summaryrefslogtreecommitdiff
path: root/src/cmd/internal/rsc.io/arm/armasm/plan9x.go
blob: 952c5190b6e2088ebea3f42f804a506adb29618c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright 2014 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package armasm

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"io"
	"strings"
)

// Plan9Syntax returns the Go assembler syntax for the instruction.
// The syntax was originally defined by Plan 9.
// The pc is the program counter of the instruction, used for expanding
// PC-relative addresses into absolute ones.
// The symname function queries the symbol table for the program
// being disassembled. Given a target address it returns the name and base
// address of the symbol containing the target, if any; otherwise it returns "", 0.
// The reader r should read from the text segment using text addresses
// as offsets; it is used to display pc-relative loads as constant loads.
func Plan9Syntax(inst Inst, pc uint64, symname func(uint64) (string, uint64), text io.ReaderAt) string {
	if symname == nil {
		symname = func(uint64) (string, uint64) { return "", 0 }
	}

	var args []string
	for _, a := range inst.Args {
		if a == nil {
			break
		}
		args = append(args, plan9Arg(&inst, pc, symname, a))
	}

	op := inst.Op.String()

	switch inst.Op &^ 15 {
	case LDR_EQ, LDRB_EQ, LDRH_EQ:
		// Check for RET
		reg, _ := inst.Args[0].(Reg)
		mem, _ := inst.Args[1].(Mem)
		if inst.Op&^15 == LDR_EQ && reg == R15 && mem.Base == SP && mem.Sign == 0 && mem.Mode == AddrPostIndex {
			return fmt.Sprintf("RET%s #%d", op[3:], mem.Offset)
		}

		// Check for PC-relative load.
		if mem.Base == PC && mem.Sign == 0 && mem.Mode == AddrOffset && text != nil {
			addr := uint32(pc) + 8 + uint32(mem.Offset)
			buf := make([]byte, 4)
			switch inst.Op &^ 15 {
			case LDRB_EQ:
				if _, err := text.ReadAt(buf[:1], int64(addr)); err != nil {
					break
				}
				args[1] = fmt.Sprintf("$%#x", buf[0])

			case LDRH_EQ:
				if _, err := text.ReadAt(buf[:2], int64(addr)); err != nil {
					break
				}
				args[1] = fmt.Sprintf("$%#x", binary.LittleEndian.Uint16(buf))

			case LDR_EQ:
				if _, err := text.ReadAt(buf, int64(addr)); err != nil {
					break
				}
				x := binary.LittleEndian.Uint32(buf)
				if s, base := symname(uint64(x)); s != "" && uint64(x) == base {
					args[1] = fmt.Sprintf("$%s(SB)", s)
				} else {
					args[1] = fmt.Sprintf("$%#x", x)
				}
			}
		}
	}

	// Move addressing mode into opcode suffix.
	suffix := ""
	switch inst.Op &^ 15 {
	case LDR_EQ, LDRB_EQ, LDRH_EQ, STR_EQ, STRB_EQ, STRH_EQ:
		mem, _ := inst.Args[1].(Mem)
		switch mem.Mode {
		case AddrOffset, AddrLDM:
			// no suffix
		case AddrPreIndex, AddrLDM_WB:
			suffix = ".W"
		case AddrPostIndex:
			suffix = ".P"
		}
		off := ""
		if mem.Offset != 0 {
			off = fmt.Sprintf("%#x", mem.Offset)
		}
		base := fmt.Sprintf("(R%d)", int(mem.Base))
		index := ""
		if mem.Sign != 0 {
			sign := ""
			if mem.Sign < 0 {
				sign = ""
			}
			shift := ""
			if mem.Count != 0 {
				shift = fmt.Sprintf("%s%d", plan9Shift[mem.Shift], mem.Count)
			}
			index = fmt.Sprintf("(%sR%d%s)", sign, int(mem.Index), shift)
		}
		args[1] = off + base + index
	}

	// Reverse args, placing dest last.
	for i, j := 0, len(args)-1; i < j; i, j = i+1, j-1 {
		args[i], args[j] = args[j], args[i]
	}

	switch inst.Op &^ 15 {
	case MOV_EQ:
		op = "MOVW" + op[3:]

	case LDR_EQ:
		op = "MOVW" + op[3:] + suffix
	case LDRB_EQ:
		op = "MOVB" + op[4:] + suffix
	case LDRH_EQ:
		op = "MOVH" + op[4:] + suffix

	case STR_EQ:
		op = "MOVW" + op[3:] + suffix
		args[0], args[1] = args[1], args[0]
	case STRB_EQ:
		op = "MOVB" + op[4:] + suffix
		args[0], args[1] = args[1], args[0]
	case STRH_EQ:
		op = "MOVH" + op[4:] + suffix
		args[0], args[1] = args[1], args[0]
	}

	if args != nil {
		op += " " + strings.Join(args, ", ")
	}

	return op
}

// assembler syntax for the various shifts.
// @x> is a lie; the assembler uses @> 0
// instead of @x> 1, but i wanted to be clear that it
// was a different operation (rotate right extended, not rotate right).
var plan9Shift = []string{"<<", ">>", "->", "@>", "@x>"}

func plan9Arg(inst *Inst, pc uint64, symname func(uint64) (string, uint64), arg Arg) string {
	switch a := arg.(type) {
	case Endian:

	case Imm:
		return fmt.Sprintf("$%d", int(a))

	case Mem:

	case PCRel:
		addr := uint32(pc) + 8 + uint32(a)
		if s, base := symname(uint64(addr)); s != "" && uint64(addr) == base {
			return fmt.Sprintf("%s(SB)", s)
		}
		return fmt.Sprintf("%#x", addr)

	case Reg:
		if a < 16 {
			return fmt.Sprintf("R%d", int(a))
		}

	case RegList:
		var buf bytes.Buffer
		start := -2
		end := -2
		fmt.Fprintf(&buf, "[")
		flush := func() {
			if start >= 0 {
				if buf.Len() > 1 {
					fmt.Fprintf(&buf, ",")
				}
				if start == end {
					fmt.Fprintf(&buf, "R%d", start)
				} else {
					fmt.Fprintf(&buf, "R%d-R%d", start, end)
				}
			}
		}
		for i := 0; i < 16; i++ {
			if a&(1<<uint(i)) != 0 {
				if i == end+1 {
					end++
					continue
				}
				start = i
				end = i
			}
		}
		flush()
		fmt.Fprintf(&buf, "]")
		return buf.String()

	case RegShift:
		return fmt.Sprintf("R%d%s$%d", int(a.Reg), plan9Shift[a.Shift], int(a.Count))

	case RegShiftReg:
		return fmt.Sprintf("R%d%sR%d", int(a.Reg), plan9Shift[a.Shift], int(a.RegCount))
	}
	return strings.ToUpper(arg.String())
}