1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "malloc.h"
typedef struct Sched Sched;
M m0;
G g0; // idle goroutine for m0
static int32 debug = 0;
static Lock debuglock;
// Go scheduler
//
// The go scheduler's job is to match ready-to-run goroutines (`g's)
// with waiting-for-work schedulers (`m's). If there are ready gs
// and no waiting ms, ready() will start a new m running in a new
// OS thread, so that all ready gs can run simultaneously, up to a limit.
// For now, ms never go away.
//
// The default maximum number of ms is one: go runs single-threaded.
// This is because some locking details have to be worked ou
// (select in particular is not locked properly) and because the low-level
// code hasn't been written yet for OS X. Setting the environmen
// variable $gomaxprocs changes sched.mmax for now.
//
// Even a program that can run without deadlock in a single process
// might use more ms if given the chance. For example, the prime
// sieve will use as many ms as there are primes (up to sched.mmax),
// allowing different stages of the pipeline to execute in parallel.
// We could revisit this choice, only kicking off new ms for blocking
// system calls, but that would limit the amount of parallel computation
// that go would try to do.
//
// In general, one could imagine all sorts of refinements to the
// scheduler, but the goal now is just to get something working on
// Linux and OS X.
struct Sched {
Lock;
G *gfree; // available gs (status == Gdead)
G *ghead; // gs waiting to run
G *gtail;
int32 gwait; // number of gs waiting to run
int32 gcount; // number of gs that are alive
M *mhead; // ms waiting for work
int32 mwait; // number of ms waiting for work
int32 mcount; // number of ms that have been created
int32 mcpu; // number of ms executing on cpu
int32 mcpumax; // max number of ms allowed on cpu
int32 gomaxprocs;
int32 msyscall; // number of ms in system calls
int32 predawn; // running initialization, don't run new gs.
Note stopped; // one g can wait here for ms to stop
int32 waitstop; // after setting this flag
};
Sched sched;
// Scheduling helpers. Sched must be locked.
static void gput(G*); // put/get on ghead/gtail
static G* gget(void);
static void mput(M*); // put/get on mhead
static M* mget(void);
static void gfput(G*); // put/get on gfree
static G* gfget(void);
static void matchmg(void); // match ms to gs
static void readylocked(G*); // ready, but sched is locked
// Scheduler loop.
static void scheduler(void);
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call mstart
//
// The new G does:
//
// call main·init_function
// call initdone
// call main·main
void
schedinit(void)
{
int32 n;
byte *p;
mallocinit();
goargs();
// Allocate internal symbol table representation now,
// so that we don't need to call malloc when we crash.
findfunc(0);
sched.gomaxprocs = 1;
p = getenv("GOMAXPROCS");
if(p != nil && (n = atoi(p)) != 0)
sched.gomaxprocs = n;
sched.mcpumax = sched.gomaxprocs;
sched.mcount = 1;
sched.predawn = 1;
}
// Called after main·init_function; main·main will be called on return.
void
initdone(void)
{
// Let's go.
sched.predawn = 0;
mstats.enablegc = 1;
// If main·init_function started other goroutines,
// kick off new ms to handle them, like ready
// would have, had it not been pre-dawn.
lock(&sched);
matchmg();
unlock(&sched);
}
void
goexit(void)
{
if(debug > 1){
lock(&debuglock);
printf("goexit goid=%d\n", g->goid);
unlock(&debuglock);
}
g->status = Gmoribund;
gosched();
}
void
tracebackothers(G *me)
{
G *g;
for(g = allg; g != nil; g = g->alllink) {
if(g == me || g->status == Gdead)
continue;
printf("\ngoroutine %d:\n", g->goid);
traceback(g->sched.PC, g->sched.SP+sizeof(uintptr), g); // gogo adjusts SP by one word
}
}
// Put on `g' queue. Sched must be locked.
static void
gput(G *g)
{
g->schedlink = nil;
if(sched.ghead == nil)
sched.ghead = g;
else
sched.gtail->schedlink = g;
sched.gtail = g;
sched.gwait++;
}
// Get from `g' queue. Sched must be locked.
static G*
gget(void)
{
G *g;
g = sched.ghead;
if(g){
sched.ghead = g->schedlink;
if(sched.ghead == nil)
sched.gtail = nil;
sched.gwait--;
}
return g;
}
// Put on `m' list. Sched must be locked.
static void
mput(M *m)
{
m->schedlink = sched.mhead;
sched.mhead = m;
sched.mwait++;
}
// Get from `m' list. Sched must be locked.
static M*
mget(void)
{
M *m;
m = sched.mhead;
if(m){
sched.mhead = m->schedlink;
sched.mwait--;
}
return m;
}
// Put on gfree list. Sched must be locked.
static void
gfput(G *g)
{
g->schedlink = sched.gfree;
sched.gfree = g;
}
// Get from gfree list. Sched must be locked.
static G*
gfget(void)
{
G *g;
g = sched.gfree;
if(g)
sched.gfree = g->schedlink;
return g;
}
// Mark g ready to run.
void
ready(G *g)
{
lock(&sched);
readylocked(g);
unlock(&sched);
}
// Mark g ready to run. Sched is already locked.
// G might be running already and about to stop.
// The sched lock protects g->status from changing underfoot.
static void
readylocked(G *g)
{
if(g->m){
// Running on another machine.
// Ready it when it stops.
g->readyonstop = 1;
return;
}
// Mark runnable.
if(g->status == Grunnable || g->status == Grunning)
throw("bad g->status in ready");
g->status = Grunnable;
gput(g);
if(!sched.predawn)
matchmg();
}
// Get the next goroutine that m should run.
// Sched must be locked on entry, is unlocked on exit.
// Makes sure that at most $GOMAXPROCS gs are
// running on cpus (not in system calls) at any given time.
static G*
nextgandunlock(void)
{
G *gp;
// On startup, each m is assigned a nextg and
// has already been accounted for in mcpu.
if(m->nextg != nil) {
gp = m->nextg;
m->nextg = nil;
unlock(&sched);
if(debug > 1) {
lock(&debuglock);
printf("m%d nextg found g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
return gp;
}
// Otherwise, look for work.
if(sched.mcpu < sched.mcpumax && (gp=gget()) != nil) {
sched.mcpu++;
unlock(&sched);
if(debug > 1) {
lock(&debuglock);
printf("m%d nextg got g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
return gp;
}
// Otherwise, sleep.
mput(m);
if(sched.mcpu == 0 && sched.msyscall == 0)
throw("all goroutines are asleep - deadlock!");
m->nextg = nil;
noteclear(&m->havenextg);
if(sched.waitstop && sched.mcpu <= sched.mcpumax) {
sched.waitstop = 0;
notewakeup(&sched.stopped);
}
unlock(&sched);
notesleep(&m->havenextg);
if((gp = m->nextg) == nil)
throw("bad m->nextg in nextgoroutine");
m->nextg = nil;
if(debug > 1) {
lock(&debuglock);
printf("m%d nextg woke g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
return gp;
}
// TODO(rsc): Remove. This is only temporary,
// for the mark and sweep collector.
void
stoptheworld(void)
{
lock(&sched);
sched.mcpumax = 1;
while(sched.mcpu > 1) {
noteclear(&sched.stopped);
sched.waitstop = 1;
unlock(&sched);
notesleep(&sched.stopped);
lock(&sched);
}
unlock(&sched);
}
// TODO(rsc): Remove. This is only temporary,
// for the mark and sweep collector.
void
starttheworld(void)
{
lock(&sched);
sched.mcpumax = sched.gomaxprocs;
matchmg();
unlock(&sched);
}
// Called to start an M.
void
mstart(void)
{
if(m->mcache == nil)
m->mcache = allocmcache();
minit();
scheduler();
}
// Kick of new ms as needed (up to mcpumax).
// There are already `other' other cpus that will
// start looking for goroutines shortly.
// Sched is locked.
static void
matchmg(void)
{
M *m;
G *g;
if(debug > 1 && sched.ghead != nil) {
lock(&debuglock);
printf("matchmg mcpu=%d mcpumax=%d gwait=%d\n", sched.mcpu, sched.mcpumax, sched.gwait);
unlock(&debuglock);
}
while(sched.mcpu < sched.mcpumax && (g = gget()) != nil){
sched.mcpu++;
if((m = mget()) != nil){
if(debug > 1) {
lock(&debuglock);
printf("wakeup m%d g%d\n", m->id, g->goid);
unlock(&debuglock);
}
m->nextg = g;
notewakeup(&m->havenextg);
}else{
m = malloc(sizeof(M));
m->g0 = malg(8192);
m->nextg = g;
m->id = sched.mcount++;
if(debug) {
lock(&debuglock);
printf("alloc m%d g%d\n", m->id, g->goid);
unlock(&debuglock);
}
newosproc(m, m->g0, m->g0->stackbase, mstart);
}
}
}
// Scheduler loop: find g to run, run it, repeat.
static void
scheduler(void)
{
G* gp;
lock(&sched);
if(gosave(&m->sched)){
// Jumped here via gosave/gogo, so didn't
// execute lock(&sched) above.
lock(&sched);
if(sched.predawn)
throw("init sleeping");
// Just finished running m->curg.
gp = m->curg;
gp->m = nil;
sched.mcpu--;
if(debug > 1) {
lock(&debuglock);
printf("m%d sched g%d status %d\n", m->id, gp->goid, gp->status);
unlock(&debuglock);
}
switch(gp->status){
case Grunnable:
case Gdead:
// Shouldn't have been running!
throw("bad gp->status in sched");
case Grunning:
gp->status = Grunnable;
gput(gp);
break;
case Gmoribund:
gp->status = Gdead;
if(--sched.gcount == 0)
exit(0);
break;
}
if(gp->readyonstop){
gp->readyonstop = 0;
readylocked(gp);
}
}
// Find (or wait for) g to run. Unlocks sched.
gp = nextgandunlock();
gp->readyonstop = 0;
gp->status = Grunning;
if(debug > 1) {
lock(&debuglock);
printf("m%d run g%d at %p\n", m->id, gp->goid, gp->sched.PC);
traceback(gp->sched.PC, gp->sched.SP+8, gp);
unlock(&debuglock);
}
m->curg = gp;
gp->m = m;
g = gp;
gogo(&gp->sched);
}
// Enter scheduler. If g->status is Grunning,
// re-queues g and runs everyone else who is waiting
// before running g again. If g->status is Gmoribund,
// kills off g.
void
gosched(void)
{
if(g == m->g0)
throw("gosched of g0");
if(gosave(&g->sched) == 0){
g = m->g0;
gogo(&m->sched);
}
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
// The "arguments" are syscall.Syscall's stack frame
void
sys·entersyscall(uint64 callerpc, int64 trap)
{
USED(callerpc);
if(debug > 1) {
lock(&debuglock);
printf("m%d g%d enter syscall %D\n", m->id, g->goid, trap);
unlock(&debuglock);
}
lock(&sched);
g->status = Gsyscall;
sched.mcpu--;
sched.msyscall++;
if(sched.gwait != 0)
matchmg();
if(sched.waitstop && sched.mcpu <= sched.mcpumax) {
sched.waitstop = 0;
notewakeup(&sched.stopped);
}
unlock(&sched);
// leave SP around for gc and traceback
gosave(&g->sched);
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
void
sys·exitsyscall(void)
{
if(debug > 1) {
lock(&debuglock);
printf("m%d g%d exit syscall mcpu=%d mcpumax=%d\n", m->id, g->goid, sched.mcpu, sched.mcpumax);
unlock(&debuglock);
}
lock(&sched);
g->status = Grunning;
sched.msyscall--;
sched.mcpu++;
// Fast path - if there's room for this m, we're done.
if(sched.mcpu <= sched.mcpumax) {
unlock(&sched);
return;
}
unlock(&sched);
// Slow path - all the cpus are taken.
// The scheduler will ready g and put this m to sleep.
// When the scheduler takes g awa from m,
// it will undo the sched.mcpu++ above.
gosched();
}
/*
* stack layout parameters.
* known to linkers.
*
* g->stackguard is set to point StackGuard bytes
* above the bottom of the stack. each function
* compares its stack pointer against g->stackguard
* to check for overflow. to cut one instruction from
* the check sequence for functions with tiny frames,
* the stack is allowed to protrude StackSmall bytes
* below the stack guard. functions with large frames
* don't bother with the check and always call morestack.
* the sequences are:
*
* guard = g->stackguard
* frame = function's stack frame size
* argsize = size of function arguments (call + return)
*
* stack frame size <= StackSmall:
* CMPQ guard, SP
* JHI 3(PC)
* MOVQ m->morearg, $(argsize << 32)
* CALL sys.morestack(SB)
*
* stack frame size > StackSmall but < StackBig
* LEAQ (frame-StackSmall)(SP), R0
* CMPQ guard, R0
* JHI 3(PC)
* MOVQ m->morearg, $(argsize << 32)
* CALL sys.morestack(SB)
*
* stack frame size >= StackBig:
* MOVQ m->morearg, $((argsize << 32) | frame)
* CALL sys.morestack(SB)
*
* the bottom StackGuard - StackSmall bytes are important:
* there has to be enough room to execute functions that
* refuse to check for stack overflow, either because they
* need to be adjacent to the actual caller's frame (sys.deferproc)
* or because they handle the imminent stack overflow (sys.morestack).
*
* for example, sys.deferproc might call malloc,
* which does one of the above checks (without allocating a full frame),
* which might trigger a call to sys.morestack.
* this sequence needs to fit in the bottom section of the stack.
* on amd64, sys.morestack's frame is 40 bytes, and
* sys.deferproc's frame is 56 bytes. that fits well within
* the StackGuard - StackSmall = 128 bytes at the bottom.
* there may be other sequences lurking or yet to be written
* that require more stack. sys.morestack checks to make sure
* the stack has not completely overflowed and should
* catch such sequences.
*/
enum
{
// byte offset of stack guard (g->stackguard) above bottom of stack.
StackGuard = 256,
// checked frames are allowed to protrude below the guard by
// this many bytes. this saves an instruction in the checking
// sequence when the stack frame is tiny.
StackSmall = 128,
// extra space in the frame (beyond the function for which
// the frame is allocated) is assumed not to be much bigger
// than this amount. it may not be used efficiently if it is.
StackBig = 4096,
};
void
oldstack(void)
{
Stktop *top;
uint32 args;
byte *sp;
uintptr oldsp, oldpc, oldbase, oldguard;
// printf("oldstack m->cret=%p\n", m->cret);
top = (Stktop*)m->curg->stackbase;
args = (top->magic>>32) & 0xffffLL;
sp = (byte*)top;
if(args > 0) {
args = (args+7) & ~7;
sp -= args;
mcpy(top->oldsp+2*sizeof(uintptr), sp, args);
}
oldsp = (uintptr)top->oldsp + sizeof(uintptr);
oldpc = *(uintptr*)oldsp;
oldbase = (uintptr)top->oldbase;
oldguard = (uintptr)top->oldguard;
stackfree((byte*)m->curg->stackguard - StackGuard);
m->curg->stackbase = (byte*)oldbase;
m->curg->stackguard = (byte*)oldguard;
m->morestack.SP = (byte*)oldsp;
m->morestack.PC = (byte*)oldpc;
// These two lines must happen in sequence;
// once g has been changed, must switch to g's stack
// before calling any non-assembly functions.
// TODO(rsc): Perhaps make the new g a parameter
// to gogoret and setspgoto, so that g is never
// explicitly assigned to without also setting
// the stack pointer.
g = m->curg;
gogoret(&m->morestack, m->cret);
}
#pragma textflag 7
void
lessstack(void)
{
g = m->g0;
setspgoto(m->sched.SP, oldstack, nil);
}
void
newstack(void)
{
int32 frame, args;
Stktop *top;
byte *stk, *sp;
void (*fn)(void);
frame = m->morearg & 0xffffffffLL;
args = (m->morearg>>32) & 0xffffLL;
// printf("newstack frame=%d args=%d moresp=%p morepc=%p\n", frame, args, m->moresp, *(uintptr*)m->moresp);
if(frame < StackBig)
frame = StackBig;
frame += 1024; // for more functions, Stktop.
stk = stackalloc(frame);
top = (Stktop*)(stk+frame-sizeof(*top));
top->oldbase = m->curg->stackbase;
top->oldguard = m->curg->stackguard;
top->oldsp = m->moresp;
top->magic = m->morearg;
m->curg->stackbase = (byte*)top;
m->curg->stackguard = stk + StackGuard;
sp = (byte*)top;
if(args > 0) {
// Copy args. There have been two function calls
// since they got pushed, so skip over those return
// addresses.
args = (args+7) & ~7;
sp -= args;
mcpy(sp, m->moresp+2*sizeof(uintptr), args);
}
g = m->curg;
// sys.morestack's return address
fn = (void(*)(void))(*(uintptr*)m->moresp);
// printf("fn=%p\n", fn);
setspgoto(sp, fn, retfromnewstack);
*(int32*)345 = 123; // never return
}
#pragma textflag 7
void
sys·morestack(uintptr u)
{
while(g == m->g0) {
// very bad news
*(int32*)0x1001 = 123;
}
// Morestack's frame is about 0x30 bytes on amd64.
// If that the frame ends below the stack bottom, we've already
// overflowed. Stop right now.
while((byte*)&u - 0x30 < m->curg->stackguard - StackGuard) {
// very bad news
*(int32*)0x1002 = 123;
}
g = m->g0;
m->moresp = (byte*)(&u-1);
setspgoto(m->sched.SP, newstack, nil);
*(int32*)0x1003 = 123; // never return
}
G*
malg(int32 stacksize)
{
G *g;
byte *stk;
g = malloc(sizeof(G));
stk = stackalloc(stacksize + StackGuard);
g->stack0 = stk;
g->stackguard = stk + StackGuard;
g->stackbase = stk + StackGuard + stacksize;
return g;
}
/*
* Newproc and deferproc need to be textflag 7
* (no possible stack split when nearing overflow)
* because they assume that the arguments to fn
* are available sequentially beginning at &arg0.
* If a stack split happened, only the one word
* arg0 would be copied. It's okay if any functions
* they call split the stack below the newproc frame.
*/
#pragma textflag 7
void
sys·newproc(int32 siz, byte* fn, byte* arg0)
{
byte *stk, *sp;
G *newg;
//printf("newproc siz=%d fn=%p", siz, fn);
siz = (siz+7) & ~7;
if(siz > 1024)
throw("sys·newproc: too many args");
lock(&sched);
if((newg = gfget()) != nil){
newg->status = Gwaiting;
} else {
newg = malg(4096);
newg->status = Gwaiting;
newg->alllink = allg;
allg = newg;
}
stk = newg->stack0;
newg->stackguard = stk+StackGuard;
sp = stk + 4096 - 4*8;
newg->stackbase = sp;
sp -= siz;
mcpy(sp, (byte*)&arg0, siz);
sp -= sizeof(uintptr);
*(byte**)sp = (byte*)goexit;
sp -= sizeof(uintptr); // retpc used by gogo
newg->sched.SP = sp;
newg->sched.PC = fn;
sched.gcount++;
goidgen++;
newg->goid = goidgen;
readylocked(newg);
unlock(&sched);
//printf(" goid=%d\n", newg->goid);
}
#pragma textflag 7
void
sys·deferproc(int32 siz, byte* fn, byte* arg0)
{
Defer *d;
d = malloc(sizeof(*d) + siz - sizeof(d->args));
d->fn = fn;
d->sp = (byte*)&arg0;
d->siz = siz;
mcpy(d->args, d->sp, d->siz);
d->link = g->defer;
g->defer = d;
}
#pragma textflag 7
void
sys·deferreturn(uintptr arg0)
{
Defer *d;
byte *sp, *fn;
uintptr *caller;
d = g->defer;
if(d == nil)
return;
sp = (byte*)&arg0;
if(d->sp != sp)
return;
mcpy(d->sp, d->args, d->siz);
g->defer = d->link;
fn = d->fn;
free(d);
jmpdefer(fn, sp);
}
void
runtime·Breakpoint(void)
{
breakpoint();
}
void
runtime·Goexit(void)
{
goexit();
}
void
runtime·Gosched(void)
{
gosched();
}
|