summaryrefslogtreecommitdiff
path: root/src/pkg/compress/flate/huffman_bit_writer.go
blob: b182a710b9af9ab3767c8684d68c9ae2a7fab48c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package flate

import (
	"io"
	"math"
)

const (
	// The largest offset code.
	offsetCodeCount = 30

	// The special code used to mark the end of a block.
	endBlockMarker = 256

	// The first length code.
	lengthCodesStart = 257

	// The number of codegen codes.
	codegenCodeCount = 19
	badCode          = 255
)

// The number of extra bits needed by length code X - LENGTH_CODES_START.
var lengthExtraBits = []int8{
	/* 257 */ 0, 0, 0,
	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
	/* 280 */ 4, 5, 5, 5, 5, 0,
}

// The length indicated by length code X - LENGTH_CODES_START.
var lengthBase = []uint32{
	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
	64, 80, 96, 112, 128, 160, 192, 224, 255,
}

// offset code word extra bits.
var offsetExtraBits = []int8{
	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
	/* extended window */
	14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
}

var offsetBase = []uint32{
	/* normal deflate */
	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,

	/* extended window */
	0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
	0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
	0x100000, 0x180000, 0x200000, 0x300000,
}

// The odd order in which the codegen code sizes are written.
var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}

type huffmanBitWriter struct {
	w io.Writer
	// Data waiting to be written is bytes[0:nbytes]
	// and then the low nbits of bits.
	bits            uint32
	nbits           uint32
	bytes           [64]byte
	nbytes          int
	literalFreq     []int32
	offsetFreq      []int32
	codegen         []uint8
	codegenFreq     []int32
	literalEncoding *huffmanEncoder
	offsetEncoding  *huffmanEncoder
	codegenEncoding *huffmanEncoder
	err             error
}

func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
	return &huffmanBitWriter{
		w:               w,
		literalFreq:     make([]int32, maxLit),
		offsetFreq:      make([]int32, offsetCodeCount),
		codegen:         make([]uint8, maxLit+offsetCodeCount+1),
		codegenFreq:     make([]int32, codegenCodeCount),
		literalEncoding: newHuffmanEncoder(maxLit),
		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
	}
}

func (w *huffmanBitWriter) reset(writer io.Writer) {
	w.w = writer
	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
	w.bytes = [64]byte{}
	for i := range w.codegen {
		w.codegen[i] = 0
	}
	for _, s := range [...][]int32{w.literalFreq, w.offsetFreq, w.codegenFreq} {
		for i := range s {
			s[i] = 0
		}
	}
	for _, enc := range [...]*huffmanEncoder{
		w.literalEncoding,
		w.offsetEncoding,
		w.codegenEncoding} {
		for i := range enc.code {
			enc.code[i] = 0
		}
		for i := range enc.codeBits {
			enc.codeBits[i] = 0
		}
	}
}

func (w *huffmanBitWriter) flushBits() {
	if w.err != nil {
		w.nbits = 0
		return
	}
	bits := w.bits
	w.bits >>= 16
	w.nbits -= 16
	n := w.nbytes
	w.bytes[n] = byte(bits)
	w.bytes[n+1] = byte(bits >> 8)
	if n += 2; n >= len(w.bytes) {
		_, w.err = w.w.Write(w.bytes[0:])
		n = 0
	}
	w.nbytes = n
}

func (w *huffmanBitWriter) flush() {
	if w.err != nil {
		w.nbits = 0
		return
	}
	n := w.nbytes
	if w.nbits > 8 {
		w.bytes[n] = byte(w.bits)
		w.bits >>= 8
		w.nbits -= 8
		n++
	}
	if w.nbits > 0 {
		w.bytes[n] = byte(w.bits)
		w.nbits = 0
		n++
	}
	w.bits = 0
	_, w.err = w.w.Write(w.bytes[0:n])
	w.nbytes = 0
}

func (w *huffmanBitWriter) writeBits(b, nb int32) {
	w.bits |= uint32(b) << w.nbits
	if w.nbits += uint32(nb); w.nbits >= 16 {
		w.flushBits()
	}
}

func (w *huffmanBitWriter) writeBytes(bytes []byte) {
	if w.err != nil {
		return
	}
	n := w.nbytes
	if w.nbits == 8 {
		w.bytes[n] = byte(w.bits)
		w.nbits = 0
		n++
	}
	if w.nbits != 0 {
		w.err = InternalError("writeBytes with unfinished bits")
		return
	}
	if n != 0 {
		_, w.err = w.w.Write(w.bytes[0:n])
		if w.err != nil {
			return
		}
	}
	w.nbytes = 0
	_, w.err = w.w.Write(bytes)
}

// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
// the literal and offset lengths arrays (which are concatenated into a single
// array).  This method generates that run-length encoding.
//
// The result is written into the codegen array, and the frequencies
// of each code is written into the codegenFreq array.
// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
// information.  Code badCode is an end marker
//
//  numLiterals      The number of literals in literalEncoding
//  numOffsets       The number of offsets in offsetEncoding
func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int) {
	for i := range w.codegenFreq {
		w.codegenFreq[i] = 0
	}
	// Note that we are using codegen both as a temporary variable for holding
	// a copy of the frequencies, and as the place where we put the result.
	// This is fine because the output is always shorter than the input used
	// so far.
	codegen := w.codegen // cache
	// Copy the concatenated code sizes to codegen.  Put a marker at the end.
	copy(codegen[0:numLiterals], w.literalEncoding.codeBits)
	copy(codegen[numLiterals:numLiterals+numOffsets], w.offsetEncoding.codeBits)
	codegen[numLiterals+numOffsets] = badCode

	size := codegen[0]
	count := 1
	outIndex := 0
	for inIndex := 1; size != badCode; inIndex++ {
		// INVARIANT: We have seen "count" copies of size that have not yet
		// had output generated for them.
		nextSize := codegen[inIndex]
		if nextSize == size {
			count++
			continue
		}
		// We need to generate codegen indicating "count" of size.
		if size != 0 {
			codegen[outIndex] = size
			outIndex++
			w.codegenFreq[size]++
			count--
			for count >= 3 {
				n := 6
				if n > count {
					n = count
				}
				codegen[outIndex] = 16
				outIndex++
				codegen[outIndex] = uint8(n - 3)
				outIndex++
				w.codegenFreq[16]++
				count -= n
			}
		} else {
			for count >= 11 {
				n := 138
				if n > count {
					n = count
				}
				codegen[outIndex] = 18
				outIndex++
				codegen[outIndex] = uint8(n - 11)
				outIndex++
				w.codegenFreq[18]++
				count -= n
			}
			if count >= 3 {
				// count >= 3 && count <= 10
				codegen[outIndex] = 17
				outIndex++
				codegen[outIndex] = uint8(count - 3)
				outIndex++
				w.codegenFreq[17]++
				count = 0
			}
		}
		count--
		for ; count >= 0; count-- {
			codegen[outIndex] = size
			outIndex++
			w.codegenFreq[size]++
		}
		// Set up invariant for next time through the loop.
		size = nextSize
		count = 1
	}
	// Marker indicating the end of the codegen.
	codegen[outIndex] = badCode
}

func (w *huffmanBitWriter) writeCode(code *huffmanEncoder, literal uint32) {
	if w.err != nil {
		return
	}
	w.writeBits(int32(code.code[literal]), int32(code.codeBits[literal]))
}

// Write the header of a dynamic Huffman block to the output stream.
//
//  numLiterals  The number of literals specified in codegen
//  numOffsets   The number of offsets specified in codegen
//  numCodegens  The number of codegens used in codegen
func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
	if w.err != nil {
		return
	}
	var firstBits int32 = 4
	if isEof {
		firstBits = 5
	}
	w.writeBits(firstBits, 3)
	w.writeBits(int32(numLiterals-257), 5)
	w.writeBits(int32(numOffsets-1), 5)
	w.writeBits(int32(numCodegens-4), 4)

	for i := 0; i < numCodegens; i++ {
		value := w.codegenEncoding.codeBits[codegenOrder[i]]
		w.writeBits(int32(value), 3)
	}

	i := 0
	for {
		var codeWord int = int(w.codegen[i])
		i++
		if codeWord == badCode {
			break
		}
		// The low byte contains the actual code to generate.
		w.writeCode(w.codegenEncoding, uint32(codeWord))

		switch codeWord {
		case 16:
			w.writeBits(int32(w.codegen[i]), 2)
			i++
			break
		case 17:
			w.writeBits(int32(w.codegen[i]), 3)
			i++
			break
		case 18:
			w.writeBits(int32(w.codegen[i]), 7)
			i++
			break
		}
	}
}

func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
	if w.err != nil {
		return
	}
	var flag int32
	if isEof {
		flag = 1
	}
	w.writeBits(flag, 3)
	w.flush()
	w.writeBits(int32(length), 16)
	w.writeBits(int32(^uint16(length)), 16)
}

func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
	if w.err != nil {
		return
	}
	// Indicate that we are a fixed Huffman block
	var value int32 = 2
	if isEof {
		value = 3
	}
	w.writeBits(value, 3)
}

func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
	if w.err != nil {
		return
	}
	for i := range w.literalFreq {
		w.literalFreq[i] = 0
	}
	for i := range w.offsetFreq {
		w.offsetFreq[i] = 0
	}

	n := len(tokens)
	tokens = tokens[0 : n+1]
	tokens[n] = endBlockMarker

	for _, t := range tokens {
		switch t.typ() {
		case literalType:
			w.literalFreq[t.literal()]++
		case matchType:
			length := t.length()
			offset := t.offset()
			w.literalFreq[lengthCodesStart+lengthCode(length)]++
			w.offsetFreq[offsetCode(offset)]++
		}
	}

	// get the number of literals
	numLiterals := len(w.literalFreq)
	for w.literalFreq[numLiterals-1] == 0 {
		numLiterals--
	}
	// get the number of offsets
	numOffsets := len(w.offsetFreq)
	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
		numOffsets--
	}
	if numOffsets == 0 {
		// We haven't found a single match. If we want to go with the dynamic encoding,
		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
		w.offsetFreq[0] = 1
		numOffsets = 1
	}

	w.literalEncoding.generate(w.literalFreq, 15)
	w.offsetEncoding.generate(w.offsetFreq, 15)

	storedBytes := 0
	if input != nil {
		storedBytes = len(input)
	}
	var extraBits int64
	var storedSize int64 = math.MaxInt64
	if storedBytes <= maxStoreBlockSize && input != nil {
		storedSize = int64((storedBytes + 5) * 8)
		// We only bother calculating the costs of the extra bits required by
		// the length of offset fields (which will be the same for both fixed
		// and dynamic encoding), if we need to compare those two encodings
		// against stored encoding.
		for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
			// First eight length codes have extra size = 0.
			extraBits += int64(w.literalFreq[lengthCode]) * int64(lengthExtraBits[lengthCode-lengthCodesStart])
		}
		for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
			// First four offset codes have extra size = 0.
			extraBits += int64(w.offsetFreq[offsetCode]) * int64(offsetExtraBits[offsetCode])
		}
	}

	// Figure out smallest code.
	// Fixed Huffman baseline.
	var size = int64(3) +
		fixedLiteralEncoding.bitLength(w.literalFreq) +
		fixedOffsetEncoding.bitLength(w.offsetFreq) +
		extraBits
	var literalEncoding = fixedLiteralEncoding
	var offsetEncoding = fixedOffsetEncoding

	// Dynamic Huffman?
	var numCodegens int

	// Generate codegen and codegenFrequencies, which indicates how to encode
	// the literalEncoding and the offsetEncoding.
	w.generateCodegen(numLiterals, numOffsets)
	w.codegenEncoding.generate(w.codegenFreq, 7)
	numCodegens = len(w.codegenFreq)
	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
		numCodegens--
	}
	dynamicHeader := int64(3+5+5+4+(3*numCodegens)) +
		w.codegenEncoding.bitLength(w.codegenFreq) +
		int64(extraBits) +
		int64(w.codegenFreq[16]*2) +
		int64(w.codegenFreq[17]*3) +
		int64(w.codegenFreq[18]*7)
	dynamicSize := dynamicHeader +
		w.literalEncoding.bitLength(w.literalFreq) +
		w.offsetEncoding.bitLength(w.offsetFreq)

	if dynamicSize < size {
		size = dynamicSize
		literalEncoding = w.literalEncoding
		offsetEncoding = w.offsetEncoding
	}

	// Stored bytes?
	if storedSize < size {
		w.writeStoredHeader(storedBytes, eof)
		w.writeBytes(input[0:storedBytes])
		return
	}

	// Huffman.
	if literalEncoding == fixedLiteralEncoding {
		w.writeFixedHeader(eof)
	} else {
		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
	}
	for _, t := range tokens {
		switch t.typ() {
		case literalType:
			w.writeCode(literalEncoding, t.literal())
			break
		case matchType:
			// Write the length
			length := t.length()
			lengthCode := lengthCode(length)
			w.writeCode(literalEncoding, lengthCode+lengthCodesStart)
			extraLengthBits := int32(lengthExtraBits[lengthCode])
			if extraLengthBits > 0 {
				extraLength := int32(length - lengthBase[lengthCode])
				w.writeBits(extraLength, extraLengthBits)
			}
			// Write the offset
			offset := t.offset()
			offsetCode := offsetCode(offset)
			w.writeCode(offsetEncoding, offsetCode)
			extraOffsetBits := int32(offsetExtraBits[offsetCode])
			if extraOffsetBits > 0 {
				extraOffset := int32(offset - offsetBase[offsetCode])
				w.writeBits(extraOffset, extraOffsetBits)
			}
			break
		default:
			panic("unknown token type: " + string(t))
		}
	}
}