summaryrefslogtreecommitdiff
path: root/doc/go_tutorial.html
blob: aa85134b3702a38d1151565120c23ec487fd5c94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
<!-- A Tutorial for the Go Programming Language -->
<h2>Introduction</h2>
<p>
This document is a tutorial introduction to the basics of the Go programming
language, intended for programmers familiar with C or C++. It is not a comprehensive
guide to the language; at the moment the document closest to that is the
<a href='/doc/go_spec.html'>language specification</a>.
After you've read this tutorial, you should look at
<a href='/doc/effective_go.html'>Effective Go</a>,
which digs deeper into how the language is used and
talks about the style and idioms of programming in Go.
Also, slides from a 3-day course about Go are available.
They provide some background and a lot of examples:
<a href='/doc/GoCourseDay1.pdf'>Day 1</a>,
<a href='/doc/GoCourseDay2.pdf'>Day 2</a>,
<a href='/doc/GoCourseDay3.pdf'>Day 3</a>.
<p>
The presentation here proceeds through a series of modest programs to illustrate
key features of the language.  All the programs work (at time of writing) and are
checked into the repository in the directory <a href='/doc/progs'><code>/doc/progs/</code></a>.
<p>
Program snippets are annotated with the line number in the original file; for
cleanliness, blank lines remain blank.
<p>
<h2>Hello, World</h2>
<p>
Let's start in the usual way:
<p>
<pre> <!-- progs/helloworld.go /package/ END -->
05    package main

07    import fmt &quot;fmt&quot;  // Package implementing formatted I/O.

09    func main() {
10        fmt.Printf(&quot;Hello, world; or Καλημέρα κόσμε; or こんにちは 世界\n&quot;)
11    }
</pre>
<p>
Every Go source file declares, using a <code>package</code> statement, which package it's part of.
It may also import other packages to use their facilities.
This program imports the package <code>fmt</code> to gain access to
our old, now capitalized and package-qualified, friend, <code>fmt.Printf</code>.
<p>
Functions are introduced with the <code>func</code> keyword.
The <code>main</code> package's <code>main</code> function is where the program starts running (after
any initialization).
<p>
String constants can contain Unicode characters, encoded in UTF-8.
(In fact, Go source files are defined to be encoded in UTF-8.)
<p>
The comment convention is the same as in C++:
<p>
<pre>
    /* ... */
    // ...
</pre>
<p>
Later we'll have much more to say about printing.
<p>
<h2>Semicolons</h2>
<p>
You might have noticed that our program has no semicolons.  In Go
code, the only place you typically see semicolons is separating the
clauses of <code>for</code> loops and the like; they are not necessary after
every statement.
<p>
In fact, what happens is that the formal language uses semicolons,
much as in C or Java, but they are inserted automatically
at the end of every line that looks like the end of a statement. You
don't need to type them yourself.
<p>
For details about how this is done you can see the language
specification, but in practice all you need to know is that you
never need to put a semicolon at the end of a line.  (You can put
them in if you want to write multiple statements per line.) As an
extra help, you can also leave out a semicolon immediately before
a closing brace.
<p>
This approach makes for clean-looking, semicolon-free code.  The
one surprise is that it's important to put the opening
brace of a construct such as an <code>if</code> statement on the same line as
the <code>if</code>; if you don't, there are situations that may not compile
or may give the wrong result.  The language forces the brace style
to some extent.
<p>
<h2>Compiling</h2>
<p>
Go is a compiled language.  At the moment there are two compilers.
<code>Gccgo</code> is a Go compiler that uses the GCC back end.  There is also a
suite of compilers with different (and odd) names for each architecture:
<code>6g</code> for the 64-bit x86, <code>8g</code> for the 32-bit x86, and more.  These
compilers run significantly faster but generate less efficient code
than <code>gccgo</code>.  At the time of writing (late 2009), they also have
a more robust run-time system although <code>gccgo</code> is catching up.
<p>
Here's how to compile and run our program.  With <code>6g</code>, say,
<p>
<pre>
    $ 6g helloworld.go  # compile; object goes into helloworld.6
    $ 6l helloworld.6   # link; output goes into 6.out
    $ 6.out
    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
    $
</pre>
<p>
With <code>gccgo</code> it looks a little more traditional.
<p>
<pre>
    $ gccgo helloworld.go
    $ a.out
    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
    $
</pre>
<p>
<h2>Echo</h2>
<p>
Next up, here's a version of the Unix utility <code>echo(1)</code>:
<p>
<pre> <!-- progs/echo.go /package/ END -->
05    package main

07    import (
08        &quot;os&quot;
09        &quot;flag&quot;  // command line option parser
10    )

12    var omitNewline = flag.Bool(&quot;n&quot;, false, &quot;don't print final newline&quot;)

14    const (
15        Space = &quot; &quot;
16        Newline = &quot;\n&quot;
17    )

19    func main() {
20        flag.Parse()   // Scans the arg list and sets up flags
21        var s string = &quot;&quot;
22        for i := 0; i &lt; flag.NArg(); i++ {
23            if i &gt; 0 {
24                s += Space
25            }
26            s += flag.Arg(i)
27        }
28        if !*omitNewline {
29            s += Newline
30        }
31        os.Stdout.WriteString(s)
32    }
</pre>
<p>
This program is small but it's doing a number of new things.  In the last example,
we saw <code>func</code> introduce a function.  The keywords <code>var</code>, <code>const</code>, and <code>type</code>
(not used yet) also introduce declarations, as does <code>import</code>.
Notice that we can group declarations of the same sort into
parenthesized lists, one item per line, as on lines 7-10 and 14-17.
But it's not necessary to do so; we could have said
<p>
<pre>
    const Space = " "
    const Newline = "\n"
</pre>
<p>
This program imports the <code>&quot;os&quot;</code> package to access its <code>Stdout</code> variable, of type
<code>*os.File</code>.  The <code>import</code> statement is actually a declaration: in its general form,
as used in our ``hello world'' program,
it names the identifier (<code>fmt</code>)
that will be used to access members of the package imported from the file (<code>&quot;fmt&quot;</code>),
found in the current directory or in a standard location.
In this program, though, we've dropped the explicit name from the imports; by default,
packages are imported using the name defined by the imported package,
which by convention is of course the file name itself.  Our ``hello world'' program
could have said just <code>import &quot;fmt&quot;</code>.
<p>
You can specify your
own import names if you want but it's only necessary if you need to resolve
a naming conflict.
<p>
Given <code>os.Stdout</code> we can use its <code>WriteString</code> method to print the string.
<p>
Having imported the <code>flag</code> package, line 12 creates a global variable to hold
the value of echo's <code>-n</code> flag. The variable <code>omitNewline</code> has type <code>*bool</code>, pointer
to <code>bool</code>.
<p>
In <code>main.main</code>, we parse the arguments (line 20) and then create a local
string variable we will use to build the output.
<p>
The declaration statement has the form
<p>
<pre>
    var s string = ""
</pre>
<p>
This is the <code>var</code> keyword, followed by the name of the variable, followed by
its type, followed by an equals sign and an initial value for the variable.
<p>
Go tries to be terse, and this declaration could be shortened.  Since the
string constant is of type string, we don't have to tell the compiler that.
We could write
<p>
<pre>
    var s = ""
</pre>
<p>
or we could go even shorter and write the idiom
<p>
<pre>
    s := ""
</pre>
<p>
The <code>:=</code> operator is used a lot in Go to represent an initializing declaration.
There's one in the <code>for</code> clause on the next line:
<p>
<pre> <!-- progs/echo.go /for/ -->
22        for i := 0; i &lt; flag.NArg(); i++ {
</pre>
<p>
The <code>flag</code> package has parsed the arguments and left the non-flag arguments
in a list that can be iterated over in the obvious way.
<p>
The Go <code>for</code> statement differs from that of C in a number of ways.  First,
it's the only looping construct; there is no <code>while</code> or <code>do</code>.  Second,
there are no parentheses on the clause, but the braces on the body
are mandatory.  The same applies to the <code>if</code> and <code>switch</code> statements.
Later examples will show some other ways <code>for</code> can be written.
<p>
The body of the loop builds up the string <code>s</code> by appending (using <code>+=</code>)
the arguments and separating spaces. After the loop, if the <code>-n</code> flag is not
set, the program appends a newline. Finally, it writes the result.
<p>
Notice that <code>main.main</code> is a niladic function with no return type.
It's defined that way.  Falling off the end of <code>main.main</code> means
''success''; if you want to signal an erroneous return, call
<p>
<pre>
    os.Exit(1)
</pre>
<p>
The <code>os</code> package contains other essentials for getting
started; for instance, <code>os.Args</code> is a slice used by the
<code>flag</code> package to access the command-line arguments.
<p>
<h2>An Interlude about Types</h2>
<p>
Go has some familiar types such as <code>int</code> and <code>uint</code> (unsigned <code>int</code>), which represent
values of the ''appropriate'' size for the machine. It also defines
explicitly-sized types such as <code>int8</code>, <code>float64</code>, and so on, plus
unsigned integer types such as <code>uint</code>, <code>uint32</code>, etc.
These are distinct types; even if <code>int</code> and <code>int32</code> are both 32 bits in size,
they are not the same type.  There is also a <code>byte</code> synonym for
<code>uint8</code>, which is the element type for strings.
<p>
Floating-point types are always sized: <code>float32</code> and <code>float64</code>,
plus <code>complex64</code> (two <code>float32s</code>) and <code>complex128</code>
(two <code>float64s</code>).  Complex numbers are outside the
scope of this tutorial.
<p>
Speaking of <code>string</code>, that's a built-in type as well.  Strings are
<i>immutable values</i>&mdash;they are not just arrays of <code>byte</code> values.
Once you've built a string <i>value</i>, you can't change it, although
of course you can change a string <i>variable</i> simply by
reassigning it.  This snippet from <code>strings.go</code> is legal code:
<p>
<pre> <!-- progs/strings.go /hello/ /ciao/ -->
10        s := &quot;hello&quot;
11        if s[1] != 'e' { os.Exit(1) }
12        s = &quot;good bye&quot;
13        var p *string = &amp;s
14        *p = &quot;ciao&quot;
</pre>
<p>
However the following statements are illegal because they would modify
a <code>string</code> value:
<p>
<pre>
    s[0] = 'x'
    (*p)[1] = 'y'
</pre>
<p>
In C++ terms, Go strings are a bit like <code>const strings</code>, while pointers
to strings are analogous to <code>const string</code> references.
<p>
Yes, there are pointers.  However, Go simplifies their use a little;
read on.
<p>
Arrays are declared like this:
<p>
<pre>
    var arrayOfInt [10]int
</pre>
<p>
Arrays, like strings, are values, but they are mutable. This differs
from C, in which <code>arrayOfInt</code> would be usable as a pointer to <code>int</code>.
In Go, since arrays are values, it's meaningful (and useful) to talk
about pointers to arrays.
<p>
The size of the array is part of its type; however, one can declare
a <i>slice</i> variable to hold a reference to any array, of any size,
with the same element type.
A <i>slice
expression</i> has the form <code>a[low : high]</code>, representing
the internal array indexed from <code>low</code> through <code>high-1</code>; the resulting
slice is indexed from <code>0</code> through <code>high-low-1</code>.
In short, slices look a lot like arrays but with
no explicit size (<code>[]</code> vs. <code>[10]</code>) and they reference a segment of
an underlying, usually anonymous, regular array.  Multiple slices
can share data if they represent pieces of the same array;
multiple arrays can never share data.
<p>
Slices are much more common in Go programs than
regular arrays; they're more flexible, have reference semantics,
and are efficient.  What they lack is the precise control of storage
layout of a regular array; if you want to have a hundred elements
of an array stored within your structure, you should use a regular
array. To create one, use a compound value <i>constructor</i>&mdash;an
expression formed
from a type followed by a brace-bounded expression like this:
<p>
<pre>
    [3]int{1,2,3}
</pre>
<p>
In this case the constructor builds an array of 3 <code>ints</code>.
<p>
When passing an array to a function, you almost always want
to declare the formal parameter to be a slice.  When you call
the function, slice the array to create
(efficiently) a slice reference and pass that.
By default, the lower and upper bounds of a slice match the
ends of the existing object, so the concise notation <code>[:]</code>
will slice the whole array.
<p>
Using slices one can write this function (from <code>sum.go</code>):
<p>
<pre> <!-- progs/sum.go /sum/ /^}/ -->
09    func sum(a []int) int { // returns an int
10        s := 0
11        for i := 0; i &lt; len(a); i++ {
12            s += a[i]
13        }
14        return s
15    }
</pre>
<p>
Note how the return type (<code>int</code>) is defined for <code>sum</code> by stating it
after the parameter list.
<p>
To call the function, we slice the array.  This intricate call (we'll show
a simpler way in a moment) constructs
an array and slices it:
<p>
<pre>
    s := sum([3]int{1,2,3}[:])
</pre>
<p>
If you are creating a regular array but want the compiler to count the
elements for you, use <code>...</code> as the array size:
<p>
<pre>
    s := sum([...]int{1,2,3}[:])
</pre>
<p>
That's fussier than necessary, though.
In practice, unless you're meticulous about storage layout within a
data structure, a slice itself&mdash;using empty brackets with no size&mdash;is all you need:
<p>
<pre>
    s := sum([]int{1,2,3})
</pre>
<p>
There are also maps, which you can initialize like this:
<p>
<pre>
    m := map[string]int{"one":1 , "two":2}
</pre>
<p>
The built-in function <code>len</code>, which returns number of elements,
makes its first appearance in <code>sum</code>.  It works on strings, arrays,
slices, maps, and channels.
<p>
By the way, another thing that works on strings, arrays, slices, maps
and channels is the <code>range</code> clause on <code>for</code> loops.  Instead of writing
<p>
<pre>
    for i := 0; i &lt; len(a); i++ { ... }
</pre>
<p>
to loop over the elements of a slice (or map or ...) , we could write
<p>
<pre>
    for i, v := range a { ... }
</pre>
<p>
This assigns <code>i</code> to the index and <code>v</code> to the value of the successive
elements of the target of the range.   See
<a href='/doc/effective_go.html'>Effective Go</a>
for more examples of its use.
<p>
<p>
<h2>An Interlude about Allocation</h2>
<p>
Most types in Go are values. If you have an <code>int</code> or a <code>struct</code>
or an array, assignment
copies the contents of the object.
To allocate a new variable, use the built-in function <code>new</code>, which
returns a pointer to the allocated storage.
<p>
<pre>
    type T struct { a, b int }
    var t *T = new(T)
</pre>
<p>
or the more idiomatic
<p>
<pre>
    t := new(T)
</pre>
<p>
Some types&mdash;maps, slices, and channels (see below)&mdash;have reference semantics.
If you're holding a slice or a map and you modify its contents, other variables
referencing the same underlying data will see the modification.  For these three
types you want to use the built-in function <code>make</code>:
<p>
<pre>
    m := make(map[string]int)
</pre>
<p>
This statement initializes a new map ready to store entries.
If you just declare the map, as in
<p>
<pre>
    var m map[string]int
</pre>
<p>
it creates a <code>nil</code> reference that cannot hold anything. To use the map,
you must first initialize the reference using <code>make</code> or by assignment from an
existing map.
<p>
Note that <code>new(T)</code> returns type <code>*T</code> while <code>make(T)</code> returns type
<code>T</code>.  If you (mistakenly) allocate a reference object with <code>new</code> rather than <code>make</code>,
you receive a pointer to a nil reference, equivalent to
declaring an uninitialized variable and taking its address.
<p>
<h2>An Interlude about Constants</h2>
<p>
Although integers come in lots of sizes in Go, integer constants do not.
There are no constants like <code>0LL</code> or <code>0x0UL</code>.   Instead, integer
constants are evaluated as large-precision values that
can overflow only when they are assigned to an integer variable with
too little precision to represent the value.
<p>
<pre>
    const hardEight = (1 &lt;&lt; 100) &gt;&gt; 97  // legal
</pre>
<p>
There are nuances that deserve redirection to the legalese of the
language specification but here are some illustrative examples:
<p>
<pre>
    var a uint64 = 0  // a has type uint64, value 0
    a := uint64(0)    // equivalent; uses a "conversion"
    i := 0x1234       // i gets default type: int
    var j int = 1e6   // legal - 1000000 is representable in an int
    x := 1.5          // a float64, the default type for floating constants
    i3div2 := 3/2     // integer division - result is 1
    f3div2 := 3./2.   // floating-point division - result is 1.5
</pre>
<p>
Conversions only work for simple cases such as converting <code>ints</code> of one
sign or size to another and between integers and floating-point numbers,
plus a couple of other instances outside the scope of a tutorial.
There are no automatic numeric conversions of any kind in Go,
other than that of making constants have concrete size and type when
assigned to a variable.
<p>
<h2>An I/O Package</h2>
<p>
Next we'll look at a simple package for doing file I/O with an
open/close/read/write interface.  Here's the start of <code>file.go</code>:
<p>
<pre> <!-- progs/file.go /package/ /^}/ -->
05    package file

07    import (
08        &quot;os&quot;
09        &quot;syscall&quot;
10    )

12    type File struct {
13        fd   int    // file descriptor number
14        name string // file name at Open time
15    }
</pre>
<p>
The first few lines declare the name of the
package&mdash;<code>file</code>&mdash;and then import two packages.  The <code>os</code>
package hides the differences
between various operating systems to give a consistent view of files and
so on; here we're going to use its error handling utilities
and reproduce the rudiments of its file I/O.
<p>
The other item is the low-level, external <code>syscall</code> package, which provides
a primitive interface to the underlying operating system's calls.
<p>
Next is a type definition: the <code>type</code> keyword introduces a type declaration,
in this case a data structure called <code>File</code>.
To make things a little more interesting, our <code>File</code> includes the name of the file
that the file descriptor refers to.
<p>
Because <code>File</code> starts with a capital letter, the type is available outside the package,
that is, by users of the package.   In Go the rule about visibility of information is
simple: if a name (of a top-level type, function, method, constant or variable, or of
a structure field or method) is capitalized, users of the package may see it. Otherwise, the
name and hence the thing being named is visible only inside the package in which
it is declared.  This is more than a convention; the rule is enforced by the compiler.
In Go, the term for publicly visible names is ''exported''.
<p>
In the case of <code>File</code>, all its fields are lower case and so invisible to users, but we
will soon give it some exported, upper-case methods.
<p>
First, though, here is a factory to create a <code>File</code>:
<p>
<pre> <!-- progs/file.go /newFile/ /^}/ -->
17    func newFile(fd int, name string) *File {
18        if fd &lt; 0 {
19            return nil
20        }
21        return &amp;File{fd, name}
22    }
</pre>
<p>
This returns a pointer to a new <code>File</code> structure with the file descriptor and name
filled in.  This code uses Go's notion of a ''composite literal'', analogous to
the ones used to build maps and arrays, to construct a new heap-allocated
object.  We could write
<p>
<pre>
    n := new(File)
    n.fd = fd
    n.name = name
    return n
</pre>
<p>
but for simple structures like <code>File</code> it's easier to return the address of a 
composite literal, as is done here on line 21.
<p>
We can use the factory to construct some familiar, exported variables of type <code>*File</code>:
<p>
<pre> <!-- progs/file.go /var/ /^.$/ -->
24    var (
25        Stdin  = newFile(syscall.Stdin, &quot;/dev/stdin&quot;)
26        Stdout = newFile(syscall.Stdout, &quot;/dev/stdout&quot;)
27        Stderr = newFile(syscall.Stderr, &quot;/dev/stderr&quot;)
28    )
</pre>
<p>
The <code>newFile</code> function was not exported because it's internal. The proper,
exported factory to use is <code>OpenFile</code> (we'll explain that name in a moment):
<p>
<pre> <!-- progs/file.go /func.OpenFile/ /^}/ -->
30    func OpenFile(name string, mode int, perm uint32) (file *File, err os.Error) {
31        r, e := syscall.Open(name, mode, perm)
32        if e != 0 {
33            err = os.Errno(e)
34        }
35        return newFile(r, name), err
36    }
</pre>
<p>
There are a number of new things in these few lines.  First, <code>OpenFile</code> returns
multiple values, a <code>File</code> and an error (more about errors in a moment).
We declare the
multi-value return as a parenthesized list of declarations; syntactically
they look just like a second parameter list.  The function
<code>syscall.Open</code>
also has a multi-value return, which we can grab with the multi-variable
declaration on line 31; it declares <code>r</code> and <code>e</code> to hold the two values,
both of type <code>int</code> (although you'd have to look at the <code>syscall</code> package
to see that).  Finally, line 35 returns two values: a pointer to the new <code>File</code>
and the error.  If <code>syscall.Open</code> fails, the file descriptor <code>r</code> will
be negative and <code>newFile</code> will return <code>nil</code>.
<p>
About those errors:  The <code>os</code> library includes a general notion of an error.
It's a good idea to use its facility in your own interfaces, as we do here, for
consistent error handling throughout Go code.   In <code>Open</code> we use a
conversion to translate Unix's integer <code>errno</code> value into the integer type
<code>os.Errno</code>, which implements <code>os.Error</code>.
<p>
Why <code>OpenFile</code> and not <code>Open</code>? To mimic Go's <code>os</code> package, which
our exercise is emulating. The <code>os</code> package takes the opportunity
to make the two commonest cases - open for read and create for
write - the simplest, just <code>Open</code> and <code>Create</code>.  <code>OpenFile</code> is the
general case, analogous to the Unix system call <code>Open</code>.  Here is
the implementation of our <code>Open</code> and <code>Create</code>; they're trivial
wrappers that eliminate common errors by capturing
the tricky standard arguments to open and, especially, to create a file:
<p>
<pre> <!-- progs/file.go /^const/ /^}/ -->
38    const (
39        O_RDONLY = syscall.O_RDONLY
40        O_RDWR   = syscall.O_RDWR
41        O_CREATE = syscall.O_CREAT
42        O_TRUNC  = syscall.O_TRUNC
43    )

45    func Open(name string) (file *File, err os.Error) {
46        return OpenFile(name, O_RDONLY, 0)
47    }
</pre>
<p>
<pre> <!-- progs/file.go /func.Create/ /^}/ -->
49    func Create(name string) (file *File, err os.Error) {
50        return OpenFile(name, O_RDWR|O_CREATE|O_TRUNC, 0666)
51    }
</pre>
<p>
Back to our main story.
Now that we can build <code>Files</code>, we can write methods for them. To declare
a method of a type, we define a function to have an explicit receiver
of that type, placed
in parentheses before the function name. Here are some methods for <code>*File</code>,
each of which declares a receiver variable <code>file</code>.
<p>
<pre> <!-- progs/file.go /Close/ END -->
53    func (file *File) Close() os.Error {
54        if file == nil {
55            return os.EINVAL
56        }
57        e := syscall.Close(file.fd)
58        file.fd = -1 // so it can't be closed again
59        if e != 0 {
60            return os.Errno(e)
61        }
62        return nil
63    }

65    func (file *File) Read(b []byte) (ret int, err os.Error) {
66        if file == nil {
67            return -1, os.EINVAL
68        }
69        r, e := syscall.Read(file.fd, b)
70        if e != 0 {
71            err = os.Errno(e)
72        }
73        return int(r), err
74    }

76    func (file *File) Write(b []byte) (ret int, err os.Error) {
77        if file == nil {
78            return -1, os.EINVAL
79        }
80        r, e := syscall.Write(file.fd, b)
81        if e != 0 {
82            err = os.Errno(e)
83        }
84        return int(r), err
85    }

87    func (file *File) String() string {
88        return file.name
89    }
</pre>
<p>
There is no implicit <code>this</code> and the receiver variable must be used to access
members of the structure.  Methods are not declared within
the <code>struct</code> declaration itself.  The <code>struct</code> declaration defines only data members.
In fact, methods can be created for almost any type you name, such as an integer or
array, not just for <code>structs</code>.   We'll see an example with arrays later.
<p>
The <code>String</code> method is so called because of a printing convention we'll
describe later.
<p>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>os.Error</code>
version of the) Unix error code <code>EINVAL</code>.  The <code>os</code> library defines a standard
set of such error values.
<p>
We can now use our new package:
<p>
<pre> <!-- progs/helloworld3.go /package/ END -->
05    package main

07    import (
08        &quot;./file&quot;
09        &quot;fmt&quot;
10        &quot;os&quot;
11    )

13    func main() {
14        hello := []byte(&quot;hello, world\n&quot;)
15        file.Stdout.Write(hello)
16        f, err := file.Open(&quot;/does/not/exist&quot;)
17        if f == nil {
18            fmt.Printf(&quot;can't open file; err=%s\n&quot;,  err.String())
19            os.Exit(1)
20        }
21    }
</pre>
<p>
The ''<code>./</code>'' in the import of ''<code>./file</code>'' tells the compiler
to use our own package rather than
something from the directory of installed packages.
(Also, ''<code>file.go</code>'' must be compiled before we can import the
package.)
<p>
Now we can compile and run the program. On Unix, this would be the result:
<p>
<pre>
    $ 6g file.go                       # compile file package
    $ 6g helloworld3.go                # compile main package
    $ 6l -o helloworld3 helloworld3.6  # link - no need to mention "file"
    $ helloworld3
    hello, world
    can't open file; err=No such file or directory
    $
</pre>
<p>
<h2>Rotting cats</h2>
<p>
Building on the <code>file</code> package, here's a simple version of the Unix utility <code>cat(1)</code>,
<code>progs/cat.go</code>:
<p>
<pre> <!-- progs/cat.go /package/ END -->
05    package main

07    import (
08        &quot;./file&quot;
09        &quot;flag&quot;
10        &quot;fmt&quot;
11        &quot;os&quot;
12    )

14    func cat(f *file.File) {
15        const NBUF = 512
16        var buf [NBUF]byte
17        for {
18            switch nr, er := f.Read(buf[:]); true {
19            case nr &lt; 0:
20                fmt.Fprintf(os.Stderr, &quot;cat: error reading from %s: %s\n&quot;, f.String(), er.String())
21                os.Exit(1)
22            case nr == 0: // EOF
23                return
24            case nr &gt; 0:
25                if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
26                    fmt.Fprintf(os.Stderr, &quot;cat: error writing from %s: %s\n&quot;, f.String(), ew.String())
27                    os.Exit(1)
28                }
29            }
30        }
31    }

33    func main() {
34        flag.Parse() // Scans the arg list and sets up flags
35        if flag.NArg() == 0 {
36            cat(file.Stdin)
37        }
38        for i := 0; i &lt; flag.NArg(); i++ {
39            f, err := file.Open(flag.Arg(i))
40            if f == nil {
41                fmt.Fprintf(os.Stderr, &quot;cat: can't open %s: error %s\n&quot;, flag.Arg(i), err)
42                os.Exit(1)
43            }
44            cat(f)
45            f.Close()
46        }
47    }
</pre>
<p>
By now this should be easy to follow, but the <code>switch</code> statement introduces some
new features.  Like a <code>for</code> loop, an <code>if</code> or <code>switch</code> can include an
initialization statement.  The <code>switch</code> on line 18 uses one to create variables
<code>nr</code> and <code>er</code> to hold the return values from the call to <code>f.Read</code>.  (The <code>if</code> on line 25
has the same idea.)  The <code>switch</code> statement is general: it evaluates the cases
from  top to bottom looking for the first case that matches the value; the
case expressions don't need to be constants or even integers, as long as
they all have the same type.
<p>
Since the <code>switch</code> value is just <code>true</code>, we could leave it off&mdash;as is also
the situation
in a <code>for</code> statement, a missing value means <code>true</code>.  In fact, such a <code>switch</code>
is a form of <code>if-else</code> chain. While we're here, it should be mentioned that in
<code>switch</code> statements each <code>case</code> has an implicit <code>break</code>.
<p>
Line 25 calls <code>Write</code> by slicing the incoming buffer, which is itself a slice.
Slices provide the standard Go way to handle I/O buffers.
<p>
Now let's make a variant of <code>cat</code> that optionally does <code>rot13</code> on its input.
It's easy to do by just processing the bytes, but instead we will exploit
Go's notion of an <i>interface</i>.
<p>
The <code>cat</code> subroutine uses only two methods of <code>f</code>: <code>Read</code> and <code>String</code>,
so let's start by defining an interface that has exactly those two methods.
Here is code from <code>progs/cat_rot13.go</code>:
<p>
<pre> <!-- progs/cat_rot13.go /type.reader/ /^}/ -->
26    type reader interface {
27        Read(b []byte) (ret int, err os.Error)
28        String() string
29    }
</pre>
<p>
Any type that has the two methods of <code>reader</code>&mdash;regardless of whatever
other methods the type may also have&mdash;is said to <i>implement</i> the
interface.  Since <code>file.File</code> implements these methods, it implements the
<code>reader</code> interface.  We could tweak the <code>cat</code> subroutine to accept a <code>reader</code>
instead of a <code>*file.File</code> and it would work just fine, but let's embellish a little
first by writing a second type that implements <code>reader</code>, one that wraps an
existing <code>reader</code> and does <code>rot13</code> on the data. To do this, we just define
the type and implement the methods and with no other bookkeeping,
we have a second implementation of the <code>reader</code> interface.
<p>
<pre> <!-- progs/cat_rot13.go /type.rotate13/ /end.of.rotate13/ -->
31    type rotate13 struct {
32        source reader
33    }

35    func newRotate13(source reader) *rotate13 {
36        return &amp;rotate13{source}
37    }

39    func (r13 *rotate13) Read(b []byte) (ret int, err os.Error) {
40        r, e := r13.source.Read(b)
41        for i := 0; i &lt; r; i++ {
42            b[i] = rot13(b[i])
43        }
44        return r, e
45    }

47    func (r13 *rotate13) String() string {
48        return r13.source.String()
49    }
50    // end of rotate13 implementation
</pre>
<p>
(The <code>rot13</code> function called on line 42 is trivial and not worth reproducing here.)
<p>
To use the new feature, we define a flag:
<p>
<pre> <!-- progs/cat_rot13.go /rot13Flag/ -->
14    var rot13Flag = flag.Bool(&quot;rot13&quot;, false, &quot;rot13 the input&quot;)
</pre>
<p>
and use it from within a mostly unchanged <code>cat</code> function:
<p>
<pre> <!-- progs/cat_rot13.go /func.cat/ /^}/ -->
52    func cat(r reader) {
53        const NBUF = 512
54        var buf [NBUF]byte

56        if *rot13Flag {
57            r = newRotate13(r)
58        }
59        for {
60            switch nr, er := r.Read(buf[:]); {
61            case nr &lt; 0:
62                fmt.Fprintf(os.Stderr, &quot;cat: error reading from %s: %s\n&quot;, r.String(), er.String())
63                os.Exit(1)
64            case nr == 0: // EOF
65                return
66            case nr &gt; 0:
67                nw, ew := file.Stdout.Write(buf[0:nr])
68                if nw != nr {
69                    fmt.Fprintf(os.Stderr, &quot;cat: error writing from %s: %s\n&quot;, r.String(), ew.String())
70                    os.Exit(1)
71                }
72            }
73        }
74    }
</pre>
<p>
(We could also do the wrapping in <code>main</code> and leave <code>cat</code> mostly alone, except
for changing the type of the argument; consider that an exercise.)
Lines 56 through 58 set it all up: If the <code>rot13</code> flag is true, wrap the <code>reader</code>
we received into a <code>rotate13</code> and proceed.  Note that the interface variables
are values, not pointers: the argument is of type <code>reader</code>, not <code>*reader</code>,
even though under the covers it holds a pointer to a <code>struct</code>.
<p>
Here it is in action:
<p>
<pre>
    $ echo abcdefghijklmnopqrstuvwxyz | ./cat
    abcdefghijklmnopqrstuvwxyz
    $ echo abcdefghijklmnopqrstuvwxyz | ./cat --rot13
    nopqrstuvwxyzabcdefghijklm
    $
</pre>
<p>
Fans of dependency injection may take cheer from how easily interfaces
allow us to substitute the implementation of a file descriptor.
<p>
Interfaces are a distinctive feature of Go.  An interface is implemented by a
type if the type implements all the methods declared in the interface.
This means
that a type may implement an arbitrary number of different interfaces.
There is no type hierarchy; things can be much more <i>ad hoc</i>,
as we saw with <code>rot13</code>.  The type <code>file.File</code> implements <code>reader</code>; it could also
implement a <code>writer</code>, or any other interface built from its methods that
fits the current situation. Consider the <i>empty interface</i>
<p>
<pre>
    type Empty interface {}
</pre>
<p>
<i>Every</i> type implements the empty interface, which makes it
useful for things like containers.
<p>
<h2>Sorting</h2>
<p>
Interfaces provide a simple form of polymorphism.  They completely
separate the definition of what an object does from how it does it, allowing
distinct implementations to be represented at different times by the
same interface variable.
<p>
As an example, consider this simple sort algorithm taken from <code>progs/sort.go</code>:
<p>
<pre> <!-- progs/sort.go /func.Sort/ /^}/ -->
13    func Sort(data Interface) {
14        for i := 1; i &lt; data.Len(); i++ {
15            for j := i; j &gt; 0 &amp;&amp; data.Less(j, j-1); j-- {
16                data.Swap(j, j-1)
17            }
18        }
19    }
</pre>
<p>
The code needs only three methods, which we wrap into sort's <code>Interface</code>:
<p>
<pre> <!-- progs/sort.go /interface/ /^}/ -->
07    type Interface interface {
08        Len() int
09        Less(i, j int) bool
10        Swap(i, j int)
11    }
</pre>
<p>
We can apply <code>Sort</code> to any type that implements <code>Len</code>, <code>Less</code>, and <code>Swap</code>.
The <code>sort</code> package includes the necessary methods to allow sorting of
arrays of integers, strings, etc.; here's the code for arrays of <code>int</code>
<p>
<pre> <!-- progs/sort.go /type.*IntArray/ /Swap/ -->
33    type IntArray []int

35    func (p IntArray) Len() int            { return len(p) }
36    func (p IntArray) Less(i, j int) bool  { return p[i] &lt; p[j] }
37    func (p IntArray) Swap(i, j int)       { p[i], p[j] = p[j], p[i] }
</pre>
<p>
Here we see methods defined for non-<code>struct</code> types.  You can define methods
for any type you define and name in your package.
<p>
And now a routine to test it out, from <code>progs/sortmain.go</code>.  This
uses a function in the <code>sort</code> package, omitted here for brevity,
to test that the result is sorted.
<p>
<pre> <!-- progs/sortmain.go /func.ints/ /^}/ -->
12    func ints() {
13        data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
14        a := sort.IntArray(data)
15        sort.Sort(a)
16        if !sort.IsSorted(a) {
17            panic(&quot;fail&quot;)
18        }
19    }
</pre>
<p>
If we have a new type we want to be able to sort, all we need to do is
to implement the three methods for that type, like this:
<p>
<pre> <!-- progs/sortmain.go /type.day/ /Swap/ -->
30    type day struct {
31        num        int
32        shortName  string
33        longName   string
34    }

36    type dayArray struct {
37        data []*day
38    }

40    func (p *dayArray) Len() int            { return len(p.data) }
41    func (p *dayArray) Less(i, j int) bool  { return p.data[i].num &lt; p.data[j].num }
42    func (p *dayArray) Swap(i, j int)       { p.data[i], p.data[j] = p.data[j], p.data[i] }
</pre>
<p>
<p>
<h2>Printing</h2>
<p>
The examples of formatted printing so far have been modest.  In this section
we'll talk about how formatted I/O can be done well in Go.
<p>
We've seen simple uses of the package <code>fmt</code>, which
implements <code>Printf</code>, <code>Fprintf</code>, and so on.
Within the <code>fmt</code> package, <code>Printf</code> is declared with this signature:
<p>
<pre>
    Printf(format string, v ...interface{}) (n int, errno os.Error)
</pre>
<p>
The token <code>...</code> introduces a variable-length argument list that in C would
be handled using the <code>stdarg.h</code> macros.
In Go, variadic functions are passed a slice of the arguments of the
specified type.  In <code>Printf</code>'s case, the declaration says <code>...interface{}</code>
so the actual type is a slice of empty interface values, <code>[]interface{}</code>.
<code>Printf</code> can examine the arguments by iterating over the slice
and, for each element, using a type switch or the reflection library
to interpret the value.
It's off topic here but such run-time type analysis
helps explain some of the nice properties of Go's <code>Printf</code>,
due to the ability of <code>Printf</code> to discover the type of its arguments
dynamically.
<p>
For example, in C each format must correspond to the type of its
argument.  It's easier in many cases in Go.  Instead of <code>%llud</code> you
can just say <code>%d</code>; <code>Printf</code> knows the size and signedness of the
integer and can do the right thing for you.  The snippet
<p>
<pre> <!-- progs/print.go NR==10 NR==11 -->
10        var u64 uint64 = 1&lt;&lt;64-1
11        fmt.Printf(&quot;%d %d\n&quot;, u64, int64(u64))
</pre>
<p>
prints
<p>
<pre>
    18446744073709551615 -1
</pre>
<p>
In fact, if you're lazy the format <code>%v</code> will print, in a simple
appropriate style, any value, even an array or structure.  The output of
<p>
<pre> <!-- progs/print.go NR==14 NR==20 -->
14        type T struct {
15            a int
16            b string
17        }
18        t := T{77, &quot;Sunset Strip&quot;}
19        a := []int{1, 2, 3, 4}
20        fmt.Printf(&quot;%v %v %v\n&quot;, u64, t, a)
</pre>
<p>
is
<p>
<pre>
    18446744073709551615 {77 Sunset Strip} [1 2 3 4]
</pre>
<p>
You can drop the formatting altogether if you use <code>Print</code> or <code>Println</code>
instead of <code>Printf</code>.  Those routines do fully automatic formatting.
The <code>Print</code> function just prints its elements out using the equivalent
of <code>%v</code> while <code>Println</code> inserts spaces between arguments
and adds a newline.  The output of each of these two lines is identical
to that of the <code>Printf</code> call above.
<p>
<pre> <!-- progs/print.go NR==21 NR==22 -->
21        fmt.Print(u64, &quot; &quot;, t, &quot; &quot;, a, &quot;\n&quot;)
22        fmt.Println(u64, t, a)
</pre>
<p>
If you have your own type you'd like <code>Printf</code> or <code>Print</code> to format,
just give it a <code>String</code> method that returns a string.  The print
routines will examine the value to inquire whether it implements
the method and if so, use it rather than some other formatting.
Here's a simple example.
<p>
<pre> <!-- progs/print_string.go NR==9 END -->
09    type testType struct {
10        a int
11        b string
12    }

14    func (t *testType) String() string {
15        return fmt.Sprint(t.a) + &quot; &quot; + t.b
16    }

18    func main() {
19        t := &amp;testType{77, &quot;Sunset Strip&quot;}
20        fmt.Println(t)
21    }
</pre>
<p>
Since <code>*testType</code> has a <code>String</code> method, the
default formatter for that type will use it and produce the output
<p>
<pre>
    77 Sunset Strip
</pre>
<p>
Observe that the <code>String</code> method calls <code>Sprint</code> (the obvious Go
variant that returns a string) to do its formatting; special formatters
can use the <code>fmt</code> library recursively.
<p>
Another feature of <code>Printf</code> is that the format <code>%T</code> will print a string
representation of the type of a value, which can be handy when debugging
polymorphic code.
<p>
It's possible to write full custom print formats with flags and precisions
and such, but that's getting a little off the main thread so we'll leave it
as an exploration exercise.
<p>
You might ask, though, how <code>Printf</code> can tell whether a type implements
the <code>String</code> method.  Actually what it does is ask if the value can
be converted to an interface variable that implements the method.
Schematically, given a value <code>v</code>, it does this:
<p>
<p>
<pre>
    type Stringer interface {
        String() string
    }
</pre>
<p>
<pre>
    s, ok := v.(Stringer)  // Test whether v implements "String()"
    if ok {
        result = s.String()
    } else {
        result = defaultOutput(v)
    }
</pre>
<p>
The code uses a ``type assertion'' (<code>v.(Stringer)</code>) to test if the value stored in
<code>v</code> satisfies the <code>Stringer</code> interface; if it does, <code>s</code>
will become an interface variable implementing the method and <code>ok</code> will
be <code>true</code>.  We then use the interface variable to call the method.
(The ''comma, ok'' pattern is a Go idiom used to test the success of
operations such as type conversion, map update, communications, and so on,
although this is the only appearance in this tutorial.)
If the value does not satisfy the interface, <code>ok</code> will be false.
<p>
In this snippet the name <code>Stringer</code> follows the convention that we add ''[e]r''
to interfaces describing simple method sets like this.
<p>
One last wrinkle.  To complete the suite, besides <code>Printf</code> etc. and <code>Sprintf</code>
etc., there are also <code>Fprintf</code> etc.  Unlike in C, <code>Fprintf</code>'s first argument is
not a file.  Instead, it is a variable of type <code>io.Writer</code>, which is an
interface type defined in the <code>io</code> library:
<p>
<pre>
    type Writer interface {
        Write(p []byte) (n int, err os.Error)
    }
</pre>
<p>
(This interface is another conventional name, this time for <code>Write</code>; there are also
<code>io.Reader</code>, <code>io.ReadWriter</code>, and so on.)
Thus you can call <code>Fprintf</code> on any type that implements a standard <code>Write</code>
method, not just files but also network channels, buffers, whatever
you want.
<p>
<h2>Prime numbers</h2>
<p>
Now we come to processes and communication&mdash;concurrent programming.
It's a big subject so to be brief we assume some familiarity with the topic.
<p>
A classic program in the style is a prime sieve.
(The sieve of Eratosthenes is computationally more efficient than
the algorithm presented here, but we are more interested in concurrency than
algorithmics at the moment.)
It works by taking a stream of all the natural numbers and introducing
a sequence of filters, one for each prime, to winnow the multiples of
that prime.  At each step we have a sequence of filters of the primes
so far, and the next number to pop out is the next prime, which triggers
the creation of the next filter in the chain.
<p>
Here's a flow diagram; each box represents a filter element whose
creation is triggered by the first number that flowed from the
elements before it.
<p>
<br>
<p>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src='sieve.gif'>
<p>
<br>
<p>
To create a stream of integers, we use a Go <i>channel</i>, which,
borrowing from CSP's descendants, represents a communications
channel that can connect two concurrent computations.
In Go, channel variables are references to a run-time object that
coordinates the communication; as with maps and slices, use
<code>make</code> to create a new channel.
<p>
Here is the first function in <code>progs/sieve.go</code>:
<p>
<pre> <!-- progs/sieve.go /Send/ /^}/ -->
09    // Send the sequence 2, 3, 4, ... to channel 'ch'.
10    func generate(ch chan int) {
11        for i := 2; ; i++ {
12            ch &lt;- i  // Send 'i' to channel 'ch'.
13        }
14    }
</pre>
<p>
The <code>generate</code> function sends the sequence 2, 3, 4, 5, ... to its
argument channel, <code>ch</code>, using the binary communications operator <code>&lt;-</code>.
Channel operations block, so if there's no recipient for the value on <code>ch</code>,
the send operation will wait until one becomes available.
<p>
The <code>filter</code> function has three arguments: an input channel, an output
channel, and a prime number.  It copies values from the input to the
output, discarding anything divisible by the prime.  The unary communications
operator <code>&lt;-</code> (receive) retrieves the next value on the channel.
<p>
<pre> <!-- progs/sieve.go /Copy.the/ /^}/ -->
16    // Copy the values from channel 'in' to channel 'out',
17    // removing those divisible by 'prime'.
18    func filter(in, out chan int, prime int) {
19        for {
20            i := &lt;-in  // Receive value of new variable 'i' from 'in'.
21            if i % prime != 0 {
22                out &lt;- i  // Send 'i' to channel 'out'.
23            }
24        }
25    }
</pre>
<p>
The generator and filters execute concurrently.  Go has
its own model of process/threads/light-weight processes/coroutines,
so to avoid notational confusion we call concurrently executing
computations in Go <i>goroutines</i>.  To start a goroutine,
invoke the function, prefixing the call with the keyword <code>go</code>;
this starts the function running in parallel with the current
computation but in the same address space:
<p>
<pre>
    go sum(hugeArray) // calculate sum in the background
</pre>
<p>
If you want to know when the calculation is done, pass a channel
on which it can report back:
<p>
<pre>
    ch := make(chan int)
    go sum(hugeArray, ch)
    // ... do something else for a while
    result := &lt;-ch  // wait for, and retrieve, result
</pre>
<p>
Back to our prime sieve.  Here's how the sieve pipeline is stitched
together:
<p>
<pre> <!-- progs/sieve.go /func.main/ /^}/ -->
28    func main() {
29        ch := make(chan int)  // Create a new channel.
30        go generate(ch)  // Start generate() as a goroutine.
31        for i := 0; i &lt; 100; i++ { // Print the first hundred primes.
32            prime := &lt;-ch
33            fmt.Println(prime)
34            ch1 := make(chan int)
35            go filter(ch, ch1, prime)
36            ch = ch1
37        }
38    }
</pre>
<p>
Line 29 creates the initial channel to pass to <code>generate</code>, which it
then starts up.  As each prime pops out of the channel, a new <code>filter</code>
is added to the pipeline and <i>its</i> output becomes the new value
of <code>ch</code>.
<p>
The sieve program can be tweaked to use a pattern common
in this style of programming.  Here is a variant version
of <code>generate</code>, from <code>progs/sieve1.go</code>:
<p>
<pre> <!-- progs/sieve1.go /func.generate/ /^}/ -->
10    func generate() chan int {
11        ch := make(chan int)
12        go func(){
13            for i := 2; ; i++ {
14                ch &lt;- i
15            }
16        }()
17        return ch
18    }
</pre>
<p>
This version does all the setup internally. It creates the output
channel, launches a goroutine running a function literal, and
returns the channel to the caller.  It is a factory for concurrent
execution, starting the goroutine and returning its connection.
<p>
The function literal notation (lines 12-16) allows us to construct an
anonymous function and invoke it on the spot. Notice that the local
variable <code>ch</code> is available to the function literal and lives on even
after <code>generate</code> returns.
<p>
The same change can be made to <code>filter</code>:
<p>
<pre> <!-- progs/sieve1.go /func.filter/ /^}/ -->
21    func filter(in chan int, prime int) chan int {
22        out := make(chan int)
23        go func() {
24            for {
25                if i := &lt;-in; i % prime != 0 {
26                    out &lt;- i
27                }
28            }
29        }()
30        return out
31    }
</pre>
<p>
The <code>sieve</code> function's main loop becomes simpler and clearer as a
result, and while we're at it let's turn it into a factory too:
<p>
<pre> <!-- progs/sieve1.go /func.sieve/ /^}/ -->
33    func sieve() chan int {
34        out := make(chan int)
35        go func() {
36            ch := generate()
37            for {
38                prime := &lt;-ch
39                out &lt;- prime
40                ch = filter(ch, prime)
41            }
42        }()
43        return out
44    }
</pre>
<p>
Now <code>main</code>'s interface to the prime sieve is a channel of primes:
<p>
<pre> <!-- progs/sieve1.go /func.main/ /^}/ -->
46    func main() {
47        primes := sieve()
48        for i := 0; i &lt; 100; i++ { // Print the first hundred primes.
49            fmt.Println(&lt;-primes)
50        }
51    }
</pre>
<p>
<h2>Multiplexing</h2>
<p>
With channels, it's possible to serve multiple independent client goroutines without
writing an explicit multiplexer.  The trick is to send the server a channel in the message,
which it will then use to reply to the original sender.
A realistic client-server program is a lot of code, so here is a very simple substitute
to illustrate the idea.  It starts by defining a <code>request</code> type, which embeds a channel
that will be used for the reply.
<p>
<pre> <!-- progs/server.go /type.request/ /^}/ -->
09    type request struct {
10        a, b    int
11        replyc  chan int
12    }
</pre>
<p>
The server will be trivial: it will do simple binary operations on integers.  Here's the
code that invokes the operation and responds to the request:
<p>
<pre> <!-- progs/server.go /type.binOp/ /^}/ -->
14    type binOp func(a, b int) int

16    func run(op binOp, req *request) {
17        reply := op(req.a, req.b)
18        req.replyc &lt;- reply
19    }
</pre>
<p>
Line 14 defines the name <code>binOp</code> to be a function taking two integers and
returning a third.
<p>
The <code>server</code> routine loops forever, receiving requests and, to avoid blocking due to
a long-running operation, starting a goroutine to do the actual work.
<p>
<pre> <!-- progs/server.go /func.server/ /^}/ -->
21    func server(op binOp, service chan *request) {
22        for {
23            req := &lt;-service
24            go run(op, req)  // don't wait for it
25        }
26    }
</pre>
<p>
We construct a server in a familiar way, starting it and returning a channel
connected to it:
<p>
<pre> <!-- progs/server.go /func.startServer/ /^}/ -->
28    func startServer(op binOp) chan *request {
29        req := make(chan *request)
30        go server(op, req)
31        return req
32    }
</pre>
<p>
Here's a simple test.  It starts a server with an addition operator and sends out
<code>N</code> requests without waiting for the replies.  Only after all the requests are sent
does it check the results.
<p>
<pre> <!-- progs/server.go /func.main/ /^}/ -->
34    func main() {
35        adder := startServer(func(a, b int) int { return a + b })
36        const N = 100
37        var reqs [N]request
38        for i := 0; i &lt; N; i++ {
39            req := &amp;reqs[i]
40            req.a = i
41            req.b = i + N
42            req.replyc = make(chan int)
43            adder &lt;- req
44        }
45        for i := N-1; i &gt;= 0; i-- {   // doesn't matter what order
46            if &lt;-reqs[i].replyc != N + 2*i {
47                fmt.Println(&quot;fail at&quot;, i)
48            }
49        }
50        fmt.Println(&quot;done&quot;)
51    }
</pre>
<p>
One annoyance with this program is that it doesn't shut down the server cleanly; when <code>main</code> returns
there are a number of lingering goroutines blocked on communication.  To solve this,
we can provide a second, <code>quit</code> channel to the server:
<p>
<pre> <!-- progs/server1.go /func.startServer/ /^}/ -->
32    func startServer(op binOp) (service chan *request, quit chan bool) {
33        service = make(chan *request)
34        quit = make(chan bool)
35        go server(op, service, quit)
36        return service, quit
37    }
</pre>
<p>
It passes the quit channel to the <code>server</code> function, which uses it like this:
<p>
<pre> <!-- progs/server1.go /func.server/ /^}/ -->
21    func server(op binOp, service chan *request, quit chan bool) {
22        for {
23            select {
24            case req := &lt;-service:
25                go run(op, req)  // don't wait for it
26            case &lt;-quit:
27                return
28            }
29        }
30    }
</pre>
<p>
Inside <code>server</code>, the <code>select</code> statement chooses which of the multiple communications
listed by its cases can proceed.  If all are blocked, it waits until one can proceed; if
multiple can proceed, it chooses one at random.  In this instance, the <code>select</code> allows
the server to honor requests until it receives a quit message, at which point it
returns, terminating its execution.
<p>
<p>
All that's left is to strobe the <code>quit</code> channel
at the end of main:
<p>
<pre> <!-- progs/server1.go /adder,.quit/ -->
40        adder, quit := startServer(func(a, b int) int { return a + b })
</pre>
...
<pre> <!-- progs/server1.go /quit....true/ -->
55        quit &lt;- true
</pre>
<p>
There's a lot more to Go programming and concurrent programming in general but this
quick tour should give you some of the basics.