summaryrefslogtreecommitdiff
path: root/src/pkg/asn1/asn1.go
blob: fac5bba556b393c6b9c6067b3be6433d887553a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This package implements parsing of DER-encoded ASN.1 data structures,
// as defined in ITU-T Rec. X.690.
//
// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
// http://luca.ntop.org/Teaching/Appunti/asn1.html.
package asn1

// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
// are different encoding formats for those objects. Here, we'll be dealing
// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
// it's fast to parse and, unlike BER, has a unique encoding for every object.
// When calculating hashes over objects, it's important that the resulting
// bytes be the same at both ends and DER removes this margin of error.
//
// ASN.1 is very complex and this package doesn't attempt to implement
// everything by any means.

import (
	"fmt";
	"os";
	"reflect";
	"strconv";
	"strings";
	"time";
)

// A StructuralError suggests that the ASN.1 data is valid, but the Go type
// which is receiving it doesn't match.
type StructuralError struct {
	Msg string;
}

func (e StructuralError) String() string	{ return "ASN.1 structure error: " + e.Msg }

// A SyntaxError suggests that the ASN.1 data is invalid.
type SyntaxError struct {
	Msg string;
}

func (e SyntaxError) String() string	{ return "ASN.1 syntax error: " + e.Msg }

// We start by dealing with each of the primitive types in turn.

// BOOLEAN

func parseBool(bytes []byte) (ret bool, err os.Error) {
	if len(bytes) != 1 {
		err = SyntaxError{"invalid boolean"};
		return;
	}

	return bytes[0] != 0, nil;
}

// INTEGER

// parseInt64 treats the given bytes as a big-endian, signed integer and
// returns the result.
func parseInt64(bytes []byte) (ret int64, err os.Error) {
	if len(bytes) > 8 {
		// We'll overflow an int64 in this case.
		err = StructuralError{"integer too large"};
		return;
	}
	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
		ret <<= 8;
		ret |= int64(bytes[bytesRead]);
	}

	// Shift up and down in order to sign extend the result.
	ret <<= 64 - uint8(len(bytes))*8;
	ret >>= 64 - uint8(len(bytes))*8;
	return;
}

// parseInt treats the given bytes as a big-endian, signed integer and returns
// the result.
func parseInt(bytes []byte) (int, os.Error) {
	ret64, err := parseInt64(bytes);
	if err != nil {
		return 0, err;
	}
	if ret64 != int64(int(ret64)) {
		return 0, StructuralError{"integer too large"};
	}
	return int(ret64), nil;
}

// BIT STRING

// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
// bit string is padded up to the nearest byte in memory and the number of
// valid bits is recorded. Padding bits will be zero.
type BitString struct {
	Bytes		[]byte;	// bits packed into bytes.
	BitLength	int;	// length in bits.
}

// At returns the bit at the given index. If the index is out of range it
// returns false.
func (b BitString) At(i int) int {
	if i < 0 || i >= b.BitLength {
		return 0;
	}
	x := i/8;
	y := 7-uint(i%8);
	return int(b.Bytes[x] >> y)&1;
}

// parseBitString parses an ASN.1 bit string from the given byte array and returns it.
func parseBitString(bytes []byte) (ret BitString, err os.Error) {
	if len(bytes) == 0 {
		err = SyntaxError{"zero length BIT STRING"};
		return;
	}
	paddingBits := int(bytes[0]);
	if paddingBits > 7 ||
		len(bytes) == 1 && paddingBits > 0 ||
		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
		err = SyntaxError{"invalid padding bits in BIT STRING"};
		return;
	}
	ret.BitLength = (len(bytes)-1)*8 - paddingBits;
	ret.Bytes = bytes[1:len(bytes)];
	return;
}

// OBJECT IDENTIFIER

// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
type ObjectIdentifier []int

// parseObjectIdentifier parses an OBJECT IDENTIFER from the given bytes and
// returns it. An object identifer is a sequence of variable length integers
// that are assigned in a hierarachy.
func parseObjectIdentifier(bytes []byte) (s []int, err os.Error) {
	if len(bytes) == 0 {
		err = SyntaxError{"zero length OBJECT IDENTIFIER"};
		return;
	}

	// In the worst case, we get two elements from the first byte (which is
	// encoded differently) and then every varint is a single byte long.
	s = make([]int, len(bytes)+1);

	// The first byte is 40*value1 + value2:
	s[0] = int(bytes[0])/40;
	s[1] = int(bytes[0])%40;
	i := 2;
	for offset := 1; offset < len(bytes); i++ {
		var v int;
		v, offset, err = parseBase128Int(bytes, offset);
		if err != nil {
			return;
		}
		s[i] = v;
	}
	s = s[0:i];
	return;
}

// parseBase128Int parses a base-128 encoded int from the given offset in the
// given byte array. It returns the value and the new offset.
func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err os.Error) {
	offset = initOffset;
	for shifted := 0; offset < len(bytes); shifted++ {
		if shifted > 4 {
			err = StructuralError{"base 128 integer too large"};
			return;
		}
		ret <<= 7;
		b := bytes[offset];
		ret |= int(b&0x7f);
		offset++;
		if b&0x80 == 0 {
			return;
		}
	}
	err = SyntaxError{"truncated base 128 integer"};
	return;
}

// UTCTime

func isDigit(b byte) bool	{ return '0' <= b && b <= '9' }

// twoDigits returns the value of two, base 10 digits.
func twoDigits(bytes []byte, max int) (int, bool) {
	for i := 0; i < 2; i++ {
		if !isDigit(bytes[i]) {
			return 0, false;
		}
	}
	value := (int(bytes[0])-'0')*10 + int(bytes[1]-'0');
	if value > max {
		return 0, false;
	}
	return value, true;
}

// parseUTCTime parses the UTCTime from the given byte array and returns the
// resulting time.
func parseUTCTime(bytes []byte) (ret time.Time, err os.Error) {
	// A UTCTime can take the following formats:
	//
	//             1111111
	//   01234567890123456
	//
	//   YYMMDDhhmmZ
	//   YYMMDDhhmm+hhmm
	//   YYMMDDhhmm-hhmm
	//   YYMMDDhhmmssZ
	//   YYMMDDhhmmss+hhmm
	//   YYMMDDhhmmss-hhmm
	if len(bytes) < 11 {
		err = SyntaxError{"UTCTime too short"};
		return;
	}
	var ok1, ok2, ok3, ok4, ok5 bool;
	year, ok1 := twoDigits(bytes[0:2], 99);
	// RFC 5280, section 5.1.2.4 says that years 2050 or later use another date
	// scheme.
	if year > 50 {
		ret.Year = 1900+int64(year);
	} else {
		ret.Year = 2000+int64(year);
	}
	ret.Month, ok2 = twoDigits(bytes[2:4], 12);
	ret.Day, ok3 = twoDigits(bytes[4:6], 31);
	ret.Hour, ok4 = twoDigits(bytes[6:8], 23);
	ret.Minute, ok5 = twoDigits(bytes[8:10], 59);
	if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 {
		goto Error;
	}
	bytes = bytes[10:len(bytes)];
	switch bytes[0] {
	case '0', '1', '2', '3', '4', '5', '6':
		if len(bytes) < 3 {
			goto Error;
		}
		ret.Second, ok1 = twoDigits(bytes[0:2], 60);	// 60, not 59, because of leap seconds.
		if !ok1 {
			goto Error;
		}
		bytes = bytes[2:len(bytes)];
	}
	if len(bytes) == 0 {
		goto Error;
	}
	switch bytes[0] {
	case 'Z':
		if len(bytes) != 1 {
			goto Error;
		}
		return;
	case '-', '+':
		if len(bytes) != 5 {
			goto Error;
		}
		hours, ok1 := twoDigits(bytes[1:3], 12);
		minutes, ok2 := twoDigits(bytes[3:5], 59);
		if !ok1 || !ok2 {
			goto Error;
		}
		sign := 1;
		if bytes[0] == '-' {
			sign = -1;
		}
		ret.ZoneOffset = sign*(60*(hours*60 + minutes));
	default:
		goto Error;
	}
	return;

Error:
	err = SyntaxError{"invalid UTCTime"};
	return;
}

// PrintableString

// parsePrintableString parses a ASN.1 PrintableString from the given byte
// array and returns it.
func parsePrintableString(bytes []byte) (ret string, err os.Error) {
	for _, b := range bytes {
		if !isPrintable(b) {
			err = SyntaxError{"PrintableString contains invalid character"};
			return;
		}
	}
	ret = string(bytes);
	return;
}

// isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
func isPrintable(b byte) bool {
	return 'a' <= b && b <= 'z' ||
		'A' <= b && b <= 'Z' ||
		'0' <= b && b <= '9' ||
		'\'' <= b && b <= ')' ||
		'+' <= b && b <= '/' ||
		b == ' ' ||
		b == ':' ||
		b == '=' ||
		b == '?';
}

// IA5String

// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
// byte array and returns it.
func parseIA5String(bytes []byte) (ret string, err os.Error) {
	for _, b := range bytes {
		if b >= 0x80 {
			err = SyntaxError{"IA5String contains invalid character"};
			return;
		}
	}
	ret = string(bytes);
	return;
}

// A RawValue represents an undecoded ASN.1 object.
type RawValue struct {
	Class, Tag	int;
	IsCompound	bool;
	Bytes		[]byte;
}

// Tagging

// ASN.1 objects have metadata preceeding them:
//   the tag: the type of the object
//   a flag denoting if this object is compound or not
//   the class type: the namespace of the tag
//   the length of the object, in bytes

// Here are some standard tags and classes

const (
	tagBoolean		= 1;
	tagInteger		= 2;
	tagBitString		= 3;
	tagOctetString		= 4;
	tagOID			= 6;
	tagSequence		= 16;
	tagSet			= 17;
	tagPrintableString	= 19;
	tagIA5String		= 22;
	tagUTCTime		= 23;
)

const (
	classUniversal		= 0;
	classApplication	= 1;
	classContextSpecific	= 2;
	classPrivate		= 3;
)

type tagAndLength struct {
	class, tag, length	int;
	isCompound		bool;
}

// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
// into a byte array. It returns the parsed data and the new offset. SET and
// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
// don't distinguish between ordered and unordered objects in this code.
func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err os.Error) {
	offset = initOffset;
	b := bytes[offset];
	offset++;
	ret.class = int(b>>6);
	ret.isCompound = b&0x20 == 0x20;
	ret.tag = int(b&0x1f);

	// If the bottom five bits are set, then the tag number is actually base 128
	// encoded afterwards
	if ret.tag == 0x1f {
		ret.tag, offset, err = parseBase128Int(bytes, offset);
		if err != nil {
			return;
		}
	}
	if offset >= len(bytes) {
		err = SyntaxError{"truncated tag or length"};
		return;
	}
	b = bytes[offset];
	offset++;
	if b&0x80 == 0 {
		// The length is encoded in the bottom 7 bits.
		ret.length = int(b&0x7f);
	} else {
		// Bottom 7 bits give the number of length bytes to follow.
		numBytes := int(b&0x7f);
		// We risk overflowing a signed 32-bit number if we accept more than 3 bytes.
		if numBytes > 3 {
			err = StructuralError{"length too large"};
			return;
		}
		if numBytes == 0 {
			err = SyntaxError{"indefinite length found (not DER)"};
			return;
		}
		ret.length = 0;
		for i := 0; i < numBytes; i++ {
			if offset >= len(bytes) {
				err = SyntaxError{"truncated tag or length"};
				return;
			}
			b = bytes[offset];
			offset++;
			ret.length <<= 8;
			ret.length |= int(b);
		}
	}

	// We magically map SET and SET OF to SEQUENCE and SEQUENCE OF
	// because we treat everything as ordered.
	if ret.tag == tagSet {
		ret.tag = tagSequence;
	}
	return;
}

// ASN.1 has IMPLICIT and EXPLICIT tags, which can be translated as "instead
// of" and "in addition to". When not specified, every primitive type has a
// default tag in the UNIVERSAL class.
//
// For example: a BIT STRING is tagged [UNIVERSAL 3] by default (although ASN.1
// doesn't actually have a UNIVERSAL keyword). However, by saying [IMPLICIT
// CONTEXT-SPECIFIC 42], that means that the tag is replaced by another.
//
// On the other hand, if it said [EXPLICIT CONTEXT-SPECIFIC 10], then an
// /additional/ tag would wrap the default tag. This explicit tag will have the
// compound flag set.
//
// (This is used in order to remove ambiguity with optional elements.)
//
// You can layer EXPLICIT and IMPLICIT tags to an arbitrary depth, however we
// don't support that here. We support a single layer of EXPLICIT or IMPLICIT
// tagging with tag strings on the fields of a structure.

// fieldParameters is the parsed representation of tag string from a structure field.
type fieldParameters struct {
	optional	bool;	// true iff the field is OPTIONAL
	explicit	bool;	// true iff and EXPLICIT tag is in use.
	defaultValue	*int64;	// a default value for INTEGER typed fields (maybe nil).
	tag		*int;	// the EXPLICIT or IMPLICIT tag (maybe nil).

	// Invariants:
	//   if explicit is set, tag is non-nil.
}

// Given a tag string with the format specified in the package comment,
// parseFieldParameters will parse it into a fieldParameters structure,
// ignoring unknown parts of the string.
func parseFieldParameters(str string) (ret fieldParameters) {
	for _, part := range strings.Split(str, ",", 0) {
		switch {
		case part == "optional":
			ret.optional = true;
		case part == "explicit":
			ret.explicit = true;
			if ret.tag == nil {
				ret.tag = new(int);
				*ret.tag = 0;
			}
		case strings.HasPrefix(part, "default:"):
			i, err := strconv.Atoi64(part[8:len(part)]);
			if err == nil {
				ret.defaultValue = new(int64);
				*ret.defaultValue = i;
			}
		case strings.HasPrefix(part, "tag:"):
			i, err := strconv.Atoi(part[4:len(part)]);
			if err == nil {
				ret.tag = new(int);
				*ret.tag = i;
			}
		}
	}
	return;
}

// Given a reflected Go type, getUniversalType returns the default tag number
// and expected compound flag.
func getUniversalType(t reflect.Type) (tagNumber int, isCompound, ok bool) {
	switch t {
	case objectIdentifierType:
		return tagOID, false, true;
	case bitStringType:
		return tagBitString, false, true;
	case timeType:
		return tagUTCTime, false, true;
	}
	switch i := t.(type) {
	case *reflect.BoolType:
		return tagBoolean, false, true;
	case *reflect.IntType:
		return tagInteger, false, true;
	case *reflect.Int64Type:
		return tagInteger, false, true;
	case *reflect.StructType:
		return tagSequence, true, true;
	case *reflect.SliceType:
		if _, ok := t.(*reflect.SliceType).Elem().(*reflect.Uint8Type); ok {
			return tagOctetString, false, true;
		}
		return tagSequence, true, true;
	case *reflect.StringType:
		return tagPrintableString, false, true;
	}
	return 0, false, false;
}

// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
// a number of ASN.1 values from the given byte array and returns them as a
// slice of Go values of the given type.
func parseSequenceOf(bytes []byte, sliceType *reflect.SliceType, elemType reflect.Type) (ret *reflect.SliceValue, err os.Error) {
	expectedTag, compoundType, ok := getUniversalType(elemType);
	if !ok {
		err = StructuralError{"unknown Go type for slice"};
		return;
	}

	// First we iterate over the input and count the number of elements,
	// checking that the types are correct in each case.
	numElements := 0;
	for offset := 0; offset < len(bytes); {
		var t tagAndLength;
		t, offset, err = parseTagAndLength(bytes, offset);
		if err != nil {
			return;
		}
		if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
			err = StructuralError{"sequence tag mismatch"};
			return;
		}
		if invalidLength(offset, t.length, len(bytes)) {
			err = SyntaxError{"truncated sequence"};
			return;
		}
		offset += t.length;
		numElements++;
	}
	ret = reflect.MakeSlice(sliceType, numElements, numElements);
	params := fieldParameters{};
	offset := 0;
	for i := 0; i < numElements; i++ {
		offset, err = parseField(ret.Elem(i), bytes, offset, params);
		if err != nil {
			return;
		}
	}
	return;
}

var (
	bitStringType		= reflect.Typeof(BitString{});
	objectIdentifierType	= reflect.Typeof(ObjectIdentifier{});
	timeType		= reflect.Typeof(time.Time{});
	rawValueType		= reflect.Typeof(RawValue{});
)

// invalidLength returns true iff offset + length > sliceLength, or if the
// addition would overflow.
func invalidLength(offset, length, sliceLength int) bool {
	return offset+length < offset || offset+length > sliceLength;
}

// parseField is the main parsing function. Given a byte array and an offset
// into the array, it will try to parse a suitable ASN.1 value out and store it
// in the given Value.
func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err os.Error) {
	offset = initOffset;
	fieldType := v.Type();

	// If we have run out of data, it may be that there are optional elements at the end.
	if offset == len(bytes) {
		if !setDefaultValue(v, params) {
			err = SyntaxError{"sequence truncated"};
		}
		return;
	}

	// Deal with raw values.
	if fieldType == rawValueType {
		var t tagAndLength;
		t, offset, err = parseTagAndLength(bytes, offset);
		if err != nil {
			return;
		}
		if invalidLength(offset, t.length, len(bytes)) {
			err = SyntaxError{"data truncated"};
			return;
		}
		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset + t.length]};
		offset += t.length;
		v.(*reflect.StructValue).Set(reflect.NewValue(result).(*reflect.StructValue));
		return;
	}

	// Deal with the ANY type.
	if ifaceType, ok := fieldType.(*reflect.InterfaceType); ok && ifaceType.NumMethod() == 0 {
		ifaceValue := v.(*reflect.InterfaceValue);
		var t tagAndLength;
		t, offset, err = parseTagAndLength(bytes, offset);
		if err != nil {
			return;
		}
		if invalidLength(offset, t.length, len(bytes)) {
			err = SyntaxError{"data truncated"};
			return;
		}
		var result interface{}
		if !t.isCompound && t.class == classUniversal {
			innerBytes := bytes[offset : offset + t.length];
			switch t.tag {
			case tagPrintableString:
				result, err = parsePrintableString(innerBytes);
			case tagIA5String:
				result, err = parseIA5String(innerBytes);
			case tagInteger:
				result, err = parseInt64(innerBytes);
			case tagBitString:
				result, err = parseBitString(innerBytes);
			case tagOID:
				result, err = parseObjectIdentifier(innerBytes);
			case tagUTCTime:
				result, err = parseUTCTime(innerBytes);
			case tagOctetString:
				result = innerBytes;
			default:
				// If we don't know how to handle the type, we just leave Value as nil.
			}
		}
		offset += t.length;
		if err != nil {
			return;
		}
		if result != nil {
			ifaceValue.Set(reflect.NewValue(result));
		}
		return;
	}
	universalTag, compoundType, ok1 := getUniversalType(fieldType);
	if !ok1 {
		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)};
		return;
	}

	t, offset, err := parseTagAndLength(bytes, offset);
	if err != nil {
		return;
	}
	if params.explicit {
		if t.class == classContextSpecific && t.tag == *params.tag && t.isCompound {
			t, offset, err = parseTagAndLength(bytes, offset);
			if err != nil {
				return;
			}
		} else {
			// The tags didn't match, it might be an optional element.
			ok := setDefaultValue(v, params);
			if ok {
				offset = initOffset;
			} else {
				err = StructuralError{"explicitly tagged member didn't match"};
			}
			return;
		}
	}

	// Special case for strings: PrintableString and IA5String both map to
	// the Go type string. getUniversalType returns the tag for
	// PrintableString when it sees a string so, if we see an IA5String on
	// the wire, we change the universal type to match.
	if universalTag == tagPrintableString && t.tag == tagIA5String {
		universalTag = tagIA5String;
	}

	expectedClass := classUniversal;
	expectedTag := universalTag;

	if !params.explicit && params.tag != nil {
		expectedClass = classContextSpecific;
		expectedTag = *params.tag;
	}

	// We have unwrapped any explicit tagging at this point.
	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
		// Tags don't match. Again, it could be an optional element.
		ok := setDefaultValue(v, params);
		if ok {
			offset = initOffset;
		} else {
			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s %#v", expectedTag, t, params, fieldType.Name(), bytes[offset:len(bytes)])};
		}
		return;
	}
	if invalidLength(offset, t.length, len(bytes)) {
		err = SyntaxError{"data truncated"};
		return;
	}
	innerBytes := bytes[offset : offset + t.length];

	// We deal with the structures defined in this package first.
	switch fieldType {
	case objectIdentifierType:
		newSlice, err1 := parseObjectIdentifier(innerBytes);
		sliceValue := v.(*reflect.SliceValue);
		sliceValue.Set(reflect.MakeSlice(sliceValue.Type().(*reflect.SliceType), len(newSlice), len(newSlice)));
		if err1 == nil {
			reflect.ArrayCopy(sliceValue, reflect.NewValue(newSlice).(reflect.ArrayOrSliceValue));
		}
		offset += t.length;
		err = err1;
		return;
	case bitStringType:
		structValue := v.(*reflect.StructValue);
		bs, err1 := parseBitString(innerBytes);
		offset += t.length;
		if err1 == nil {
			structValue.Set(reflect.NewValue(bs).(*reflect.StructValue));
		}
		err = err1;
		return;
	case timeType:
		structValue := v.(*reflect.StructValue);
		time, err1 := parseUTCTime(innerBytes);
		offset += t.length;
		if err1 == nil {
			structValue.Set(reflect.NewValue(time).(*reflect.StructValue));
		}
		err = err1;
		return;
	}
	switch val := v.(type) {
	case *reflect.BoolValue:
		parsedBool, err1 := parseBool(innerBytes);
		offset += t.length;
		if err1 == nil {
			val.Set(parsedBool);
		}
		err = err1;
		return;
	case *reflect.IntValue:
		parsedInt, err1 := parseInt(innerBytes);
		offset += t.length;
		if err1 == nil {
			val.Set(parsedInt);
		}
		err = err1;
		return;
	case *reflect.Int64Value:
		parsedInt, err1 := parseInt64(innerBytes);
		offset += t.length;
		if err1 == nil {
			val.Set(parsedInt);
		}
		err = err1;
		return;
	case *reflect.StructValue:
		structType := fieldType.(*reflect.StructType);
		innerOffset := 0;
		for i := 0; i < structType.NumField(); i++ {
			field := structType.Field(i);
			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag));
			if err != nil {
				return;
			}
		}
		offset += t.length;
		// We allow extra bytes at the end of the SEQUENCE because
		// adding elements to the end has been used in X.509 as the
		// version numbers have increased.
		return;
	case *reflect.SliceValue:
		sliceType := fieldType.(*reflect.SliceType);
		if _, ok := sliceType.Elem().(*reflect.Uint8Type); ok {
			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)));
			reflect.ArrayCopy(val, reflect.NewValue(innerBytes).(reflect.ArrayOrSliceValue));
			return;
		}
		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem());
		offset += t.length;
		if err1 == nil {
			val.Set(newSlice);
		}
		err = err1;
		return;
	case *reflect.StringValue:
		var v string;
		switch universalTag {
		case tagPrintableString:
			v, err = parsePrintableString(innerBytes);
		case tagIA5String:
			v, err = parseIA5String(innerBytes);
		default:
			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)};
		}
		if err == nil {
			val.Set(v);
		}
		return;
	}
	err = StructuralError{"unknown Go type"};
	return;
}

// setDefaultValue is used to install a default value, from a tag string, into
// a Value. It is successful is the field was optional, even if a default value
// wasn't provided or it failed to install it into the Value.
func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
	if !params.optional {
		return;
	}
	ok = true;
	if params.defaultValue == nil {
		return;
	}
	switch val := v.(type) {
	case *reflect.IntValue:
		val.Set(int(*params.defaultValue));
	case *reflect.Int64Value:
		val.Set(int64(*params.defaultValue));
	}
	return;
}

// Unmarshal parses the DER-encoded ASN.1 data structure b
// and uses the reflect package to fill in an arbitrary value pointed at by val.
// Because Unmarshal uses the reflect package, the structs
// being written to must use upper case field names.
//
// An ASN.1 INTEGER can be written to an int or int64.
// If the encoded value does not fit in the Go type,
// Unmarshal returns a parse error.
//
// An ASN.1 BIT STRING can be written to a BitString.
//
// An ASN.1 OCTET STRING can be written to a []byte.
//
// An ASN.1 OBJECT IDENTIFIER can be written to an
// ObjectIdentifier.
//
// An ASN.1 PrintableString or IA5String can be written to a string.
//
// Any of the above ASN.1 values can be written to an interface{}.
// The value stored in the interface has the corresponding Go type.
// For integers, that type is int64.
//
// An ASN.1 SEQUENCE OF x or SET OF x can be written
// to a slice if an x can be written to the slice's element type.
//
// An ASN.1 SEQUENCE or SET can be written to a struct
// if each of the elements in the sequence can be
// written to the corresponding element in the struct.
//
// The following tags on struct fields have special meaning to Unmarshal:
//
//	optional		marks the field as ASN.1 OPTIONAL
//	[explicit] tag:x	specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
//	default:x		sets the default value for optional integer fields
//
// Other ASN.1 types are not supported; if it encounters them,
// Unmarshal returns a parse error.
func Unmarshal(val interface{}, b []byte) os.Error {
	v := reflect.NewValue(val).(*reflect.PtrValue).Elem();
	_, err := parseField(v, b, 0, fieldParameters{});
	return err;
}