summaryrefslogtreecommitdiff
path: root/src/cmd/gc/esc.c
blob: 78624d7cbf192132b3f611c947de27b344641491 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Escape analysis.

#include <u.h>
#include <libc.h>
#include "go.h"

// Run analysis on minimal sets of mutually recursive functions
// or single non-recursive functions, bottom up.
//
// Finding these sets is finding strongly connected components
// in the static call graph.  The algorithm for doing that is taken
// from Sedgewick, Algorithms, Second Edition, p. 482, with two
// adaptations.
//
// First, a hidden closure function (n->curfn != N) cannot be the
// root of a connected component. Refusing to use it as a root
// forces it into the component of the function in which it appears.
// The analysis assumes that closures and the functions in which they
// appear are analyzed together, so that the aliasing between their
// variables can be modeled more precisely.
//
// Second, each function becomes two virtual nodes in the graph,
// with numbers n and n+1. We record the function's node number as n
// but search from node n+1. If the search tells us that the component
// number (min) is n+1, we know that this is a trivial component: one function
// plus its closures. If the search tells us that the component number is
// n, then there was a path from node n+1 back to node n, meaning that
// the function set is mutually recursive. The escape analysis can be
// more precise when analyzing a single non-recursive function than
// when analyzing a set of mutually recursive functions.

static NodeList *stack;
static uint32 visitgen;
static uint32 visit(Node*);
static uint32 visitcode(Node*, uint32);
static uint32 visitcodelist(NodeList*, uint32);

static void analyze(NodeList*, int);

enum
{
	EscFuncUnknown = 0,
	EscFuncPlanned,
	EscFuncStarted,
	EscFuncTagged,
};

void
escapes(NodeList *all)
{
	NodeList *l;

	for(l=all; l; l=l->next)
		l->n->walkgen = 0;

	visitgen = 0;
	for(l=all; l; l=l->next)
		if(l->n->op == ODCLFUNC && l->n->curfn == N)
			visit(l->n);

	for(l=all; l; l=l->next)
		l->n->walkgen = 0;
}

static uint32
visit(Node *n)
{
	uint32 min, recursive;
	NodeList *l, *block;

	if(n->walkgen > 0) {
		// already visited
		return n->walkgen;
	}
	
	visitgen++;
	n->walkgen = visitgen;
	visitgen++;
	min = visitgen;

	l = mal(sizeof *l);
	l->next = stack;
	l->n = n;
	stack = l;
	min = visitcodelist(n->nbody, min);
	if((min == n->walkgen || min == n->walkgen+1) && n->curfn == N) {
		// This node is the root of a strongly connected component.

		// The original min passed to visitcodelist was n->walkgen+1.
		// If visitcodelist found its way back to n->walkgen, then this
		// block is a set of mutually recursive functions.
		// Otherwise it's just a lone function that does not recurse.
		recursive = min == n->walkgen;

		// Remove connected component from stack.
		// Mark walkgen so that future visits return a large number
		// so as not to affect the caller's min.
		block = stack;
		for(l=stack; l->n != n; l=l->next)
			l->n->walkgen = (uint32)~0U;
		n->walkgen = (uint32)~0U;
		stack = l->next;
		l->next = nil;

		// Run escape analysis on this set of functions.
		analyze(block, recursive);
	}

	return min;
}

static uint32
visitcodelist(NodeList *l, uint32 min)
{
	for(; l; l=l->next)
		min = visitcode(l->n, min);
	return min;
}

static uint32
visitcode(Node *n, uint32 min)
{
	Node *fn;
	uint32 m;

	if(n == N)
		return min;

	min = visitcodelist(n->ninit, min);
	min = visitcode(n->left, min);
	min = visitcode(n->right, min);
	min = visitcodelist(n->list, min);
	min = visitcode(n->ntest, min);
	min = visitcode(n->nincr, min);
	min = visitcodelist(n->nbody, min);
	min = visitcodelist(n->nelse, min);
	min = visitcodelist(n->rlist, min);
	
	if(n->op == OCALLFUNC || n->op == OCALLMETH) {
		fn = n->left;
		if(n->op == OCALLMETH)
			fn = n->left->right->sym->def;
		if(fn && fn->op == ONAME && fn->class == PFUNC && fn->defn)
			if((m = visit(fn->defn)) < min)
				min = m;
	}
	
	if(n->op == OCLOSURE)
		if((m = visit(n->closure)) < min)
			min = m;

	return min;
}

// An escape analysis pass for a set of functions.
//
// First escfunc, esc and escassign recurse over the ast of each
// function to dig out flow(dst,src) edges between any
// pointer-containing nodes and store them in dst->escflowsrc.  For
// variables assigned to a variable in an outer scope or used as a
// return value, they store a flow(theSink, src) edge to a fake node
// 'the Sink'.  For variables referenced in closures, an edge
// flow(closure, &var) is recorded and the flow of a closure itself to
// an outer scope is tracked the same way as other variables.
//
// Then escflood walks the graph starting at theSink and tags all
// variables of it can reach an & node as escaping and all function
// parameters it can reach as leaking.
//
// If a value's address is taken but the address does not escape,
// then the value can stay on the stack.  If the value new(T) does
// not escape, then new(T) can be rewritten into a stack allocation.
// The same is true of slice literals.
//
// If optimizations are disabled (-N), this code is not used.
// Instead, the compiler assumes that any value whose address
// is taken without being immediately dereferenced
// needs to be moved to the heap, and new(T) and slice
// literals are always real allocations.

typedef struct EscState EscState;

static void escfunc(EscState*, Node *func);
static void esclist(EscState*, NodeList *l, Node *up);
static void esc(EscState*, Node *n, Node *up);
static void escloopdepthlist(EscState*, NodeList *l);
static void escloopdepth(EscState*, Node *n);
static void escassign(EscState*, Node *dst, Node *src);
static void esccall(EscState*, Node*, Node *up);
static void escflows(EscState*, Node *dst, Node *src);
static void escflood(EscState*, Node *dst);
static void escwalk(EscState*, int level, Node *dst, Node *src);
static void esctag(EscState*, Node *func);

struct EscState {
	// Fake node that all
	//   - return values and output variables
	//   - parameters on imported functions not marked 'safe'
	//   - assignments to global variables
	// flow to.
	Node	theSink;
	
	// If an analyzed function is recorded to return
	// pieces obtained via indirection from a parameter,
	// and later there is a call f(x) to that function,
	// we create a link funcParam <- x to record that fact.
	// The funcParam node is handled specially in escflood.
	Node	funcParam;	
	
	NodeList*	dsts;		// all dst nodes
	int	loopdepth;	// for detecting nested loop scopes
	int	pdepth;		// for debug printing in recursions.
	int	dstcount, edgecount;	// diagnostic
	NodeList*	noesc;	// list of possible non-escaping nodes, for printing
	int	recursive;	// recursive function or group of mutually recursive functions.
};

static Strlit *tags[16];

static Strlit*
mktag(int mask)
{
	Strlit *s;
	char buf[40];

	switch(mask&EscMask) {
	case EscNone:
	case EscReturn:
		break;
	default:
		fatal("escape mktag");
	}

	mask >>= EscBits;

	if(mask < nelem(tags) && tags[mask] != nil)
		return tags[mask];

	snprint(buf, sizeof buf, "esc:0x%x", mask);
	s = strlit(buf);
	if(mask < nelem(tags))
		tags[mask] = s;
	return s;
}

static int
parsetag(Strlit *note)
{
	int em;

	if(note == nil)
		return EscUnknown;
	if(strncmp(note->s, "esc:", 4) != 0)
		return EscUnknown;
	em = atoi(note->s + 4);
	if (em == 0)
		return EscNone;
	return EscReturn | (em << EscBits);
}

static void
analyze(NodeList *all, int recursive)
{
	NodeList *l;
	EscState es, *e;
	
	memset(&es, 0, sizeof es);
	e = &es;
	e->theSink.op = ONAME;
	e->theSink.orig = &e->theSink;
	e->theSink.class = PEXTERN;
	e->theSink.sym = lookup(".sink");
	e->theSink.escloopdepth = -1;
	e->recursive = recursive;
	
	e->funcParam.op = ONAME;
	e->funcParam.orig = &e->funcParam;
	e->funcParam.class = PAUTO;
	e->funcParam.sym = lookup(".param");
	e->funcParam.escloopdepth = 10000000;
	
	for(l=all; l; l=l->next)
		if(l->n->op == ODCLFUNC)
			l->n->esc = EscFuncPlanned;

	// flow-analyze functions
	for(l=all; l; l=l->next)
		if(l->n->op == ODCLFUNC)
			escfunc(e, l->n);

	// print("escapes: %d e->dsts, %d edges\n", e->dstcount, e->edgecount);

	// visit the upstream of each dst, mark address nodes with
	// addrescapes, mark parameters unsafe
	for(l = e->dsts; l; l=l->next)
		escflood(e, l->n);

	// for all top level functions, tag the typenodes corresponding to the param nodes
	for(l=all; l; l=l->next)
		if(l->n->op == ODCLFUNC)
			esctag(e, l->n);

	if(debug['m']) {
		for(l=e->noesc; l; l=l->next)
			if(l->n->esc == EscNone)
				warnl(l->n->lineno, "%S %hN does not escape",
					(l->n->curfn && l->n->curfn->nname) ? l->n->curfn->nname->sym : S,
					l->n);
	}
}


static void
escfunc(EscState *e, Node *func)
{
	Node *savefn;
	NodeList *ll;
	int saveld;

//	print("escfunc %N %s\n", func->nname, e->recursive?"(recursive)":"");

	if(func->esc != 1)
		fatal("repeat escfunc %N", func->nname);
	func->esc = EscFuncStarted;

	saveld = e->loopdepth;
	e->loopdepth = 1;
	savefn = curfn;
	curfn = func;

	for(ll=curfn->dcl; ll; ll=ll->next) {
		if(ll->n->op != ONAME)
			continue;
		switch (ll->n->class) {
		case PPARAMOUT:
			// out params are in a loopdepth between the sink and all local variables
			ll->n->escloopdepth = 0;
			break;
		case PPARAM:
			ll->n->escloopdepth = 1; 
			if(ll->n->type && !haspointers(ll->n->type))
				break;
			if(curfn->nbody == nil && !curfn->noescape)
				ll->n->esc = EscHeap;
			else
				ll->n->esc = EscNone;	// prime for escflood later
			e->noesc = list(e->noesc, ll->n);
			break;
		}
	}

	// in a mutually recursive group we lose track of the return values
	if(e->recursive)
		for(ll=curfn->dcl; ll; ll=ll->next)
			if(ll->n->op == ONAME && ll->n->class == PPARAMOUT)
				escflows(e, &e->theSink, ll->n);

	escloopdepthlist(e, curfn->nbody);
	esclist(e, curfn->nbody, curfn);
	curfn = savefn;
	e->loopdepth = saveld;
}

// Mark labels that have no backjumps to them as not increasing e->loopdepth.
// Walk hasn't generated (goto|label)->left->sym->label yet, so we'll cheat
// and set it to one of the following two.  Then in esc we'll clear it again.
static Label looping;
static Label nonlooping;

static void
escloopdepthlist(EscState *e, NodeList *l)
{
	for(; l; l=l->next)
		escloopdepth(e, l->n);
}

static void
escloopdepth(EscState *e, Node *n)
{
	if(n == N)
		return;

	escloopdepthlist(e, n->ninit);

	switch(n->op) {
	case OLABEL:
		if(!n->left || !n->left->sym)
			fatal("esc:label without label: %+N", n);
		// Walk will complain about this label being already defined, but that's not until
		// after escape analysis. in the future, maybe pull label & goto analysis out of walk and put before esc
		// if(n->left->sym->label != nil)
		//	fatal("escape analysis messed up analyzing label: %+N", n);
		n->left->sym->label = &nonlooping;
		break;
	case OGOTO:
		if(!n->left || !n->left->sym)
			fatal("esc:goto without label: %+N", n);
		// If we come past one that's uninitialized, this must be a (harmless) forward jump
		// but if it's set to nonlooping the label must have preceded this goto.
		if(n->left->sym->label == &nonlooping)
			n->left->sym->label = &looping;
		break;
	}

	escloopdepth(e, n->left);
	escloopdepth(e, n->right);
	escloopdepthlist(e, n->list);
	escloopdepth(e, n->ntest);
	escloopdepth(e, n->nincr);
	escloopdepthlist(e, n->nbody);
	escloopdepthlist(e, n->nelse);
	escloopdepthlist(e, n->rlist);

}

static void
esclist(EscState *e, NodeList *l, Node *up)
{
	for(; l; l=l->next)
		esc(e, l->n, up);
}

static void
esc(EscState *e, Node *n, Node *up)
{
	int lno;
	NodeList *ll, *lr;
	Node *a;

	if(n == N)
		return;

	lno = setlineno(n);

	// ninit logically runs at a different loopdepth than the rest of the for loop.
	esclist(e, n->ninit, n);

	if(n->op == OFOR || n->op == ORANGE)
		e->loopdepth++;

	// type switch variables have no ODCL.
	// process type switch as declaration.
	// must happen before processing of switch body,
	// so before recursion.
	if(n->op == OSWITCH && n->ntest && n->ntest->op == OTYPESW) {
		for(ll=n->list; ll; ll=ll->next) {  // cases
			// ll->n->nname is the variable per case
			if(ll->n->nname)
				ll->n->nname->escloopdepth = e->loopdepth;
		}
	}

	esc(e, n->left, n);
	esc(e, n->right, n);
	esc(e, n->ntest, n);
	esc(e, n->nincr, n);
	esclist(e, n->nbody, n);
	esclist(e, n->nelse, n);
	esclist(e, n->list, n);
	esclist(e, n->rlist, n);

	if(n->op == OFOR || n->op == ORANGE)
		e->loopdepth--;

	if(debug['m'] > 1)
		print("%L:[%d] %S esc: %N\n", lineno, e->loopdepth,
		      (curfn && curfn->nname) ? curfn->nname->sym : S, n);

	switch(n->op) {
	case ODCL:
		// Record loop depth at declaration.
		if(n->left)
			n->left->escloopdepth = e->loopdepth;
		break;

	case OLABEL:
		if(n->left->sym->label == &nonlooping) {
			if(debug['m'] > 1)
				print("%L:%N non-looping label\n", lineno, n);
		} else if(n->left->sym->label == &looping) {
			if(debug['m'] > 1)
				print("%L: %N looping label\n", lineno, n);
			e->loopdepth++;
		}
		// See case OLABEL in escloopdepth above
		// else if(n->left->sym->label == nil)
		//	fatal("escape analysis missed or messed up a label: %+N", n);

		n->left->sym->label = nil;
		break;

	case ORANGE:
		// Everything but fixed array is a dereference.
		if(isfixedarray(n->type) && n->list->next)
			escassign(e, n->list->next->n, n->right);
		break;

	case OSWITCH:
		if(n->ntest && n->ntest->op == OTYPESW) {
			for(ll=n->list; ll; ll=ll->next) {  // cases
				// ntest->right is the argument of the .(type),
				// ll->n->nname is the variable per case
				escassign(e, ll->n->nname, n->ntest->right);
			}
		}
		break;

	case OAS:
	case OASOP:
		escassign(e, n->left, n->right);
		break;

	case OAS2:	// x,y = a,b
		if(count(n->list) == count(n->rlist))
			for(ll=n->list, lr=n->rlist; ll; ll=ll->next, lr=lr->next)
				escassign(e, ll->n, lr->n);
		break;

	case OAS2RECV:		// v, ok = <-ch
	case OAS2MAPR:		// v, ok = m[k]
	case OAS2DOTTYPE:	// v, ok = x.(type)
		escassign(e, n->list->n, n->rlist->n);
		break;

	case OSEND:		// ch <- x
		escassign(e, &e->theSink, n->right);
		break;

	case ODEFER:
		if(e->loopdepth == 1)  // top level
			break;
		// arguments leak out of scope
		// TODO: leak to a dummy node instead
		// fallthrough
	case OPROC:
		// go f(x) - f and x escape
		escassign(e, &e->theSink, n->left->left);
		escassign(e, &e->theSink, n->left->right);  // ODDDARG for call
		for(ll=n->left->list; ll; ll=ll->next)
			escassign(e, &e->theSink, ll->n);
		break;

	case OCALLMETH:
	case OCALLFUNC:
	case OCALLINTER:
		esccall(e, n, up);
		break;

	case OAS2FUNC:	// x,y = f()
		// esccall already done on n->rlist->n. tie it's escretval to n->list
		lr=n->rlist->n->escretval;
		for(ll=n->list; lr && ll; lr=lr->next, ll=ll->next)
			escassign(e, ll->n, lr->n);
		if(lr || ll)
			fatal("esc oas2func");
		break;

	case ORETURN:
		ll=n->list;
		if(count(n->list) == 1 && curfn->type->outtuple > 1) {
			// OAS2FUNC in disguise
			// esccall already done on n->list->n
			// tie n->list->n->escretval to curfn->dcl PPARAMOUT's
			ll = n->list->n->escretval;
		}

		for(lr = curfn->dcl; lr && ll; lr=lr->next) {
			if (lr->n->op != ONAME || lr->n->class != PPARAMOUT)
				continue;
			escassign(e, lr->n, ll->n);
			ll = ll->next;
		}
		if (ll != nil)
			fatal("esc return list");
		break;

	case OPANIC:
		// Argument could leak through recover.
		escassign(e, &e->theSink, n->left);
		break;

	case OAPPEND:
		if(!n->isddd)
			for(ll=n->list->next; ll; ll=ll->next)
				escassign(e, &e->theSink, ll->n);  // lose track of assign to dereference
		break;

	case OCONV:
	case OCONVNOP:
	case OCONVIFACE:
		escassign(e, n, n->left);
		break;

	case OARRAYLIT:
		if(isslice(n->type)) {
			n->esc = EscNone;  // until proven otherwise
			e->noesc = list(e->noesc, n);
			n->escloopdepth = e->loopdepth;
			// Values make it to memory, lose track.
			for(ll=n->list; ll; ll=ll->next)
				escassign(e, &e->theSink, ll->n->right);
		} else {
			// Link values to array.
			for(ll=n->list; ll; ll=ll->next)
				escassign(e, n, ll->n->right);
		}
		break;

	case OSTRUCTLIT:
		// Link values to struct.
		for(ll=n->list; ll; ll=ll->next)
			escassign(e, n, ll->n->right);
		break;
	
	case OPTRLIT:
		n->esc = EscNone;  // until proven otherwise
		e->noesc = list(e->noesc, n);
		n->escloopdepth = e->loopdepth;
		// Contents make it to memory, lose track.
		escassign(e, &e->theSink, n->left);
		break;
	
	case OCALLPART:
		n->esc = EscNone; // until proven otherwise
		e->noesc = list(e->noesc, n);
		n->escloopdepth = e->loopdepth;
		// Contents make it to memory, lose track.
		escassign(e, &e->theSink, n->left);
		break;

	case OMAPLIT:
		n->esc = EscNone;  // until proven otherwise
		e->noesc = list(e->noesc, n);
		n->escloopdepth = e->loopdepth;
		// Keys and values make it to memory, lose track.
		for(ll=n->list; ll; ll=ll->next) {
			escassign(e, &e->theSink, ll->n->left);
			escassign(e, &e->theSink, ll->n->right);
		}
		break;
	
	case OCLOSURE:
		// Link addresses of captured variables to closure.
		for(ll=n->cvars; ll; ll=ll->next) {
			if(ll->n->op == OXXX)  // unnamed out argument; see dcl.c:/^funcargs
				continue;
			a = nod(OADDR, ll->n->closure, N);
			a->lineno = ll->n->lineno;
			a->escloopdepth = e->loopdepth;
			typecheck(&a, Erv);
			escassign(e, n, a);
		}
		// fallthrough
	case OMAKECHAN:
	case OMAKEMAP:
	case OMAKESLICE:
	case ONEW:
		n->escloopdepth = e->loopdepth;
		n->esc = EscNone;  // until proven otherwise
		e->noesc = list(e->noesc, n);
		break;

	case OADDR:
		n->esc = EscNone;  // until proven otherwise
		e->noesc = list(e->noesc, n);
		// current loop depth is an upper bound on actual loop depth
		// of addressed value.
		n->escloopdepth = e->loopdepth;
		// for &x, use loop depth of x if known.
		// it should always be known, but if not, be conservative
		// and keep the current loop depth.
		if(n->left->op == ONAME) {
			switch(n->left->class) {
			case PAUTO:
				if(n->left->escloopdepth != 0)
					n->escloopdepth = n->left->escloopdepth;
				break;
			case PPARAM:
			case PPARAMOUT:
				// PPARAM is loop depth 1 always.
				// PPARAMOUT is loop depth 0 for writes
				// but considered loop depth 1 for address-of,
				// so that writing the address of one result
				// to another (or the same) result makes the
				// first result move to the heap.
				n->escloopdepth = 1;
				break;
			}
		}
		break;
	}

	lineno = lno;
}

// Assert that expr somehow gets assigned to dst, if non nil.  for
// dst==nil, any name node expr still must be marked as being
// evaluated in curfn.	For expr==nil, dst must still be examined for
// evaluations inside it (e.g *f(x) = y)
static void
escassign(EscState *e, Node *dst, Node *src)
{
	int lno;
	NodeList *ll;

	if(isblank(dst) || dst == N || src == N || src->op == ONONAME || src->op == OXXX)
		return;

	if(debug['m'] > 1)
		print("%L:[%d] %S escassign: %hN(%hJ) = %hN(%hJ)\n", lineno, e->loopdepth,
		      (curfn && curfn->nname) ? curfn->nname->sym : S, dst, dst, src, src);

	setlineno(dst);
	
	// Analyze lhs of assignment.
	// Replace dst with e->theSink if we can't track it.
	switch(dst->op) {
	default:
		dump("dst", dst);
		fatal("escassign: unexpected dst");

	case OARRAYLIT:
	case OCLOSURE:
	case OCONV:
	case OCONVIFACE:
	case OCONVNOP:
	case OMAPLIT:
	case OSTRUCTLIT:
	case OCALLPART:
		break;

	case ONAME:
		if(dst->class == PEXTERN)
			dst = &e->theSink;
		break;
	case ODOT:	      // treat "dst.x  = src" as "dst = src"
		escassign(e, dst->left, src);
		return;
	case OINDEX:
		if(isfixedarray(dst->left->type)) {
			escassign(e, dst->left, src);
			return;
		}
		dst = &e->theSink;  // lose track of dereference
		break;
	case OIND:
	case ODOTPTR:
		dst = &e->theSink;  // lose track of dereference
		break;
	case OINDEXMAP:
		// lose track of key and value
		escassign(e, &e->theSink, dst->right);
		dst = &e->theSink;
		break;
	}

	lno = setlineno(src);
	e->pdepth++;

	switch(src->op) {
	case OADDR:	// dst = &x
	case OIND:	// dst = *x
	case ODOTPTR:	// dst = (*x).f
	case ONAME:
	case OPARAM:
	case ODDDARG:
	case OPTRLIT:
	case OARRAYLIT:
	case OMAPLIT:
	case OSTRUCTLIT:
	case OMAKECHAN:
	case OMAKEMAP:
	case OMAKESLICE:
	case ONEW:
	case OCLOSURE:
	case OCALLPART:
		escflows(e, dst, src);
		break;

	case OCALLMETH:
	case OCALLFUNC:
	case OCALLINTER:
		// Flowing multiple returns to a single dst happens when
		// analyzing "go f(g())": here g() flows to sink (issue 4529).
		for(ll=src->escretval; ll; ll=ll->next)
			escflows(e, dst, ll->n);
		break;

	case ODOT:
		// A non-pointer escaping from a struct does not concern us.
		if(src->type && !haspointers(src->type))
			break;
		// fallthrough
	case OCONV:
	case OCONVIFACE:
	case OCONVNOP:
	case ODOTMETH:	// treat recv.meth as a value with recv in it, only happens in ODEFER and OPROC
			// iface.method already leaks iface in esccall, no need to put in extra ODOTINTER edge here
	case ODOTTYPE:
	case ODOTTYPE2:
	case OSLICE:
	case OSLICE3:
	case OSLICEARR:
	case OSLICE3ARR:
		// Conversions, field access, slice all preserve the input value.
		escassign(e, dst, src->left);
		break;

	case OAPPEND:
		// Append returns first argument.
		escassign(e, dst, src->list->n);
		break;
	
	case OINDEX:
		// Index of array preserves input value.
		if(isfixedarray(src->left->type))
			escassign(e, dst, src->left);
		break;

	case OADD:
	case OSUB:
	case OOR:
	case OXOR:
	case OMUL:
	case ODIV:
	case OMOD:
	case OLSH:
	case ORSH:
	case OAND:
	case OANDNOT:
	case OPLUS:
	case OMINUS:
	case OCOM:
		// Might be pointer arithmetic, in which case
		// the operands flow into the result.
		// TODO(rsc): Decide what the story is here.  This is unsettling.
		escassign(e, dst, src->left);
		escassign(e, dst, src->right);
		break;
	}

	e->pdepth--;
	lineno = lno;
}

static int
escassignfromtag(EscState *e, Strlit *note, NodeList *dsts, Node *src)
{
	int em, em0;
	
	em = parsetag(note);

	if(em == EscUnknown) {
		escassign(e, &e->theSink, src);
		return em;
	}

	if(em == EscNone)
		return em;
	
	// If content inside parameter (reached via indirection)
	// escapes back to results, mark as such.
	if(em & EscContentEscapes)
		escassign(e, &e->funcParam, src);

	em0 = em;
	for(em >>= EscReturnBits; em && dsts; em >>= 1, dsts=dsts->next)
		if(em & 1)
			escassign(e, dsts->n, src);

	if (em != 0 && dsts == nil)
		fatal("corrupt esc tag %Z or messed up escretval list\n", note);
	return em0;
}

// This is a bit messier than fortunate, pulled out of esc's big
// switch for clarity.	We either have the paramnodes, which may be
// connected to other things through flows or we have the parameter type
// nodes, which may be marked "noescape". Navigating the ast is slightly
// different for methods vs plain functions and for imported vs
// this-package
static void
esccall(EscState *e, Node *n, Node *up)
{
	NodeList *ll, *lr;
	Node *a, *fn, *src;
	Type *t, *fntype;
	char buf[40];
	int i;

	fn = N;
	switch(n->op) {
	default:
		fatal("esccall");

	case OCALLFUNC:
		fn = n->left;
		fntype = fn->type;
		break;

	case OCALLMETH:
		fn = n->left->right->sym->def;
		if(fn)
			fntype = fn->type;
		else
			fntype = n->left->type;
		break;

	case OCALLINTER:
		fntype = n->left->type;
		break;
	}

	ll = n->list;
	if(n->list != nil && n->list->next == nil) {
		a = n->list->n;
		if(a->type->etype == TSTRUCT && a->type->funarg) // f(g()).
			ll = a->escretval;
	}

	if(fn && fn->op == ONAME && fn->class == PFUNC && fn->defn && fn->defn->nbody && fn->ntype && fn->defn->esc < EscFuncTagged) {
		// function in same mutually recursive group.  Incorporate into flow graph.
//		print("esc local fn: %N\n", fn->ntype);
		if(fn->defn->esc == EscFuncUnknown || n->escretval != nil)
			fatal("graph inconsistency");

		// set up out list on this call node
		for(lr=fn->ntype->rlist; lr; lr=lr->next)
			n->escretval = list(n->escretval, lr->n->left);  // type.rlist ->  dclfield -> ONAME (PPARAMOUT)

		// Receiver.
		if(n->op != OCALLFUNC)
			escassign(e, fn->ntype->left->left, n->left->left);

		for(lr=fn->ntype->list; ll && lr; ll=ll->next, lr=lr->next) {
			src = ll->n;
			if(lr->n->isddd && !n->isddd) {
				// Introduce ODDDARG node to represent ... allocation.
				src = nod(ODDDARG, N, N);
				src->type = typ(TARRAY);
				src->type->type = lr->n->type->type;
				src->type->bound = count(ll);
				src->type = ptrto(src->type); // make pointer so it will be tracked
				src->escloopdepth = e->loopdepth;
				src->lineno = n->lineno;
				src->esc = EscNone;  // until we find otherwise
				e->noesc = list(e->noesc, src);
				n->right = src;
			}
			if(lr->n->left != N)
				escassign(e, lr->n->left, src);
			if(src != ll->n)
				break;
		}
		// "..." arguments are untracked
		for(; ll; ll=ll->next)
			escassign(e, &e->theSink, ll->n);

		return;
	}

	// Imported or completely analyzed function.  Use the escape tags.
	if(n->escretval != nil)
		fatal("esc already decorated call %+N\n", n);

	// set up out list on this call node with dummy auto ONAMES in the current (calling) function.
	i = 0;
	for(t=getoutargx(fntype)->type; t; t=t->down) {
		src = nod(ONAME, N, N);
		snprint(buf, sizeof buf, ".dum%d", i++);
		src->sym = lookup(buf);
		src->type = t->type;
		src->class = PAUTO;
		src->curfn = curfn;
		src->escloopdepth = e->loopdepth;
		src->used = 1;
		src->lineno = n->lineno;
		n->escretval = list(n->escretval, src); 
	}

//	print("esc analyzed fn: %#N (%+T) returning (%+H)\n", fn, fntype, n->escretval);

	// Receiver.
	if(n->op != OCALLFUNC) {
		t = getthisx(fntype)->type;
		src = n->left->left;
		if(haspointers(t->type))
			escassignfromtag(e, t->note, n->escretval, src);
	}
	
	for(t=getinargx(fntype)->type; ll; ll=ll->next) {
		src = ll->n;
		if(t->isddd && !n->isddd) {
			// Introduce ODDDARG node to represent ... allocation.
			src = nod(ODDDARG, N, N);
			src->escloopdepth = e->loopdepth;
			src->lineno = n->lineno;
			src->type = typ(TARRAY);
			src->type->type = t->type->type;
			src->type->bound = count(ll);
			src->type = ptrto(src->type); // make pointer so it will be tracked
			src->esc = EscNone;  // until we find otherwise
			e->noesc = list(e->noesc, src);
			n->right = src;
		}
		if(haspointers(t->type)) {
			if(escassignfromtag(e, t->note, n->escretval, src) == EscNone && up->op != ODEFER && up->op != OPROC) {
				a = src;
				while(a->op == OCONVNOP)
					a = a->left;
				switch(a->op) {
				case OCALLPART:
				case OCLOSURE:
				case ODDDARG:
				case OARRAYLIT:
				case OPTRLIT:
				case OSTRUCTLIT:
					// The callee has already been analyzed, so its arguments have esc tags.
					// The argument is marked as not escaping at all.
					// Record that fact so that any temporary used for
					// synthesizing this expression can be reclaimed when
					// the function returns.
					// This 'noescape' is even stronger than the usual esc == EscNone.
					// src->esc == EscNone means that src does not escape the current function.
					// src->noescape = 1 here means that src does not escape this statement
					// in the current function.
					a->noescape = 1;
					break;
				}
			}
		}
		if(src != ll->n)
			break;
		t = t->down;
	}
	// "..." arguments are untracked
	for(; ll; ll=ll->next)
		escassign(e, &e->theSink, ll->n);
}

// Store the link src->dst in dst, throwing out some quick wins.
static void
escflows(EscState *e, Node *dst, Node *src)
{
	if(dst == nil || src == nil || dst == src)
		return;

	// Don't bother building a graph for scalars.
	if(src->type && !haspointers(src->type))
		return;

	if(debug['m']>2)
		print("%L::flows:: %hN <- %hN\n", lineno, dst, src);

	if(dst->escflowsrc == nil) {
		e->dsts = list(e->dsts, dst);
		e->dstcount++;
	}
	e->edgecount++;

	dst->escflowsrc = list(dst->escflowsrc, src);
}

// Whenever we hit a reference node, the level goes up by one, and whenever
// we hit an OADDR, the level goes down by one. as long as we're on a level > 0
// finding an OADDR just means we're following the upstream of a dereference,
// so this address doesn't leak (yet).
// If level == 0, it means the /value/ of this node can reach the root of this flood.
// so if this node is an OADDR, it's argument should be marked as escaping iff
// it's currfn/e->loopdepth are different from the flood's root.
// Once an object has been moved to the heap, all of it's upstream should be considered
// escaping to the global scope.
static void
escflood(EscState *e, Node *dst)
{
	NodeList *l;

	switch(dst->op) {
	case ONAME:
	case OCLOSURE:
		break;
	default:
		return;
	}

	if(debug['m']>1)
		print("\nescflood:%d: dst %hN scope:%S[%d]\n", walkgen, dst,
		      (dst->curfn && dst->curfn->nname) ? dst->curfn->nname->sym : S,
		      dst->escloopdepth);

	for(l = dst->escflowsrc; l; l=l->next) {
		walkgen++;
		escwalk(e, 0, dst, l->n);
	}
}

// There appear to be some loops in the escape graph, causing
// arbitrary recursion into deeper and deeper levels.
// Cut this off safely by making minLevel sticky: once you
// get that deep, you cannot go down any further but you also
// cannot go up any further. This is a conservative fix.
// Making minLevel smaller (more negative) would handle more
// complex chains of indirections followed by address-of operations,
// at the cost of repeating the traversal once for each additional
// allowed level when a loop is encountered. Using -2 suffices to
// pass all the tests we have written so far, which we assume matches
// the level of complexity we want the escape analysis code to handle.
#define MinLevel (-2)

static void
escwalk(EscState *e, int level, Node *dst, Node *src)
{
	NodeList *ll;
	int leaks, newlevel;

	if(src->walkgen == walkgen && src->esclevel <= level)
		return;
	src->walkgen = walkgen;
	src->esclevel = level;

	if(debug['m']>1)
		print("escwalk: level:%d depth:%d %.*s %hN(%hJ) scope:%S[%d]\n",
		      level, e->pdepth, e->pdepth, "\t\t\t\t\t\t\t\t\t\t", src, src,
		      (src->curfn && src->curfn->nname) ? src->curfn->nname->sym : S, src->escloopdepth);

	e->pdepth++;

	// Input parameter flowing to output parameter?
	if(dst->op == ONAME && dst->class == PPARAMOUT && dst->vargen <= 20) {
		if(src->op == ONAME && src->class == PPARAM && src->curfn == dst->curfn && src->esc != EscScope && src->esc != EscHeap) {
			if(level == 0) {
				if(debug['m'])
					warnl(src->lineno, "leaking param: %hN to result %S", src, dst->sym);
				if((src->esc&EscMask) != EscReturn)
					src->esc = EscReturn;
				src->esc |= 1<<((dst->vargen-1) + EscReturnBits);
				goto recurse;
			} else if(level > 0) {
				if(debug['m'])
					warnl(src->lineno, "%N leaking param %hN content to result %S", src->curfn->nname, src, dst->sym);
				if((src->esc&EscMask) != EscReturn)
					src->esc = EscReturn;
				src->esc |= EscContentEscapes;
				goto recurse;
			}
		}
	}

	// The second clause is for values pointed at by an object passed to a call
	// that returns something reached via indirect from the object.
	// We don't know which result it is or how many indirects, so we treat it as leaking.
	leaks = level <= 0 && dst->escloopdepth < src->escloopdepth ||
		level < 0 && dst == &e->funcParam && haspointers(src->type);

	switch(src->op) {
	case ONAME:
		if(src->class == PPARAM && (leaks || dst->escloopdepth < 0) && src->esc != EscHeap) {
			src->esc = EscScope;
			if(debug['m'])
				warnl(src->lineno, "leaking param: %hN", src);
		}

		// Treat a PPARAMREF closure variable as equivalent to the
		// original variable.
		if(src->class == PPARAMREF) {
			if(leaks && debug['m'])
				warnl(src->lineno, "leaking closure reference %hN", src);
			escwalk(e, level, dst, src->closure);
		}
		break;

	case OPTRLIT:
	case OADDR:
		if(leaks) {
			src->esc = EscHeap;
			addrescapes(src->left);
			if(debug['m'])
				warnl(src->lineno, "%hN escapes to heap", src);
		}
		newlevel = level;
		if(level > MinLevel)
			newlevel--;
		escwalk(e, newlevel, dst, src->left);
		break;

	case OARRAYLIT:
		if(isfixedarray(src->type))
			break;
		// fall through
	case ODDDARG:
	case OMAKECHAN:
	case OMAKEMAP:
	case OMAKESLICE:
	case OMAPLIT:
	case ONEW:
	case OCLOSURE:
	case OCALLPART:
		if(leaks) {
			src->esc = EscHeap;
			if(debug['m'])
				warnl(src->lineno, "%hN escapes to heap", src);
		}
		break;

	case ODOT:
	case OSLICE:
	case OSLICEARR:
	case OSLICE3:
	case OSLICE3ARR:
		escwalk(e, level, dst, src->left);
		break;

	case OINDEX:
		if(isfixedarray(src->left->type)) {
			escwalk(e, level, dst, src->left);
			break;
		}
		// fall through
	case ODOTPTR:
	case OINDEXMAP:
	case OIND:
		newlevel = level;
		if(level > MinLevel)
			newlevel++;
		escwalk(e, newlevel, dst, src->left);
	}

recurse:
	for(ll=src->escflowsrc; ll; ll=ll->next)
		escwalk(e, level, dst, ll->n);

	e->pdepth--;
}

static void
esctag(EscState *e, Node *func)
{
	Node *savefn;
	NodeList *ll;
	Type *t;

	USED(e);
	func->esc = EscFuncTagged;
	
	// External functions are assumed unsafe,
	// unless //go:noescape is given before the declaration.
	if(func->nbody == nil) {
		if(func->noescape) {
			for(t=getinargx(func->type)->type; t; t=t->down)
				if(haspointers(t->type))
					t->note = mktag(EscNone);
		}
		return;
	}

	savefn = curfn;
	curfn = func;

	for(ll=curfn->dcl; ll; ll=ll->next) {
		if(ll->n->op != ONAME || ll->n->class != PPARAM)
			continue;

		switch (ll->n->esc&EscMask) {
		case EscNone:	// not touched by escflood
		case EscReturn:	
			if(haspointers(ll->n->type)) // don't bother tagging for scalars
				ll->n->paramfld->note = mktag(ll->n->esc);
			break;
		case EscHeap:	// touched by escflood, moved to heap
		case EscScope:	// touched by escflood, value leaves scope
			break;
		}
	}

	curfn = savefn;
}