1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
|
// Derived from Inferno utils/6c/reg.c
// http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// "Portable" optimizations.
// Compiled separately for 5g, 6g, and 8g, so allowed to use gg.h, opt.h.
// Must code to the intersection of the three back ends.
#include <u.h>
#include <libc.h>
#include "gg.h"
#include "opt.h"
// p is a call instruction. Does the call fail to return?
int
noreturn(Prog *p)
{
Sym *s;
int i;
static Sym* symlist[10];
if(symlist[0] == S) {
symlist[0] = pkglookup("panicindex", runtimepkg);
symlist[1] = pkglookup("panicslice", runtimepkg);
symlist[2] = pkglookup("throwinit", runtimepkg);
symlist[3] = pkglookup("panic", runtimepkg);
symlist[4] = pkglookup("panicwrap", runtimepkg);
symlist[5] = pkglookup("throwreturn", runtimepkg);
symlist[6] = pkglookup("selectgo", runtimepkg);
symlist[7] = pkglookup("block", runtimepkg);
}
if(p->to.node == nil)
return 0;
s = p->to.node->sym;
if(s == S)
return 0;
for(i=0; symlist[i]!=S; i++)
if(s == symlist[i])
return 1;
return 0;
}
// JMP chasing and removal.
//
// The code generator depends on being able to write out jump
// instructions that it can jump to now but fill in later.
// the linker will resolve them nicely, but they make the code
// longer and more difficult to follow during debugging.
// Remove them.
/* what instruction does a JMP to p eventually land on? */
static Prog*
chasejmp(Prog *p, int *jmploop)
{
int n;
n = 0;
while(p != P && p->as == AJMP && p->to.type == D_BRANCH) {
if(++n > 10) {
*jmploop = 1;
break;
}
p = p->to.u.branch;
}
return p;
}
/*
* reuse reg pointer for mark/sweep state.
* leave reg==nil at end because alive==nil.
*/
#define alive ((void*)0)
#define dead ((void*)1)
/* mark all code reachable from firstp as alive */
static void
mark(Prog *firstp)
{
Prog *p;
for(p=firstp; p; p=p->link) {
if(p->opt != dead)
break;
p->opt = alive;
if(p->as != ACALL && p->to.type == D_BRANCH && p->to.u.branch)
mark(p->to.u.branch);
if(p->as == AJMP || p->as == ARET || p->as == AUNDEF)
break;
}
}
void
fixjmp(Prog *firstp)
{
int jmploop;
Prog *p, *last;
if(debug['R'] && debug['v'])
print("\nfixjmp\n");
// pass 1: resolve jump to jump, mark all code as dead.
jmploop = 0;
for(p=firstp; p; p=p->link) {
if(debug['R'] && debug['v'])
print("%P\n", p);
if(p->as != ACALL && p->to.type == D_BRANCH && p->to.u.branch && p->to.u.branch->as == AJMP) {
p->to.u.branch = chasejmp(p->to.u.branch, &jmploop);
if(debug['R'] && debug['v'])
print("->%P\n", p);
}
p->opt = dead;
}
if(debug['R'] && debug['v'])
print("\n");
// pass 2: mark all reachable code alive
mark(firstp);
// pass 3: delete dead code (mostly JMPs).
last = nil;
for(p=firstp; p; p=p->link) {
if(p->opt == dead) {
if(p->link == P && p->as == ARET && last && last->as != ARET) {
// This is the final ARET, and the code so far doesn't have one.
// Let it stay. The register allocator assumes that all live code in
// the function can be traversed by starting at all the RET instructions
// and following predecessor links. If we remove the final RET,
// this assumption will not hold in the case of an infinite loop
// at the end of a function.
// Keep the RET but mark it dead for the liveness analysis.
p->mode = 1;
} else {
if(debug['R'] && debug['v'])
print("del %P\n", p);
continue;
}
}
if(last)
last->link = p;
last = p;
}
last->link = P;
// pass 4: elide JMP to next instruction.
// only safe if there are no jumps to JMPs anymore.
if(!jmploop) {
last = nil;
for(p=firstp; p; p=p->link) {
if(p->as == AJMP && p->to.type == D_BRANCH && p->to.u.branch == p->link) {
if(debug['R'] && debug['v'])
print("del %P\n", p);
continue;
}
if(last)
last->link = p;
last = p;
}
last->link = P;
}
if(debug['R'] && debug['v']) {
print("\n");
for(p=firstp; p; p=p->link)
print("%P\n", p);
print("\n");
}
}
#undef alive
#undef dead
// Control flow analysis. The Flow structures hold predecessor and successor
// information as well as basic loop analysis.
//
// graph = flowstart(firstp, sizeof(Flow));
// ... use flow graph ...
// flowend(graph); // free graph
//
// Typical uses of the flow graph are to iterate over all the flow-relevant instructions:
//
// for(f = graph->start; f != nil; f = f->link)
//
// or, given an instruction f, to iterate over all the predecessors, which is
// f->p1 and this list:
//
// for(f2 = f->p2; f2 != nil; f2 = f2->p2link)
//
// Often the Flow struct is embedded as the first field inside a larger struct S.
// In that case casts are needed to convert Flow* to S* in many places but the
// idea is the same. Pass sizeof(S) instead of sizeof(Flow) to flowstart.
Graph*
flowstart(Prog *firstp, int size)
{
int nf;
Flow *f, *f1, *start, *last;
Graph *graph;
Prog *p;
ProgInfo info;
// Count and mark instructions to annotate.
nf = 0;
for(p = firstp; p != P; p = p->link) {
p->opt = nil; // should be already, but just in case
proginfo(&info, p);
if(info.flags & Skip)
continue;
p->opt = (void*)1;
nf++;
}
if(nf == 0)
return nil;
if(nf >= 20000) {
// fatal("%S is too big (%d instructions)", curfn->nname->sym, nf);
return nil;
}
// Allocate annotations and assign to instructions.
graph = calloc(sizeof *graph + size*nf, 1);
if(graph == nil)
fatal("out of memory");
start = (Flow*)(graph+1);
last = nil;
f = start;
for(p = firstp; p != P; p = p->link) {
if(p->opt == nil)
continue;
p->opt = f;
f->prog = p;
if(last)
last->link = f;
last = f;
f = (Flow*)((uchar*)f + size);
}
// Fill in pred/succ information.
for(f = start; f != nil; f = f->link) {
p = f->prog;
proginfo(&info, p);
if(!(info.flags & Break)) {
f1 = f->link;
f->s1 = f1;
f1->p1 = f;
}
if(p->to.type == D_BRANCH) {
if(p->to.u.branch == P)
fatal("pnil %P", p);
f1 = p->to.u.branch->opt;
if(f1 == nil)
fatal("fnil %P / %P", p, p->to.u.branch);
if(f1 == f) {
//fatal("self loop %P", p);
continue;
}
f->s2 = f1;
f->p2link = f1->p2;
f1->p2 = f;
}
}
graph->start = start;
graph->num = nf;
return graph;
}
void
flowend(Graph *graph)
{
Flow *f;
for(f = graph->start; f != nil; f = f->link)
f->prog->opt = nil;
free(graph);
}
/*
* find looping structure
*
* 1) find reverse postordering
* 2) find approximate dominators,
* the actual dominators if the flow graph is reducible
* otherwise, dominators plus some other non-dominators.
* See Matthew S. Hecht and Jeffrey D. Ullman,
* "Analysis of a Simple Algorithm for Global Data Flow Problems",
* Conf. Record of ACM Symp. on Principles of Prog. Langs, Boston, Massachusetts,
* Oct. 1-3, 1973, pp. 207-217.
* 3) find all nodes with a predecessor dominated by the current node.
* such a node is a loop head.
* recursively, all preds with a greater rpo number are in the loop
*/
static int32
postorder(Flow *r, Flow **rpo2r, int32 n)
{
Flow *r1;
r->rpo = 1;
r1 = r->s1;
if(r1 && !r1->rpo)
n = postorder(r1, rpo2r, n);
r1 = r->s2;
if(r1 && !r1->rpo)
n = postorder(r1, rpo2r, n);
rpo2r[n] = r;
n++;
return n;
}
static int32
rpolca(int32 *idom, int32 rpo1, int32 rpo2)
{
int32 t;
if(rpo1 == -1)
return rpo2;
while(rpo1 != rpo2){
if(rpo1 > rpo2){
t = rpo2;
rpo2 = rpo1;
rpo1 = t;
}
while(rpo1 < rpo2){
t = idom[rpo2];
if(t >= rpo2)
fatal("bad idom");
rpo2 = t;
}
}
return rpo1;
}
static int
doms(int32 *idom, int32 r, int32 s)
{
while(s > r)
s = idom[s];
return s == r;
}
static int
loophead(int32 *idom, Flow *r)
{
int32 src;
src = r->rpo;
if(r->p1 != nil && doms(idom, src, r->p1->rpo))
return 1;
for(r = r->p2; r != nil; r = r->p2link)
if(doms(idom, src, r->rpo))
return 1;
return 0;
}
static void
loopmark(Flow **rpo2r, int32 head, Flow *r)
{
if(r->rpo < head || r->active == head)
return;
r->active = head;
r->loop += LOOP;
if(r->p1 != nil)
loopmark(rpo2r, head, r->p1);
for(r = r->p2; r != nil; r = r->p2link)
loopmark(rpo2r, head, r);
}
void
flowrpo(Graph *g)
{
Flow *r1;
int32 i, d, me, nr, *idom;
Flow **rpo2r;
free(g->rpo);
g->rpo = calloc(g->num*sizeof g->rpo[0], 1);
idom = calloc(g->num*sizeof idom[0], 1);
if(g->rpo == nil || idom == nil)
fatal("out of memory");
for(r1 = g->start; r1 != nil; r1 = r1->link)
r1->active = 0;
rpo2r = g->rpo;
d = postorder(g->start, rpo2r, 0);
nr = g->num;
if(d > nr)
fatal("too many reg nodes %d %d", d, nr);
nr = d;
for(i = 0; i < nr / 2; i++) {
r1 = rpo2r[i];
rpo2r[i] = rpo2r[nr - 1 - i];
rpo2r[nr - 1 - i] = r1;
}
for(i = 0; i < nr; i++)
rpo2r[i]->rpo = i;
idom[0] = 0;
for(i = 0; i < nr; i++) {
r1 = rpo2r[i];
me = r1->rpo;
d = -1;
// rpo2r[r->rpo] == r protects against considering dead code,
// which has r->rpo == 0.
if(r1->p1 != nil && rpo2r[r1->p1->rpo] == r1->p1 && r1->p1->rpo < me)
d = r1->p1->rpo;
for(r1 = r1->p2; r1 != nil; r1 = r1->p2link)
if(rpo2r[r1->rpo] == r1 && r1->rpo < me)
d = rpolca(idom, d, r1->rpo);
idom[i] = d;
}
for(i = 0; i < nr; i++) {
r1 = rpo2r[i];
r1->loop++;
if(r1->p2 != nil && loophead(idom, r1))
loopmark(rpo2r, i, r1);
}
free(idom);
for(r1 = g->start; r1 != nil; r1 = r1->link)
r1->active = 0;
}
Flow*
uniqp(Flow *r)
{
Flow *r1;
r1 = r->p1;
if(r1 == nil) {
r1 = r->p2;
if(r1 == nil || r1->p2link != nil)
return nil;
} else
if(r->p2 != nil)
return nil;
return r1;
}
Flow*
uniqs(Flow *r)
{
Flow *r1;
r1 = r->s1;
if(r1 == nil) {
r1 = r->s2;
if(r1 == nil)
return nil;
} else
if(r->s2 != nil)
return nil;
return r1;
}
// The compilers assume they can generate temporary variables
// as needed to preserve the right semantics or simplify code
// generation and the back end will still generate good code.
// This results in a large number of ephemeral temporary variables.
// Merge temps with non-overlapping lifetimes and equal types using the
// greedy algorithm in Poletto and Sarkar, "Linear Scan Register Allocation",
// ACM TOPLAS 1999.
typedef struct TempVar TempVar;
typedef struct TempFlow TempFlow;
struct TempVar
{
Node *node;
TempFlow *def; // definition of temp var
TempFlow *use; // use list, chained through TempFlow.uselink
TempVar *freelink; // next free temp in Type.opt list
TempVar *merge; // merge var with this one
vlong start; // smallest Prog.pc in live range
vlong end; // largest Prog.pc in live range
uchar addr; // address taken - no accurate end
uchar removed; // removed from program
};
struct TempFlow
{
Flow f;
TempFlow *uselink;
};
static int
startcmp(const void *va, const void *vb)
{
TempVar *a, *b;
a = *(TempVar**)va;
b = *(TempVar**)vb;
if(a->start < b->start)
return -1;
if(a->start > b->start)
return +1;
return 0;
}
// Is n available for merging?
static int
canmerge(Node *n)
{
return n->class == PAUTO && strncmp(n->sym->name, "autotmp", 7) == 0;
}
static void mergewalk(TempVar*, TempFlow*, uint32);
static void varkillwalk(TempVar*, TempFlow*, uint32);
void
mergetemp(Prog *firstp)
{
int i, j, nvar, ninuse, nfree, nkill;
TempVar *var, *v, *v1, **bystart, **inuse;
TempFlow *r;
NodeList *l, **lp;
Node *n;
Prog *p, *p1;
Type *t;
ProgInfo info, info1;
int32 gen;
Graph *g;
enum { Debug = 0 };
g = flowstart(firstp, sizeof(TempFlow));
if(g == nil)
return;
// Build list of all mergeable variables.
nvar = 0;
for(l = curfn->dcl; l != nil; l = l->next)
if(canmerge(l->n))
nvar++;
var = calloc(nvar*sizeof var[0], 1);
nvar = 0;
for(l = curfn->dcl; l != nil; l = l->next) {
n = l->n;
if(canmerge(n)) {
v = &var[nvar++];
n->opt = v;
v->node = n;
}
}
// Build list of uses.
// We assume that the earliest reference to a temporary is its definition.
// This is not true of variables in general but our temporaries are all
// single-use (that's why we have so many!).
for(r = (TempFlow*)g->start; r != nil; r = (TempFlow*)r->f.link) {
p = r->f.prog;
proginfo(&info, p);
if(p->from.node != N && p->from.node->opt && p->to.node != N && p->to.node->opt)
fatal("double node %P", p);
if((n = p->from.node) != N && (v = n->opt) != nil ||
(n = p->to.node) != N && (v = n->opt) != nil) {
if(v->def == nil)
v->def = r;
r->uselink = v->use;
v->use = r;
if(n == p->from.node && (info.flags & LeftAddr))
v->addr = 1;
}
}
if(Debug > 1)
dumpit("before", g->start, 0);
nkill = 0;
// Special case.
for(v = var; v < var+nvar; v++) {
if(v->addr)
continue;
// Used in only one instruction, which had better be a write.
if((r = v->use) != nil && r->uselink == nil) {
p = r->f.prog;
proginfo(&info, p);
if(p->to.node == v->node && (info.flags & RightWrite) && !(info.flags & RightRead)) {
p->as = ANOP;
p->to = zprog.to;
v->removed = 1;
if(Debug)
print("drop write-only %S\n", v->node->sym);
} else
fatal("temp used and not set: %P", p);
nkill++;
continue;
}
// Written in one instruction, read in the next, otherwise unused,
// no jumps to the next instruction. Happens mainly in 386 compiler.
if((r = v->use) != nil && r->f.link == &r->uselink->f && r->uselink->uselink == nil && uniqp(r->f.link) == &r->f) {
p = r->f.prog;
proginfo(&info, p);
p1 = r->f.link->prog;
proginfo(&info1, p1);
enum {
SizeAny = SizeB | SizeW | SizeL | SizeQ | SizeF | SizeD,
};
if(p->from.node == v->node && p1->to.node == v->node && (info.flags & Move) &&
!((info.flags|info1.flags) & (LeftAddr|RightAddr)) &&
(info.flags & SizeAny) == (info1.flags & SizeAny)) {
p1->from = p->from;
excise(&r->f);
v->removed = 1;
if(Debug)
print("drop immediate-use %S\n", v->node->sym);
}
nkill++;
continue;
}
}
// Traverse live range of each variable to set start, end.
// Each flood uses a new value of gen so that we don't have
// to clear all the r->f.active words after each variable.
gen = 0;
for(v = var; v < var+nvar; v++) {
gen++;
for(r = v->use; r != nil; r = r->uselink)
mergewalk(v, r, gen);
if(v->addr) {
gen++;
for(r = v->use; r != nil; r = r->uselink)
varkillwalk(v, r, gen);
}
}
// Sort variables by start.
bystart = malloc(nvar*sizeof bystart[0]);
for(i=0; i<nvar; i++)
bystart[i] = &var[i];
qsort(bystart, nvar, sizeof bystart[0], startcmp);
// List of in-use variables, sorted by end, so that the ones that
// will last the longest are the earliest ones in the array.
// The tail inuse[nfree:] holds no-longer-used variables.
// In theory we should use a sorted tree so that insertions are
// guaranteed O(log n) and then the loop is guaranteed O(n log n).
// In practice, it doesn't really matter.
inuse = malloc(nvar*sizeof inuse[0]);
ninuse = 0;
nfree = nvar;
for(i=0; i<nvar; i++) {
v = bystart[i];
if(v->removed)
continue;
// Expire no longer in use.
while(ninuse > 0 && inuse[ninuse-1]->end < v->start) {
v1 = inuse[--ninuse];
inuse[--nfree] = v1;
}
// Find old temp to reuse if possible.
t = v->node->type;
for(j=nfree; j<nvar; j++) {
v1 = inuse[j];
// Require the types to match but also require the addrtaken bits to match.
// If a variable's address is taken, that disables registerization for the individual
// words of the variable (for example, the base,len,cap of a slice).
// We don't want to merge a non-addressed var with an addressed one and
// inhibit registerization of the former.
if(eqtype(t, v1->node->type) && v->node->addrtaken == v1->node->addrtaken) {
inuse[j] = inuse[nfree++];
if(v1->merge)
v->merge = v1->merge;
else
v->merge = v1;
nkill++;
break;
}
}
// Sort v into inuse.
j = ninuse++;
while(j > 0 && inuse[j-1]->end < v->end) {
inuse[j] = inuse[j-1];
j--;
}
inuse[j] = v;
}
if(Debug) {
print("%S [%d - %d]\n", curfn->nname->sym, nvar, nkill);
for(v=var; v<var+nvar; v++) {
print("var %#N %T %lld-%lld", v->node, v->node->type, v->start, v->end);
if(v->addr)
print(" addr=1");
if(v->removed)
print(" dead=1");
if(v->merge)
print(" merge %#N", v->merge->node);
if(v->start == v->end)
print(" %P", v->def->f.prog);
print("\n");
}
if(Debug > 1)
dumpit("after", g->start, 0);
}
// Update node references to use merged temporaries.
for(r = (TempFlow*)g->start; r != nil; r = (TempFlow*)r->f.link) {
p = r->f.prog;
if((n = p->from.node) != N && (v = n->opt) != nil && v->merge != nil)
p->from.node = v->merge->node;
if((n = p->to.node) != N && (v = n->opt) != nil && v->merge != nil)
p->to.node = v->merge->node;
}
// Delete merged nodes from declaration list.
for(lp = &curfn->dcl; (l = *lp); ) {
curfn->dcl->end = l;
n = l->n;
v = n->opt;
if(v && (v->merge || v->removed)) {
*lp = l->next;
continue;
}
lp = &l->next;
}
// Clear aux structures.
for(v=var; v<var+nvar; v++)
v->node->opt = nil;
free(var);
free(bystart);
free(inuse);
flowend(g);
}
static void
mergewalk(TempVar *v, TempFlow *r0, uint32 gen)
{
Prog *p;
TempFlow *r1, *r, *r2;
for(r1 = r0; r1 != nil; r1 = (TempFlow*)r1->f.p1) {
if(r1->f.active == gen)
break;
r1->f.active = gen;
p = r1->f.prog;
if(v->end < p->pc)
v->end = p->pc;
if(r1 == v->def) {
v->start = p->pc;
break;
}
}
for(r = r0; r != r1; r = (TempFlow*)r->f.p1)
for(r2 = (TempFlow*)r->f.p2; r2 != nil; r2 = (TempFlow*)r2->f.p2link)
mergewalk(v, r2, gen);
}
static void
varkillwalk(TempVar *v, TempFlow *r0, uint32 gen)
{
Prog *p;
TempFlow *r1, *r;
for(r1 = r0; r1 != nil; r1 = (TempFlow*)r1->f.s1) {
if(r1->f.active == gen)
break;
r1->f.active = gen;
p = r1->f.prog;
if(v->end < p->pc)
v->end = p->pc;
if(v->start > p->pc)
v->start = p->pc;
if(p->as == ARET || (p->as == AVARKILL && p->to.node == v->node))
break;
}
for(r = r0; r != r1; r = (TempFlow*)r->f.s1)
varkillwalk(v, (TempFlow*)r->f.s2, gen);
}
// Eliminate redundant nil pointer checks.
//
// The code generation pass emits a CHECKNIL for every possibly nil pointer.
// This pass removes a CHECKNIL if every predecessor path has already
// checked this value for nil.
//
// Simple backwards flood from check to definition.
// Run prog loop backward from end of program to beginning to avoid quadratic
// behavior removing a run of checks.
//
// Assume that stack variables with address not taken can be loaded multiple times
// from memory without being rechecked. Other variables need to be checked on
// each load.
typedef struct NilVar NilVar;
typedef struct NilFlow NilFlow;
struct NilFlow {
Flow f;
int kill;
};
static void nilwalkback(NilFlow *rcheck);
static void nilwalkfwd(NilFlow *rcheck);
void
nilopt(Prog *firstp)
{
NilFlow *r;
Prog *p;
Graph *g;
int ncheck, nkill;
g = flowstart(firstp, sizeof(NilFlow));
if(g == nil)
return;
if(debug_checknil > 1 /* || strcmp(curfn->nname->sym->name, "f1") == 0 */)
dumpit("nilopt", g->start, 0);
ncheck = 0;
nkill = 0;
for(r = (NilFlow*)g->start; r != nil; r = (NilFlow*)r->f.link) {
p = r->f.prog;
if(p->as != ACHECKNIL || !regtyp(&p->from))
continue;
ncheck++;
if(stackaddr(&p->from)) {
if(debug_checknil && p->lineno > 1)
warnl(p->lineno, "removed nil check of SP address");
r->kill = 1;
continue;
}
nilwalkfwd(r);
if(r->kill) {
if(debug_checknil && p->lineno > 1)
warnl(p->lineno, "removed nil check before indirect");
continue;
}
nilwalkback(r);
if(r->kill) {
if(debug_checknil && p->lineno > 1)
warnl(p->lineno, "removed repeated nil check");
continue;
}
}
for(r = (NilFlow*)g->start; r != nil; r = (NilFlow*)r->f.link) {
if(r->kill) {
nkill++;
excise(&r->f);
}
}
flowend(g);
if(debug_checknil > 1)
print("%S: removed %d of %d nil checks\n", curfn->nname->sym, nkill, ncheck);
}
static void
nilwalkback(NilFlow *rcheck)
{
Prog *p;
ProgInfo info;
NilFlow *r;
for(r = rcheck; r != nil; r = (NilFlow*)uniqp(&r->f)) {
p = r->f.prog;
proginfo(&info, p);
if((info.flags & RightWrite) && sameaddr(&p->to, &rcheck->f.prog->from)) {
// Found initialization of value we're checking for nil.
// without first finding the check, so this one is unchecked.
return;
}
if(r != rcheck && p->as == ACHECKNIL && sameaddr(&p->from, &rcheck->f.prog->from)) {
rcheck->kill = 1;
return;
}
}
// Here is a more complex version that scans backward across branches.
// It assumes rcheck->kill = 1 has been set on entry, and its job is to find a reason
// to keep the check (setting rcheck->kill = 0).
// It doesn't handle copying of aggregates as well as I would like,
// nor variables with their address taken,
// and it's too subtle to turn on this late in Go 1.2. Perhaps for Go 1.3.
/*
for(r1 = r0; r1 != nil; r1 = (NilFlow*)r1->f.p1) {
if(r1->f.active == gen)
break;
r1->f.active = gen;
p = r1->f.prog;
// If same check, stop this loop but still check
// alternate predecessors up to this point.
if(r1 != rcheck && p->as == ACHECKNIL && sameaddr(&p->from, &rcheck->f.prog->from))
break;
proginfo(&info, p);
if((info.flags & RightWrite) && sameaddr(&p->to, &rcheck->f.prog->from)) {
// Found initialization of value we're checking for nil.
// without first finding the check, so this one is unchecked.
rcheck->kill = 0;
return;
}
if(r1->f.p1 == nil && r1->f.p2 == nil) {
print("lost pred for %P\n", rcheck->f.prog);
for(r1=r0; r1!=nil; r1=(NilFlow*)r1->f.p1) {
proginfo(&info, r1->f.prog);
print("\t%P %d %d %D %D\n", r1->f.prog, info.flags&RightWrite, sameaddr(&r1->f.prog->to, &rcheck->f.prog->from), &r1->f.prog->to, &rcheck->f.prog->from);
}
fatal("lost pred trail");
}
}
for(r = r0; r != r1; r = (NilFlow*)r->f.p1)
for(r2 = (NilFlow*)r->f.p2; r2 != nil; r2 = (NilFlow*)r2->f.p2link)
nilwalkback(rcheck, r2, gen);
*/
}
static void
nilwalkfwd(NilFlow *rcheck)
{
NilFlow *r, *last;
Prog *p;
ProgInfo info;
// If the path down from rcheck dereferences the address
// (possibly with a small offset) before writing to memory
// and before any subsequent checks, it's okay to wait for
// that implicit check. Only consider this basic block to
// avoid problems like:
// _ = *x // should panic
// for {} // no writes but infinite loop may be considered visible
last = nil;
for(r = (NilFlow*)uniqs(&rcheck->f); r != nil; r = (NilFlow*)uniqs(&r->f)) {
p = r->f.prog;
proginfo(&info, p);
if((info.flags & LeftRead) && smallindir(&p->from, &rcheck->f.prog->from)) {
rcheck->kill = 1;
return;
}
if((info.flags & (RightRead|RightWrite)) && smallindir(&p->to, &rcheck->f.prog->from)) {
rcheck->kill = 1;
return;
}
// Stop if another nil check happens.
if(p->as == ACHECKNIL)
return;
// Stop if value is lost.
if((info.flags & RightWrite) && sameaddr(&p->to, &rcheck->f.prog->from))
return;
// Stop if memory write.
if((info.flags & RightWrite) && !regtyp(&p->to))
return;
// Stop if we jump backward.
// This test is valid because all the NilFlow* are pointers into
// a single contiguous array. We will need to add an explicit
// numbering when the code is converted to Go.
if(last != nil && r <= last)
return;
last = r;
}
}
|