre class="ebnf">
ExpressionStmt = Expression .
</pre>

<pre>
f(x+y)
&lt;-ch
</pre>


<h3 id="IncDec_statements">IncDec statements</h3>

<p>
The "++" and "--" statements increment or decrement their operands
by the untyped <a href="#Constants">constant</a> <code>1</code>.
As with an assignment, the operand must be a variable, pointer indirection,
field selector or index expression.
</p>

<pre class="ebnf">
IncDecStmt = Expression ( "++" | "--" ) .
</pre>

<p>
The following <a href="#Assignments">assignment statements</a> are semantically
equivalent:
</p>

<pre class="grammar">
IncDec statement    Assignment
x++                 x += 1
x--                 x -= 1
</pre>

<h3 id="Assignments">Assignments</h3>

<pre class="ebnf">
Assignment = ExpressionList assign_op ExpressionList .

assign_op = [ add_op | mul_op ] "=" .
</pre>

<p>
Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
a map index expression,
or the <a href="#Blank_identifier">blank identifier</a>.
</p>

<pre>
x = 1
*p = f()
a[i] = 23
k = &lt;-ch
</pre>

<p>
An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
<code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
<code>y</code> but evaluates <code>x</code>
only once.  The <i>op</i><code>=</code> construct is a single token.
In assignment operations, both the left- and right-hand expression lists
must contain exactly one single-valued expression.
</p>

<pre>
a[i] &lt;&lt;= 2
i &amp;^= 1&lt;&lt;n
</pre>

<p>
A tuple assignment assigns the individual elements of a multi-valued
operation to a list of variables.  There are two forms.  In the
first, the right hand operand is a single multi-valued expression
such as a function evaluation or <a href="#Channel_types">channel</a> or
<a href="#Map_types">map</a> operation or a <a href="#Type_assertions">type assertion</a>.
The number of operands on the left
hand side must match the number of values.  For instance, if
<code>f</code> is a function returning two values,
</p>

<pre>
x, y = f()
</pre>

<p>
assigns the first value to <code>x</code> and the second to <code>y</code>.
The <a href="#Blank_identifier">blank identifier</a> provides a
way to ignore values returned by a multi-valued expression:
</p>

<pre>
x, _ = f()  // ignore second value returned by f()
</pre>

<p>
In the second form, the number of operands on the left must equal the number
of expressions on the right, each of which must be single-valued, and the
<i>n</i>th expression on the right is assigned to the <i>n</i>th
operand on the left.
The expressions on the right are evaluated before assigning to
any of the operands on the left, but otherwise the evaluation
order is unspecified beyond <a href="#Order_of_evaluation">the usual rules</a>.
</p>

<pre>
a, b = b, a  // exchange a and b
</pre>

<p>
In assignments, each value must be
<a href="#Assignment_compatibility">assignment compatible</a> with the type of the
operand to which it is assigned. If an untyped <a href="#Constants">constant</a>
is assigned to a variable of interface type, the constant is <a href="#Conversions">converted</a>
to type <code>bool</code>, <code>int</code>, <code>float</code>,
<code>complex</code> or <code>string</code>
respectively, depending on whether the value is a boolean, integer, floating-point,
complex, or string constant.
</p>


<h3 id="If_statements">If statements</h3>

<p>
"If" statements specify the conditional execution of two branches
according to the value of a boolean expression.  If the expression
evaluates to true, the "if" branch is executed, otherwise, if
present, the "else" branch is executed.  A missing condition
is equivalent to <code>true</code>.
</p>

<pre class="ebnf">
IfStmt    = "if" [ SimpleStmt ";" ] [ Expression ] Block [ "else" Statement ] .
</pre>

<pre>
if x > 0 {
	return true;
}
</pre>

<p>
The expression may be preceded by a simple statement, which
executes before the expression is evaluated.
</p>

<pre>
if x := f(); x &lt; y {
	return x
} else if x > z {
	return z
} else {
	return y
}
</pre>


<h3 id="Switch_statements">Switch statements</h3>

<p>
"Switch" statements provide multi-way execution.
An expression or type specifier is compared to the "cases"
inside the "switch" to determine which branch
to execute.
</p>

<pre class="ebnf">
SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
</pre>

<p>
There are two forms: expression switches and type switches.
In an expression switch, the cases contain expressions that are compared
against the value of the switch expression.
In a type switch, the cases contain types that are compared against the
type of a specially annotated switch expression.
</p>

<h4 id="Expression_switches">Expression switches</h4>

<p>
In an expression switch,
the switch expression is evaluated and
the case expressions, which need not be constants,
are evaluated left-to-right and top-to-bottom; the first one that equals the
switch expression
triggers execution of the statements of the associated case;
the other cases are skipped.
If no case matches and there is a "default" case,
its statements are executed.
There can be at most one default case and it may appear anywhere in the
"switch" statement.
A missing switch expression is equivalent to
the expression <code>true</code>.
</p>

<pre class="ebnf">
ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
ExprCaseClause = ExprSwitchCase ":" { Statement ";" } .
ExprSwitchCase = "case" ExpressionList | "default" .
</pre>

<p>
In a case or default clause,
the last statement only may be a "fallthrough" statement
(§<a href="#Fallthrough_statements">Fallthrough statement</a>) to
indicate that control should flow from the end of this clause to
the first statement of the next clause.
Otherwise control flows to the end of the "switch" statement.
</p>

<p>
The expression may be preceded by a simple statement, which
executes before the expression is evaluated.
</p>

<pre>
switch tag {
default: s3()
case 0, 1, 2, 3: s1()
case 4, 5, 6, 7: s2()
}

switch x := f(); {  // missing switch expression means "true"
case x &lt; 0: return -x
default: return x
}

switch {
case x &lt; y: f1()
case x &lt; z: f2()
case x == 4: f3()
}
</pre>

<h4 id="Type_switches">Type switches</h4>

<p>
A type switch compares types rather than values. It is otherwise similar
to an expression switch. It is marked by a special switch expression that
has the form of a <a href="#Type_assertions">type assertion</a>
using the reserved word <code>type</code> rather than an actual type.
Cases then match literal types against the dynamic type of the expression
in the type assertion.
</p>

<pre class="ebnf">
TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
TypeCaseClause  = TypeSwitchCase ":" { Statement ";" } .
TypeSwitchCase  = "case" TypeList | "default" .
TypeList        = Type { "," Type } .
</pre>

<p>
The TypeSwitchGuard may include a
<a href="#Short_variable_declarations">short variable declaration</a>.
When that form is used, the variable is declared in each clause.
In clauses with a case listing exactly one type, the variable
has that type; otherwise, the variable has the type of the expression
in the TypeSwitchGuard.
</p>

<p>
The type in a case may be <code>nil</code>
(§<a href="#Predeclared_identifiers">Predeclared identifiers</a>);
that case is used when the expression in the TypeSwitchGuard
is a <code>nil</code> interface value.
</p>

<p>
Given an expression <code>x</code> of type <code>interface{}</code>,
the following type switch:
</p>

<pre>
switch i := x.(type) {
case nil:
	printString("x is nil")
case int:
	printInt(i)  // i is an int
case float:
	printFloat(i)  // i is a float
case func(int) float:
	printFunction(i)  // i is a function
case bool, string:
	printString("type is bool or string")  // i is an interface{}
default:
	printString("don't know the type")
}
</pre>

<p>
could be rewritten:
</p>

<pre>
v := x  // x is evaluated exactly once
if v == nil {
	printString("x is nil")
} else if i, is_int := v.(int); is_int {
	printInt(i)  // i is an int
} else if i, is_float := v.(float); is_float {
	printFloat(i)  // i is a float
} else if i, is_func := v.(func(int) float); is_func {
	printFunction(i)  // i is a function
} else {
	i1, is_bool := v.(bool)
	i2, is_string := v.(string)
	if is_bool || is_string {
		i := v
		printString("type is bool or string")  // i is an interface{}
	} else {
		i := v
		printString("don't know the type")  // i is an interface{}
	}
}
</pre>

<p>
The type switch guard may be preceded by a simple statement, which
executes before the guard is evaluated.
</p>

<p>
The "fallthrough" statement is not permitted in a type switch.
</p>

<h3 id="For_statements">For statements</h3>

<p>
A "for" statement specifies repeated execution of a block. The iteration is
controlled by a condition, a "for" clause, or a "range" clause.
</p>

<pre class="ebnf">
ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
Condition = Expression .
</pre>

<p>
In its simplest form, a "for" statement specifies the repeated execution of
a block as long as a boolean condition evaluates to true.
The condition is evaluated before each iteration.
If the condition is absent, it is equivalent to <code>true</code>.
</p>

<pre>
for a &lt; b {
	a *= 2
}
</pre>

<p>
A "for" statement with a ForClause is also controlled by its condition, but
additionally it may specify an <i>init</i>
and a <i>post</i> statement, such as an assignment,
an increment or decrement statement. The init statement may be a
<a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
</p>

<pre class="ebnf">
ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
InitStmt = SimpleStmt .
PostStmt = SimpleStmt .
</pre>

<pre>
for i := 0; i &lt; 10; i++ {
	f(i)
}
</pre>

<p>
If non-empty, the init statement is executed once before evaluating the
condition for the first iteration;
the post statement is executed after each execution of the block (and
only if the block was executed).
Any element of the ForClause may be empty but the
<a href="#Semicolons">semicolons</a> are
required unless there is only a condition.
If the condition is absent, it is equivalent to <code>true</code>.
</p>

<pre>
for cond { S() }    is the same as    for ; cond ; { S() }
for      { S() }    is the same as    for true     { S() }
</pre>

<p>
A "for" statement with a "range" clause
iterates through all entries of an array, slice, string or map,
or values received on a channel.
For each entry it first assigns the current index or key to an iteration
variable - or the current (index, element) or (key, value) pair to a pair
of iteration variables - and then executes the block.
</p>

<pre class="ebnf">
RangeClause = ExpressionList ( "=" | ":=" ) "range" Expression .
</pre>

<p>
The type of the right-hand expression in the "range" clause must be an
array, slice, string or map, or a pointer to an array;
or it may be a channel.
Except for channels,
the identifier list must contain one or two expressions
(as in assignments, these must be a
variable, pointer indirection, field selector, or index expression)
denoting the
iteration variables. On each iteration,
the first variable is set to the string, array or slice index or
map key, and the second variable, if present, is set to the corresponding
string or array element or map value.
The types of the array or slice index (always <code>int</code>)
and element, or of the map key and value respectively,
must be <a href="#Assignment_compatibility">assignment compatible</a> with
the type of the iteration variables.  The expression on the right hand
side is evaluated once before beginning the loop.  At each iteration
of the loop, the values produced by the range clause are assigned to
the left hand side as in an <a href="#Assignments">assignment
statement</a>.  Function calls on the left hand side will be evaluated
exactly once per iteration.
</p>
<p>
For a value of a string type, the "range" clause iterates over the Unicode code points
in the string.  On successive iterations, the index variable will be the
index of the first byte of successive UTF-8-encoded code points in the string, and
the second variable, of type <code>int</code>, will be the value of
the corresponding code point.  If the iteration encounters an invalid
UTF-8 sequence, the second variable will be <code>0xFFFD</code>,
the Unicode replacement character, and the next iteration will advance
a single byte in the string.
</p>
<p>
For channels, the identifier list must contain one identifier.
The iteration receives values sent on the channel until the channel is closed;
it does not process the zero value sent before the channel is closed.
</p>
<p>
The iteration variables may be declared by the "range" clause (":="), in which
case their scope ends at the end of the "for" statement (§<a href="#Declarations_and">Declarations and</a>
scope rules). In this case their types are set to
<code>int</code> and the array element type, or the map key and value types, respectively.
If the iteration variables are declared outside the "for" statement,
after execution their values will be those of the last iteration.
</p>

<pre>
var a [10]string
m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}

for i, s := range a {
	// type of i is int
	// type of s is string
	// s == a[i]
	g(i, s)
}

var key string
var val interface {}  // value type of m is assignment compatible with val
for key, val = range m {
	h(key, val)
}
// key == last map key encountered in iteration
// val == map[key]
</pre>

<p>
If map entries that have not yet been processed are deleted during iteration,
they will not be processed. If map entries are inserted during iteration, the
behavior is implementation-dependent, but each entry will be processed at most once.
</p>

<h3 id="Go_statements">Go statements</h3>

<p>
A "go" statement starts the execution of a function or method call
as an independent concurrent thread of control, or <i>goroutine</i>,
within the same address space.
</p>

<pre class="ebnf">
GoStmt = "go" Expression .
</pre>

<p>
The expression must be a call, and
unlike with a regular call, program execution does not wait
for the invoked function to complete.
</p>

<pre>
go Server()
go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
</pre>


<h3 id="Select_statements">Select statements</h3>

<p>
A "select" statement chooses which of a set of possible communications
will proceed.  It looks similar to a "switch" statement but with the
cases all referring to communication operations.
</p>

<pre class="ebnf">
SelectStmt = "select" "{" { CommClause } "}" .
CommClause = CommCase ":" { Statement ";" } .
CommCase = "case" ( SendExpr | RecvExpr) | "default" .
SendExpr =  Expression "&lt;-" Expression .
RecvExpr =  [ Expression ( "=" | ":=" ) ] "&lt;-" Expression .
</pre>

<p>
For all the send and receive expressions in the "select"
statement, the channel expressions are evaluated, along with
any expressions that appear on the right hand side of send expressions,
in top-to-bottom order.
If any of the resulting operations can proceed, one is
chosen and the corresponding communication and statements are
evaluated.  Otherwise, if there is a default case, that executes;
if not, the statement blocks until one of the communications can
complete.  The channels and send expressions are not re-evaluated.
A channel pointer may be <code>nil</code>,
which is equivalent to that case not
being present in the select statement
except, if a send, its expression is still evaluated.
</p>
<p>
Since all the channels and send expressions are evaluated, any side
effects in that evaluation will occur for all the communications
in the "select" statement.
</p>
<p>
If multiple cases can proceed, a uniform fair choice is made to decide
which single communication will execute.
<p>
The receive case may declare a new variable using a
<a href="#Short_variable_declarations">short variable declaration</a>.
</p>

<pre>
var c, c1, c2 chan int
var i1, i2 int
select {
case i1 = &lt;-c1:
	print("received ", i1, " from c1\n")
case c2 &lt;- i2:
	print("sent ", i2, " to c2\n")
default:
	print("no communication\n")
}

for {  // send random sequence of bits to c
	select {
	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
	case c &lt;- 1:
	}
}
</pre>


<h3 id="Return_statements">Return statements</h3>

<p>
A "return" statement terminates execution of the containing function
and optionally provides a result value or values to the caller.
</p>

<pre class="ebnf">
ReturnStmt = "return" [ ExpressionList ] .
</pre>

<p>
In a function without a result type, a "return" statement must not
specify any result values.
</p>
<pre>
func no_result() {
	return
}
</pre>

<p>
There are three ways to return values from a function with a result
type:
</p>

<ol>
	<li>The return value or values may be explicitly listed
		in the "return" statement. Each expression must be single-valued
		and <a href="#Assignment_compatibility">assignment compatible</a>
		with the type of the corresponding element of the function's
		result type.
<pre>
func simple_f() int {
	return 2
}

func complex_f1() (re float, im float) {
	return -7.0, -4.0
}
</pre>
	</li>
	<li>The expression list in the "return" statement may be a single
		call to a multi-valued function. The effect is as if each value
		returned from that function were assigned to a temporary
		variable with the type of the respective value, followed by a
		"return" statement listing these variables, at which point the
		rules of the previous case apply.
<pre>
func complex_f2() (re float, im float) {
	return complex_f1()
}
</pre>
	</li>
	<li>The expression list may be empty if the functions's result
		type specifies names for its result parameters (§<a href="#Function_Types">Function Types</a>).
		The result parameters act as ordinary local variables that are
		initialized to the zero values for their type (§<a href="#The_zero_value">The zero value</a>)
		and the function may assign values to them as necessary.
		The "return" statement returns the values of these variables.
<pre>
func complex_f3() (re float, im float) {
	re = 7.0
	im = 4.0
	return
}
</pre>
	</li>
</ol>

<!---
<p>
<span class="alert">
TODO: Define when return is required.<br />
TODO: Language about result parameters needs to go into a section on
      function/method invocation<br />
</span>
</p>
--->

<h3 id="Break_statements">Break statements</h3>

<p>
A "break" statement terminates execution of the innermost
"for", "switch" or "select" statement.
</p>

<pre class="ebnf">
BreakStmt = "break" [ Label ] .
</pre>

<p>
If there is a label, it must be that of an enclosing
"for", "switch" or "select" statement, and that is the one whose execution
terminates
(§<a href="#For_statements">For statements</a>, §<a href="#Switch_statements">Switch statements</a>, §<a href="#Select_statements">Select statements</a>).
</p>

<pre>
L: for i &lt; n {
	switch i {
		case 5: break L
	}
}
</pre>

<h3 id="Continue_statements">Continue statements</h3>

<p>
A "continue" statement begins the next iteration of the
innermost "for" loop at its post statement (§<a href="#For_statements">For statements</a>).
</p>

<pre class="ebnf">
ContinueStmt = "continue" [ Label ] .
</pre>

<p>
If there is a label, it must be that of an enclosing
"for" statement, and that is the one whose execution
advances
(§<a href="#For_statements">For statements</a>).
</p>

<h3 id="Goto_statements">Goto statements</h3>

<p>
A "goto" statement transfers control to the statement with the corresponding label.
</p>

<pre class="ebnf">
GotoStmt = "goto" Label .
</pre>

<pre>
goto Error
</pre>

<p>
Executing the "goto" statement must not cause any variables to come into
scope that were not already in scope at the point of the goto.  For
instance, this example:
</p>

<pre>
goto L  // BAD
v := 3
L:
</pre>

<p>
is erroneous because the jump to label <code>L</code> skips
the creation of <code>v</code>.
<!---
(<span class="alert">TODO: Eliminate in favor of used and not set errors?</span>)
--->
</p>

<h3 id="Fallthrough_statements">Fallthrough statements</h3>

<p>
A "fallthrough" statement transfers control to the first statement of the
next case clause in a expression "switch" statement (§<a href="#Expression_switches">Expression switches</a>). It may
be used only as the final non-empty statement in a case or default clause in an
expression "switch" statement.
</p>

<pre class="ebnf">
FallthroughStmt = "fallthrough" .
</pre>


<h3 id="Defer_statements">Defer statements</h3>

<p>
A "defer" statement invokes a function whose execution is deferred to the moment
the surrounding function returns.
</p>

<pre class="ebnf">
DeferStmt = "defer" Expression .
</pre>

<p>
The expression must be a function or method call.
Each time the "defer" statement
executes, the parameters to the function call are evaluated and saved anew but the
function is not invoked.
Deferred function calls are executed in LIFO order
immediately before the surrounding function returns,
after the return values, if any, have been evaluated, but before they
are returned to the caller. For instance, if the deferred function is
a <a href="#Function_literals">function literal</a> and the surrounding
function has <a href="#Function_types">named result parameters</a> that
are in scope within the literal, the deferred function may access and modify
the result parameters before they are returned.
</p>

<pre>
lock(l)
defer unlock(l)  // unlocking happens before surrounding function returns

// prints 3 2 1 0 before surrounding function returns
for i := 0; i &lt;= 3; i++ {
	defer fmt.Print(i)
}

// f returns 1
func f() (result int) {
	defer func() {
		result++
	}()
	return 0
}
</pre>

<h2 id="Built-in_functions">Built-in functions</h2>

<p>
Built-in functions are
<a href="#Predeclared_identifiers">predeclared</a>.
They are called like any other function but some of them
accept a type instead of an expression as the first argument.
</p>

<p>
The built-in functions do not have standard Go types,
so they can only appear in <a href="#Calls">call expressions</a>;
they cannot be used as function values.
</p>

<pre class="ebnf">
BuiltinCall = identifier "(" [ BuiltinArgs ] ")" .
BuiltinArgs = Type [ "," ExpressionList ] | ExpressionList .
</pre>

<h3 id="Close_and_closed">Close and closed</h3>

<p>
For a channel <code>c</code>, the predefined function <code>close(c)</code>
marks the channel as unable to accept more
values through a send operation.  After any previously
sent values have been received, receive operations will return
the zero value for the channel's type.  After at least one such zero value has been
received, <code>closed(c)</code> returns true.
</p>

<h3 id="Length_and_capacity">Length and capacity</h3>

<p>
The built-in functions <code>len</code> and <code>cap</code> take arguments
of various types and return a result of type <code>int</code>.
The implementation guarantees that the result always fits into an <code>int</code>.
</p>

<pre class="grammar">
Call      Argument type        Result

len(s)    string type          string length in bytes
          [n]T, *[n]T          array length (== constant n)
          []T                  slice length
          map[K]T              map length (number of defined keys)
          chan T               number of elements queued in channel buffer

cap(s)    [n]T, *[n]T          array length (== constant n)
          []T                  slice capacity
          chan T               channel buffer capacity
</pre>

<p>
The capacity of a slice is the number of elements for which there is
space allocated in the underlying array.
At any time the following relationship holds:
</p>

<pre>
0 <= len(s) <= cap(s)
</pre>


<h3 id="Allocation">Allocation</h3>

<p>
The built-in function <code>new</code> takes a type <code>T</code> and
returns a value of type <code>*T</code>.
The memory is initialized as described in the section on initial values
(§<a href="#The_zero_value">The zero value</a>).
</p>

<pre class="grammar">
new(T)
</pre>

<p>
For instance
</p>

<pre>
type S struct { a int; b float }
new(S)
</pre>

<p>
dynamically allocates memory for a variable of type <code>S</code>,
initializes it (<code>a=0</code>, <code>b=0.0</code>),
and returns a value of type <code>*S</code> containing the address
of the memory.
</p>

<h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>

<p>
Slices, maps and channels are reference types that do not require the
extra indirection of an allocation with <code>new</code>.
The built-in function <code>make</code> takes a type <code>T</code>,
which must be a slice, map or channel type,
optionally followed by a type-specific list of expressions.
It returns a value of type <code>T</code> (not <code>*T</code>).
The memory is initialized as described in the section on initial values
(§<a href="#The_zero_value">The zero value</a>).
</p>

<pre class="grammar">
Call             Type T     Result

make(T, n)       slice      slice of type T with length n and capacity n
make(T, n, m)    slice      slice of type T with length n and capacity m

make(T)          map        map of type T
make(T, n)       map        map of type T with initial space for n elements

make(T)          channel    synchronous channel of type T
make(T, n)       channel    asynchronous channel of type T, buffer size n
</pre>


<p>
The arguments <code>n</code> and <code>m</code> must be of integer type.
A <a href="#Run_time_panics">run-time panic</a> occurs if <code>n</code>
is negative or larger than <code>m</code>, or if <code>n</code> or
<code>m</code> cannot be represented by an <code>int</code>.
</p>

<pre>
s := make([]int, 10, 100)        // slice with len(s) == 10, cap(s) == 100
s := make([]int, 10)             // slice with len(s) == cap(s) == 10
c := make(chan int, 10)          // channel with a buffer size of 10
m := make(map[string] int, 100)  // map with initial space for 100 elements
</pre>


<h3 id="Copying_slices">Copying slices</h3>

<p>
The built-in function <code>copy</code> copies slice elements from
a source <code>src</code> to a destination <code>dst</code> and returns the
number of elements copied. Source and destination may overlap.
Both arguments must have identical element type <code>T</code> and must be
<a href="#Assignment_compatibility">assignment compatible</a> to a slice
of type <code>[]T</code>. The number of arguments copied is the minimum of
<code>len(src)</code> and <code>len(dst)</code>.
</p>

<pre class="grammar">
copy(dst, src []T) int
</pre>

<p>
Examples:
</p>

<pre>
var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
var s = make([]int, 6)
n1 := copy(s, a[0:])  // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
n2 := copy(s, s[2:])  // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
</pre>

<h3 id="Complex_numbers">Assembling and disassembling complex numbers</h3>

<p>
Three functions assemble and disassemble complex numbers.
The built-in function <code>cmplx</code> constructs a complex
value from a floating-point real and imaginary part, while
<code>real</code> and <code>imag</code>
extract the real and imaginary parts of a complex value.
</p>

<pre class="grammar">
cmplx(realPart, imaginaryPart floatT) complexT
real(complexT) floatT
imag(complexT) floatT
</pre>

<p>
The type of the arguments and return value correspond.
For <code>cmplx</code>, the two arguments must be of the same
floating-point type and the return type is the complex type
with the corresponding floating-point constituents:
<code>complex</code> for <code>float</code>,
<code>complex64</code> for <code>float32</code>,
<code>complex128</code> for <code>float64</code>.
The <code>real</code> and <code>imag</code> functions
together form the inverse, so for a complex value <code>z</code>,
<code>z</code> <code>==</code> <code>cmplx(real(z),</code> <code>imag(z))</code>.
</p>

<p>
If the operands of these functions are all constants, the return
value is a constant.
</p>

<pre>
var a = cmplx(2, -2)  // has type complex
var b = cmplx(1.0, -1.4)  // has type complex
x := float32(math.Cos(math.Pi/2))
var c64 = cmplx(5, -x)  // has type complex64
var im = imag(b)  // has type float
var rl = real(c64)  // type float32
</pre>

<h3 id="Handling_panics">Handling panics</h3>

<p> Two built-in functions, <code>panic</code> and <code>recover</code>,
assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
and program-defined error conditions. 
</p>

<pre class="grammar">
func panic(interface{})
func recover() interface{}
</pre>

<p>
<font color=red>TODO: Most of this text could move to the respective
comments in <code>runtime.go</code> once the functions are implemented.
They are here, at least for now, for reference and discussion.
</font>
</p>

<p>
When a function <code>F</code> calls <code>panic</code>, normal
execution of <code>F</code> stops immediately.  Any functions whose
execution was <a href="#Defer_statements">deferred</a> by the
invocation of <code>F</code> are run in the usual way, and then
<code>F</code> returns to its caller.  To the caller, <code>F</code>
then behaves like a call to <code>panic</code>, terminating its own
execution and running deferred functions.  This continues until all
functions in the goroutine have ceased execution, in reverse order.
At that point, the program is
terminated and the error condition is reported, including the value of
the argument to <code>panic</code>.  This termination sequence is
called <i>panicking</i>.
</p>

<p>
The <code>recover</code> function allows a program to manage behavior
of a panicking goroutine.  Executing a <code>recover</code> call
inside a deferred function (but not any function called by it) stops
the panicking sequence by restoring normal execution, and retrieves
the error value passed to the call of <code>panic</code>.  If
<code>recover</code> is called outside the deferred function it will
not stop a panicking sequence.  In this case, and when the goroutine
is not panicking, <code>recover</code> returns <code>nil</code>.
</p>

<p>
If the function defined here,
</p>

<pre>
func f(hideErrors bool) {
	defer func() {
		if x := recover(); x != nil {
			println("panicking with value", x)
			if !hideErrors {
				panic(x)  // go back to panicking
			}
		}
		println("function returns normally") // executes only when hideErrors==true
	}()
	println("before")
	p()
	println("after")	// never executes
}

func p() {
	panic(3)
}
</pre>

<p>
is called with <code>hideErrors=true</code>, it prints
</p>

<pre>
before
panicking with value 3
function returns normally
</pre>

<p>
and resumes normal execution in the function that called <code>f</code>. Otherwise, it prints
</p>

<pre>
before
panicking with value 3
</pre>

<p>
and, absent further <code>recover</code> calls, terminates the program.
</p>

<p>
Since deferred functions run before assigning the return values to the caller
of the deferring function, a deferred invocation of a function literal may modify the
invoking function's return values in the event of a panic. This permits a function to protect its
caller from panics that occur in functions it calls.
</p>

<pre>
func IsPrintable(s string) (ok bool) {
	ok = true
	defer func() {
		if recover() != nil {
			println("input is not printable")
			ok = false
		}
		// Panicking has stopped; execution will resume normally in caller.
		// The return value will be true normally, false if a panic occurred.
	}
	panicIfNotPrintable(s)	// will panic if validations fails.
}
</pre>

<!---
<p>
A deferred function that calls <code>recover</code> will see the
argument passed to <code>panic</code>.  However, functions called
<i>from</i> the deferred function run normally, without behaving as
though they are panicking.  This allows deferred code to run normally
in case recovery is necessary and guarantees that functions that manage
their own panics will not fail incorrectly.  The function
</p>

<pre>
func g() {
	s := ReadString()
	defer func() {
		if IsPrintable(s) {
			println("finished processing", s)
		} else {
			println("finished processing unprintable string")
		}
	}()
	Analyze(s)
}
</pre>

<p>
will not cause <code>IsPrintable</code> to print <code>"input is not printable"</code>
due to a <code>panic</code> triggered by the call to <code>Analyze</code>.
</p>
-->

<h3 id="Bootstrapping">Bootstrapping</h3>

<p>
Current implementations provide several built-in functions useful during
bootstrapping. These functions are documented for completeness but are not
guaranteed to stay in the language. They do not return a result.
</p>

<pre class="grammar">
Function   Behavior

print      prints all arguments; formatting of arguments is implementation-specific
println    like print but prints spaces between arguments and a newline at the end
</pre>


<h2 id="Packages">Packages</h2>

<p>
Go programs are constructed by linking together <i>packages</i>.
A package in turn is constructed from one or more source files
that together declare constants, types, variables and functions
belonging to the package and which are accessible in all files
of the same package. Those elements may be
<a href="#Exported_identifiers">exported</a> and used in another package.
</p>

<h3 id="Source_file_organization">Source file organization</h3>

<p>
Each source file consists of a package clause defining the package
to which it belongs, followed by a possibly empty set of import
declarations that declare packages whose contents it wishes to use,
followed by a possibly empty set of declarations of functions,
types, variables, and constants.
</p>

<pre class="ebnf">
SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
</pre>

<h3 id="Package_clause">Package clause</h3>

<p>
A package clause begins each source file and defines the package
to which the file belongs.
</p>

<pre class="ebnf">
PackageClause  = "package" PackageName .
PackageName    = identifier .
</pre>

<p>
The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
</p>

<pre>
package math
</pre>

<p>
A set of files sharing the same PackageName form the implementation of a package.
An implementation may require that all source files for a package inhabit the same directory.
</p>

<h3 id="Import_declarations">Import declarations</h3>

<p>
An import declaration states that the source file containing the
declaration uses identifiers
<a href="#Exported_identifiers">exported</a> by the <i>imported</i>
package and enables access to them.  The import names an
identifier (PackageName) to be used for access and an ImportPath
that specifies the package to be imported.
</p>

<pre class="ebnf">
ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
ImportSpec       = [ "." | PackageName ] ImportPath .
ImportPath       = string_lit .
</pre>

<p>
The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
to access the exported identifiers of the package within the importing source file.
It is declared in the <a href="#Blocks">file block</a>.
If the PackageName is omitted, it defaults to the identifier specified in the
<a href="#Package_clauses">package clause</a> of the imported package.
If an explicit period (<code>.</code>) appears instead of a name, all the
package's exported identifiers will be declared in the current file's
file block and can be accessed without a qualifier.
</p>

<p>
The interpretation of the ImportPath is implementation-dependent but
it is typically a substring of the full file name of the compiled
package and may be relative to a repository of installed packages.
</p>

<p>
Assume we have compiled a package containing the package clause
<code>package math</code>, which exports function <code>Sin</code>, and
installed the compiled package in the file identified by
<code>"lib/math"</code>.
This table illustrates how <code>Sin</code> may be accessed in files
that import the package after the
various types of import declaration.
</p>

<pre class="grammar">
Import declaration          Local name of Sin

import   "lib/math"         math.Sin
import M "lib/math"         M.Sin
import . "lib/math"         Sin
</pre>

<p>
An import declaration declares a dependency relation between
the importing and imported package.
It is illegal for a package to import itself or to import a package without
referring to any of its exported identifiers. To import a package solely for
its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
identifier as explicit package name:
</p>

<pre>
import _ "lib/math"
</pre>


<h3 id="An_example_package">An example package</h3>

<p>
Here is a complete Go package that implements a concurrent prime sieve.
</p>

<pre>
package main

import "fmt"

// Send the sequence 2, 3, 4, ... to channel 'ch'.
func generate(ch chan&lt;- int) {
	for i := 2; ; i++ {
		ch &lt;- i  // Send 'i' to channel 'ch'.
	}
}

// Copy the values from channel 'src' to channel 'dst',
// removing those divisible by 'prime'.
func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
	for i := range src {	// Loop over values received from 'src'.
		if i%prime != 0 {
			dst &lt;- i  // Send 'i' to channel 'dst'.
		}
	}
}

// The prime sieve: Daisy-chain filter processes together.
func sieve() {
	ch := make(chan int)  // Create a new channel.
	go generate(ch)       // Start generate() as a subprocess.
	for {
		prime := &lt;-ch
		fmt.Print(prime, "\n")
		ch1 := make(chan int)
		go filter(ch, ch1, prime)
		ch = ch1
	}
}

func main() {
	sieve()
}
</pre>

<h2 id="Program_initialization_and_execution">Program initialization and execution</h2>

<h3 id="The_zero_value">The zero value</h3>
<p>
When memory is allocated to store a value, either through a declaration
or <code>make()</code> or <code>new()</code> call,
and no explicit initialization is provided, the memory is
given a default initialization.  Each element of such a value is
set to the <i>zero value</i> for its type: <code>false</code> for booleans,
<code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
This initialization is done recursively, so for instance each element of an
array of structs will have its fields zeroed if no value is specified.
</p>
<p>
These two simple declarations are equivalent:
</p>

<pre>
var i int
var i int = 0
</pre>

<p>
After
</p>

<pre>
type T struct { i int; f float; next *T }
t := new(T)
</pre>

<p>
the following holds:
</p>

<pre>
t.i == 0
t.f == 0.0
t.next == nil
</pre>

<p>
The same would also be true after
</p>

<pre>
var t T
</pre>

<h3 id="Program_execution">Program execution</h3>
<p>
A package with no imports is initialized by assigning initial values to
all its package-level variables
and then calling any
package-level function with the name and signature of
</p>
<pre>
func init()
</pre>
<p>
defined in its source.
A package may contain multiple
<code>init()</code> functions, even
within a single source file; they execute
in unspecified order.
</p>
<p>
Within a package, package-level variables are initialized,
and constant values are determined, in
data-dependent order: if the initializer of <code>A</code>
depends on the value of <code>B</code>, <code>A</code>
will be set after <code>B</code>.
It is an error if such dependencies form a cycle.
Dependency analysis is done lexically: <code>A</code>
depends on <code>B</code> if the value of <code>A</code>
contains a mention of <code>B</code>, contains a value
whose initializer
mentions <code>B</code>, or mentions a function that
mentions <code>B</code>, recursively.
If two items are not interdependent, they will be initialized
in the order they appear in the source.
Since the dependency analysis is done per package, it can produce
unspecified results  if <code>A</code>'s initializer calls a function defined
in another package that refers to <code>B</code>.
</p>
<p>
Initialization code may contain "go" statements, but the functions
they invoke do not begin execution until initialization of the entire
program is complete. Therefore, all initialization code is run in a single
goroutine.
</p>
<p>
An <code>init()</code> function cannot be referred to from anywhere
in a program. In particular, <code>init()</code> cannot be called explicitly,
nor can a pointer to <code>init</code> be assigned to a function variable.
</p>
<p>
If a package has imports, the imported packages are initialized
before initializing the package itself. If multiple packages import
a package <code>P</code>, <code>P</code> will be initialized only once.
</p>
<p>
The importing of packages, by construction, guarantees that there can
be no cyclic dependencies in initialization.
</p>
<p>
A complete program, possibly created by linking multiple packages,
must have one package called <code>main</code>, with a function
</p>

<pre>
func main() { ... }
</pre>

<p>
defined.
The function <code>main.main()</code> takes no arguments and returns no value.
</p>
<p>
Program execution begins by initializing the <code>main</code> package and then
invoking <code>main.main()</code>.
</p>
<p>
When <code>main.main()</code> returns, the program exits.  It does not wait for
other (non-<code>main</code>) goroutines to complete.
</p>
<p>
Implementation restriction: The compiler assumes package <code>main</code>
is not imported by any other package.
</p>

<h2 id="Run_time_panics">Run-time panics</h2>

<p>
Execution errors such as attempting to index an array out
of bounds trigger a <i>run-time panic</i> equivalent to a call of
the built-in function <a href="#Handling_panics"><code>panic</code></a>
with a value of the implementation-defined interface type <code>runtime.Error</code>.
That type defines at least the method
<code>String() string</code>.  The exact error values that
represent distinct run-time error conditions are unspecified,
at least for now.
</p>

<pre>
package runtime

type Error interface {
	String() string
	// and perhaps others
}
</pre>

<h2 id="System_considerations">System considerations</h2>

<h3 id="Package_unsafe">Package <code>unsafe</code></h3>

<p>
The built-in package <code>unsafe</code>, known to the compiler,
provides facilities for low-level programming including operations
that violate the type system. A package using <code>unsafe</code>
must be vetted manually for type safety.  The package provides the
following interface:
</p>

<pre class="grammar">
package unsafe

type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
type Pointer *ArbitraryType

func Alignof(variable ArbitraryType) int
func Offsetof(selector ArbitraryType) int
func Sizeof(variable ArbitraryType) int

func Reflect(val interface {}) (typ runtime.Type, addr uintptr)
func Typeof(val interface {}) reflect.Type
func Unreflect(typ runtime.Type, addr uintptr) interface{}
</pre>

<p>
Any pointer or value of type <code>uintptr</code> can be converted into
a <code>Pointer</code> and vice versa.
</p>
<p>
The function <code>Sizeof</code> takes an expression denoting a
variable of any type and returns the size of the variable in bytes.
</p>
<p>
The function <code>Offsetof</code> takes a selector (§<a href="#Selectors">Selectors</a>) denoting a struct
field of any type and returns the field offset in bytes relative to the
struct's address.
For a struct <code>s</code> with field <code>f</code>:
</p>

<pre>
uintptr(unsafe.Pointer(&amp;s)) + uintptr(unsafe.Offsetof(s.f)) == uintptr(unsafe.Pointer(&amp;s.f))
</pre>

<p>
Computer architectures may require memory addresses to be <i>aligned</i>;
that is, for addresses of a variable to be a multiple of a factor,
the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
takes an expression denoting a variable of any type and returns the
alignment of the (type of the) variable in bytes.  For a variable
<code>x</code>:
</p>

<pre>
uintptr(unsafe.Pointer(&amp;x)) % uintptr(unsafe.Alignof(x)) == 0
</pre>

<p>
Calls to <code>Alignof</code>, <code>Offsetof</code>, and
<code>Sizeof</code> are compile-time constant expressions of type <code>int</code>.
</p>
<p>
The functions <code>unsafe.Typeof</code>,
<code>unsafe.Reflect</code>,
and <code>unsafe.Unreflect</code> allow access at run time to the dynamic
types and values stored in interfaces.
<code>Typeof</code> returns a representation of
<code>val</code>'s
dynamic type as a <code>runtime.Type</code>.
<code>Reflect</code> allocates a copy of
<code>val</code>'s dynamic
value and returns both the type and the address of the copy.
<code>Unreflect</code> inverts <code>Reflect</code>,
creating an
interface value from a type and address.
The <a href="/pkg/reflect/"><code>reflect</code> package</a> built on these primitives
provides a safe, more convenient way to inspect interface values.
</p>


<h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>

<p>
For the numeric types (§<a href="#Numeric_types">Numeric types</a>), the following sizes are guaranteed:
</p>

<pre class="grammar">
type                      size in bytes

byte, uint8, int8         1
uint16, int16             2
uint32, int32, float32    4
uint64, int64, float64    8
</pre>

<p>
The following minimal alignment properties are guaranteed:
</p>
<ol>
<li>For a variable <code>x</code> of any type: <code>1 <= unsafe.Alignof(x) <= unsafe.Maxalign</code>.
</li>

<li>For a variable <code>x</code> of numeric type: <code>unsafe.Alignof(x)</code> is the smaller
   of <code>unsafe.Sizeof(x)</code> and <code>unsafe.Maxalign</code>, but at least 1.
</li>

<li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
   all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of x, but at least 1.
</li>

<li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
   <code>unsafe.Alignof(x[0])</code>, but at least 1.
</li>
</ol>

<h2 id="Implementation_differences"><span class="alert">Implementation differences - TODO</span></h2>
<ul>
	<li><span class="alert">Implementation does not honor the restriction on goto statements and targets (no intervening declarations).</span></li>
	<li><span class="alert">Method expressions are partially implemented.</span></li>
	<li><span class="alert">Gccgo: allows only one init() function per source file.</span></li>
	<li><span class="alert">Gccgo: Deferred functions cannot access the surrounding function's result parameters.</span></li>
	<li><span class="alert">Gccgo: Function results are not addressable.</span></li>
	<li><span class="alert">Gccgo: Recover is not implemented.</span></li>
	<li><span class="alert">Gccgo: The implemented version of panic differs from its specification.</span></li>
</ul>