1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bzip2
import "sort"
// A huffmanTree is a binary tree which is navigated, bit-by-bit to reach a
// symbol.
type huffmanTree struct {
// nodes contains all the non-leaf nodes in the tree. nodes[0] is the
// root of the tree and nextNode contains the index of the next element
// of nodes to use when the tree is being constructed.
nodes []huffmanNode
nextNode int
}
// A huffmanNode is a node in the tree. left and right contain indexes into the
// nodes slice of the tree. If left or right is invalidNodeValue then the child
// is a left node and its value is in leftValue/rightValue.
//
// The symbols are uint16s because bzip2 encodes not only MTF indexes in the
// tree, but also two magic values for run-length encoding and an EOF symbol.
// Thus there are more than 256 possible symbols.
type huffmanNode struct {
left, right uint16
leftValue, rightValue uint16
}
// invalidNodeValue is an invalid index which marks a leaf node in the tree.
const invalidNodeValue = 0xffff
// Decode reads bits from the given bitReader and navigates the tree until a
// symbol is found.
func (t *huffmanTree) Decode(br *bitReader) (v uint16) {
nodeIndex := uint16(0) // node 0 is the root of the tree.
for {
node := &t.nodes[nodeIndex]
bit, ok := br.TryReadBit()
if !ok && br.ReadBit() {
bit = 1
}
// bzip2 encodes left as a true bit.
if bit != 0 {
// left
if node.left == invalidNodeValue {
return node.leftValue
}
nodeIndex = node.left
} else {
// right
if node.right == invalidNodeValue {
return node.rightValue
}
nodeIndex = node.right
}
}
}
// newHuffmanTree builds a Huffman tree from a slice containing the code
// lengths of each symbol. The maximum code length is 32 bits.
func newHuffmanTree(lengths []uint8) (huffmanTree, error) {
// There are many possible trees that assign the same code length to
// each symbol (consider reflecting a tree down the middle, for
// example). Since the code length assignments determine the
// efficiency of the tree, each of these trees is equally good. In
// order to minimize the amount of information needed to build a tree
// bzip2 uses a canonical tree so that it can be reconstructed given
// only the code length assignments.
if len(lengths) < 2 {
panic("newHuffmanTree: too few symbols")
}
var t huffmanTree
// First we sort the code length assignments by ascending code length,
// using the symbol value to break ties.
pairs := huffmanSymbolLengthPairs(make([]huffmanSymbolLengthPair, len(lengths)))
for i, length := range lengths {
pairs[i].value = uint16(i)
pairs[i].length = length
}
sort.Sort(pairs)
// Now we assign codes to the symbols, starting with the longest code.
// We keep the codes packed into a uint32, at the most-significant end.
// So branches are taken from the MSB downwards. This makes it easy to
// sort them later.
code := uint32(0)
length := uint8(32)
codes := huffmanCodes(make([]huffmanCode, len(lengths)))
for i := len(pairs) - 1; i >= 0; i-- {
if length > pairs[i].length {
// If the code length decreases we shift in order to
// zero any bits beyond the end of the code.
length >>= 32 - pairs[i].length
length <<= 32 - pairs[i].length
length = pairs[i].length
}
codes[i].code = code
codes[i].codeLen = length
codes[i].value = pairs[i].value
// We need to 'increment' the code, which means treating |code|
// like a |length| bit number.
code += 1 << (32 - length)
}
// Now we can sort by the code so that the left half of each branch are
// grouped together, recursively.
sort.Sort(codes)
t.nodes = make([]huffmanNode, len(codes))
_, err := buildHuffmanNode(&t, codes, 0)
return t, err
}
// huffmanSymbolLengthPair contains a symbol and its code length.
type huffmanSymbolLengthPair struct {
value uint16
length uint8
}
// huffmanSymbolLengthPair is used to provide an interface for sorting.
type huffmanSymbolLengthPairs []huffmanSymbolLengthPair
func (h huffmanSymbolLengthPairs) Len() int {
return len(h)
}
func (h huffmanSymbolLengthPairs) Less(i, j int) bool {
if h[i].length < h[j].length {
return true
}
if h[i].length > h[j].length {
return false
}
if h[i].value < h[j].value {
return true
}
return false
}
func (h huffmanSymbolLengthPairs) Swap(i, j int) {
h[i], h[j] = h[j], h[i]
}
// huffmanCode contains a symbol, its code and code length.
type huffmanCode struct {
code uint32
codeLen uint8
value uint16
}
// huffmanCodes is used to provide an interface for sorting.
type huffmanCodes []huffmanCode
func (n huffmanCodes) Len() int {
return len(n)
}
func (n huffmanCodes) Less(i, j int) bool {
return n[i].code < n[j].code
}
func (n huffmanCodes) Swap(i, j int) {
n[i], n[j] = n[j], n[i]
}
// buildHuffmanNode takes a slice of sorted huffmanCodes and builds a node in
// the Huffman tree at the given level. It returns the index of the newly
// constructed node.
func buildHuffmanNode(t *huffmanTree, codes []huffmanCode, level uint32) (nodeIndex uint16, err error) {
test := uint32(1) << (31 - level)
// We have to search the list of codes to find the divide between the left and right sides.
firstRightIndex := len(codes)
for i, code := range codes {
if code.code&test != 0 {
firstRightIndex = i
break
}
}
left := codes[:firstRightIndex]
right := codes[firstRightIndex:]
if len(left) == 0 || len(right) == 0 {
// There is a superfluous level in the Huffman tree indicating
// a bug in the encoder. However, this bug has been observed in
// the wild so we handle it.
// If this function was called recursively then we know that
// len(codes) >= 2 because, otherwise, we would have hit the
// "leaf node" case, below, and not recursed.
//
// However, for the initial call it's possible that len(codes)
// is zero or one. Both cases are invalid because a zero length
// tree cannot encode anything and a length-1 tree can only
// encode EOF and so is superfluous. We reject both.
if len(codes) < 2 {
return 0, StructuralError("empty Huffman tree")
}
// In this case the recursion doesn't always reduce the length
// of codes so we need to ensure termination via another
// mechanism.
if level == 31 {
// Since len(codes) >= 2 the only way that the values
// can match at all 32 bits is if they are equal, which
// is invalid. This ensures that we never enter
// infinite recursion.
return 0, StructuralError("equal symbols in Huffman tree")
}
if len(left) == 0 {
return buildHuffmanNode(t, right, level+1)
}
return buildHuffmanNode(t, left, level+1)
}
nodeIndex = uint16(t.nextNode)
node := &t.nodes[t.nextNode]
t.nextNode++
if len(left) == 1 {
// leaf node
node.left = invalidNodeValue
node.leftValue = left[0].value
} else {
node.left, err = buildHuffmanNode(t, left, level+1)
}
if err != nil {
return
}
if len(right) == 1 {
// leaf node
node.right = invalidNodeValue
node.rightValue = right[0].value
} else {
node.right, err = buildHuffmanNode(t, right, level+1)
}
return
}
|