summaryrefslogtreecommitdiff
path: root/src/pkg/compress/flate/inflate.go
blob: ce4923eca3738f6a00ed0ce99439534dafe0bf14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package flate implements the DEFLATE compressed data format, described in
// RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
// formats.
package flate

import (
	"bufio"
	"io"
	"strconv"
)

const (
	maxCodeLen = 16    // max length of Huffman code
	maxHist    = 32768 // max history required
	// The next three numbers come from the RFC, section 3.2.7.
	maxLit   = 286
	maxDist  = 32
	numCodes = 19 // number of codes in Huffman meta-code
)

// A CorruptInputError reports the presence of corrupt input at a given offset.
type CorruptInputError int64

func (e CorruptInputError) Error() string {
	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
}

// An InternalError reports an error in the flate code itself.
type InternalError string

func (e InternalError) Error() string { return "flate: internal error: " + string(e) }

// A ReadError reports an error encountered while reading input.
type ReadError struct {
	Offset int64 // byte offset where error occurred
	Err    error // error returned by underlying Read
}

func (e *ReadError) Error() string {
	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
}

// A WriteError reports an error encountered while writing output.
type WriteError struct {
	Offset int64 // byte offset where error occurred
	Err    error // error returned by underlying Write
}

func (e *WriteError) Error() string {
	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
}

// Note that much of the implementation of huffmanDecoder is also copied
// into gen.go (in package main) for the purpose of precomputing the
// fixed huffman tables so they can be included statically.

// The data structure for decoding Huffman tables is based on that of
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
// For codes smaller than the table width, there are multiple entries
// (each combination of trailing bits has the same value). For codes
// larger than the table width, the table contains a link to an overflow
// table. The width of each entry in the link table is the maximum code
// size minus the chunk width.

// Note that you can do a lookup in the table even without all bits
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
// have the property that shorter codes come before longer ones, the
// bit length estimate in the result is a lower bound on the actual
// number of bits.

// chunk & 15 is number of bits
// chunk >> 4 is value, including table link

const (
	huffmanChunkBits  = 9
	huffmanNumChunks  = 1 << huffmanChunkBits
	huffmanCountMask  = 15
	huffmanValueShift = 4
)

type huffmanDecoder struct {
	min      int                      // the minimum code length
	chunks   [huffmanNumChunks]uint32 // chunks as described above
	links    [][]uint32               // overflow links
	linkMask uint32                   // mask the width of the link table
}

// Initialize Huffman decoding tables from array of code lengths.
func (h *huffmanDecoder) init(bits []int) bool {
	if h.min != 0 {
		*h = huffmanDecoder{}
	}

	// Count number of codes of each length,
	// compute min and max length.
	var count [maxCodeLen]int
	var min, max int
	for _, n := range bits {
		if n == 0 {
			continue
		}
		if min == 0 || n < min {
			min = n
		}
		if n > max {
			max = n
		}
		count[n]++
	}
	if max == 0 {
		return false
	}

	h.min = min
	var linkBits uint
	var numLinks int
	if max > huffmanChunkBits {
		linkBits = uint(max) - huffmanChunkBits
		numLinks = 1 << linkBits
		h.linkMask = uint32(numLinks - 1)
	}
	code := 0
	var nextcode [maxCodeLen]int
	for i := min; i <= max; i++ {
		if i == huffmanChunkBits+1 {
			// create link tables
			link := code >> 1
			if huffmanNumChunks < link {
				return false
			}
			h.links = make([][]uint32, huffmanNumChunks-link)
			for j := uint(link); j < huffmanNumChunks; j++ {
				reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
				reverse >>= uint(16 - huffmanChunkBits)
				off := j - uint(link)
				h.chunks[reverse] = uint32(off<<huffmanValueShift + uint(i))
				h.links[off] = make([]uint32, 1<<linkBits)
			}
		}
		n := count[i]
		nextcode[i] = code
		code += n
		code <<= 1
	}

	for i, n := range bits {
		if n == 0 {
			continue
		}
		code := nextcode[n]
		nextcode[n]++
		chunk := uint32(i<<huffmanValueShift | n)
		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
		reverse >>= uint(16 - n)
		if n <= huffmanChunkBits {
			for off := reverse; off < huffmanNumChunks; off += 1 << uint(n) {
				h.chunks[off] = chunk
			}
		} else {
			value := h.chunks[reverse&(huffmanNumChunks-1)] >> huffmanValueShift
			if value >= uint32(len(h.links)) {
				return false
			}
			linktab := h.links[value]
			reverse >>= huffmanChunkBits
			for off := reverse; off < numLinks; off += 1 << uint(n-huffmanChunkBits) {
				linktab[off] = chunk
			}
		}
	}
	return true
}

// The actual read interface needed by NewReader.
// If the passed in io.Reader does not also have ReadByte,
// the NewReader will introduce its own buffering.
type Reader interface {
	io.Reader
	io.ByteReader
}

// Decompress state.
type decompressor struct {
	// Input source.
	r       Reader
	roffset int64
	woffset int64

	// Input bits, in top of b.
	b  uint32
	nb uint

	// Huffman decoders for literal/length, distance.
	h1, h2 huffmanDecoder

	// Length arrays used to define Huffman codes.
	bits     *[maxLit + maxDist]int
	codebits *[numCodes]int

	// Output history, buffer.
	hist  *[maxHist]byte
	hp    int  // current output position in buffer
	hw    int  // have written hist[0:hw] already
	hfull bool // buffer has filled at least once

	// Temporary buffer (avoids repeated allocation).
	buf [4]byte

	// Next step in the decompression,
	// and decompression state.
	step     func(*decompressor)
	final    bool
	err      error
	toRead   []byte
	hl, hd   *huffmanDecoder
	copyLen  int
	copyDist int
}

func (f *decompressor) nextBlock() {
	if f.final {
		if f.hw != f.hp {
			f.flush((*decompressor).nextBlock)
			return
		}
		f.err = io.EOF
		return
	}
	for f.nb < 1+2 {
		if f.err = f.moreBits(); f.err != nil {
			return
		}
	}
	f.final = f.b&1 == 1
	f.b >>= 1
	typ := f.b & 3
	f.b >>= 2
	f.nb -= 1 + 2
	switch typ {
	case 0:
		f.dataBlock()
	case 1:
		// compressed, fixed Huffman tables
		f.hl = &fixedHuffmanDecoder
		f.hd = nil
		f.huffmanBlock()
	case 2:
		// compressed, dynamic Huffman tables
		if f.err = f.readHuffman(); f.err != nil {
			break
		}
		f.hl = &f.h1
		f.hd = &f.h2
		f.huffmanBlock()
	default:
		// 3 is reserved.
		f.err = CorruptInputError(f.roffset)
	}
}

func (f *decompressor) Read(b []byte) (int, error) {
	for {
		if len(f.toRead) > 0 {
			n := copy(b, f.toRead)
			f.toRead = f.toRead[n:]
			return n, nil
		}
		if f.err != nil {
			return 0, f.err
		}
		f.step(f)
	}
}

func (f *decompressor) Close() error {
	if f.err == io.EOF {
		return nil
	}
	return f.err
}

// RFC 1951 section 3.2.7.
// Compression with dynamic Huffman codes

var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}

func (f *decompressor) readHuffman() error {
	// HLIT[5], HDIST[5], HCLEN[4].
	for f.nb < 5+5+4 {
		if err := f.moreBits(); err != nil {
			return err
		}
	}
	nlit := int(f.b&0x1F) + 257
	if nlit > maxLit {
		return CorruptInputError(f.roffset)
	}
	f.b >>= 5
	ndist := int(f.b&0x1F) + 1
	// maxDist is 32, so ndist is always valid.
	f.b >>= 5
	nclen := int(f.b&0xF) + 4
	// numCodes is 19, so nclen is always valid.
	f.b >>= 4
	f.nb -= 5 + 5 + 4

	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
	for i := 0; i < nclen; i++ {
		for f.nb < 3 {
			if err := f.moreBits(); err != nil {
				return err
			}
		}
		f.codebits[codeOrder[i]] = int(f.b & 0x7)
		f.b >>= 3
		f.nb -= 3
	}
	for i := nclen; i < len(codeOrder); i++ {
		f.codebits[codeOrder[i]] = 0
	}
	if !f.h1.init(f.codebits[0:]) {
		return CorruptInputError(f.roffset)
	}

	// HLIT + 257 code lengths, HDIST + 1 code lengths,
	// using the code length Huffman code.
	for i, n := 0, nlit+ndist; i < n; {
		x, err := f.huffSym(&f.h1)
		if err != nil {
			return err
		}
		if x < 16 {
			// Actual length.
			f.bits[i] = x
			i++
			continue
		}
		// Repeat previous length or zero.
		var rep int
		var nb uint
		var b int
		switch x {
		default:
			return InternalError("unexpected length code")
		case 16:
			rep = 3
			nb = 2
			if i == 0 {
				return CorruptInputError(f.roffset)
			}
			b = f.bits[i-1]
		case 17:
			rep = 3
			nb = 3
			b = 0
		case 18:
			rep = 11
			nb = 7
			b = 0
		}
		for f.nb < nb {
			if err := f.moreBits(); err != nil {
				return err
			}
		}
		rep += int(f.b & uint32(1<<nb-1))
		f.b >>= nb
		f.nb -= nb
		if i+rep > n {
			return CorruptInputError(f.roffset)
		}
		for j := 0; j < rep; j++ {
			f.bits[i] = b
			i++
		}
	}

	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
		return CorruptInputError(f.roffset)
	}

	return nil
}

// Decode a single Huffman block from f.
// hl and hd are the Huffman states for the lit/length values
// and the distance values, respectively.  If hd == nil, using the
// fixed distance encoding associated with fixed Huffman blocks.
func (f *decompressor) huffmanBlock() {
	for {
		v, err := f.huffSym(f.hl)
		if err != nil {
			f.err = err
			return
		}
		var n uint // number of bits extra
		var length int
		switch {
		case v < 256:
			f.hist[f.hp] = byte(v)
			f.hp++
			if f.hp == len(f.hist) {
				// After the flush, continue this loop.
				f.flush((*decompressor).huffmanBlock)
				return
			}
			continue
		case v == 256:
			// Done with huffman block; read next block.
			f.step = (*decompressor).nextBlock
			return
		// otherwise, reference to older data
		case v < 265:
			length = v - (257 - 3)
			n = 0
		case v < 269:
			length = v*2 - (265*2 - 11)
			n = 1
		case v < 273:
			length = v*4 - (269*4 - 19)
			n = 2
		case v < 277:
			length = v*8 - (273*8 - 35)
			n = 3
		case v < 281:
			length = v*16 - (277*16 - 67)
			n = 4
		case v < 285:
			length = v*32 - (281*32 - 131)
			n = 5
		default:
			length = 258
			n = 0
		}
		if n > 0 {
			for f.nb < n {
				if err = f.moreBits(); err != nil {
					f.err = err
					return
				}
			}
			length += int(f.b & uint32(1<<n-1))
			f.b >>= n
			f.nb -= n
		}

		var dist int
		if f.hd == nil {
			for f.nb < 5 {
				if err = f.moreBits(); err != nil {
					f.err = err
					return
				}
			}
			dist = int(reverseByte[(f.b&0x1F)<<3])
			f.b >>= 5
			f.nb -= 5
		} else {
			if dist, err = f.huffSym(f.hd); err != nil {
				f.err = err
				return
			}
		}

		switch {
		case dist < 4:
			dist++
		case dist >= 30:
			f.err = CorruptInputError(f.roffset)
			return
		default:
			nb := uint(dist-2) >> 1
			// have 1 bit in bottom of dist, need nb more.
			extra := (dist & 1) << nb
			for f.nb < nb {
				if err = f.moreBits(); err != nil {
					f.err = err
					return
				}
			}
			extra |= int(f.b & uint32(1<<nb-1))
			f.b >>= nb
			f.nb -= nb
			dist = 1<<(nb+1) + 1 + extra
		}

		// Copy history[-dist:-dist+length] into output.
		if dist > len(f.hist) {
			f.err = InternalError("bad history distance")
			return
		}

		// No check on length; encoding can be prescient.
		if !f.hfull && dist > f.hp {
			f.err = CorruptInputError(f.roffset)
			return
		}

		f.copyLen, f.copyDist = length, dist
		if f.copyHist() {
			return
		}
	}
}

// copyHist copies f.copyLen bytes from f.hist (f.copyDist bytes ago) to itself.
// It reports whether the f.hist buffer is full.
func (f *decompressor) copyHist() bool {
	p := f.hp - f.copyDist
	if p < 0 {
		p += len(f.hist)
	}
	for f.copyLen > 0 {
		n := f.copyLen
		if x := len(f.hist) - f.hp; n > x {
			n = x
		}
		if x := len(f.hist) - p; n > x {
			n = x
		}
		forwardCopy(f.hist[:], f.hp, p, n)
		p += n
		f.hp += n
		f.copyLen -= n
		if f.hp == len(f.hist) {
			// After flush continue copying out of history.
			f.flush((*decompressor).copyHuff)
			return true
		}
		if p == len(f.hist) {
			p = 0
		}
	}
	return false
}

func (f *decompressor) copyHuff() {
	if f.copyHist() {
		return
	}
	f.huffmanBlock()
}

// Copy a single uncompressed data block from input to output.
func (f *decompressor) dataBlock() {
	// Uncompressed.
	// Discard current half-byte.
	f.nb = 0
	f.b = 0

	// Length then ones-complement of length.
	nr, err := io.ReadFull(f.r, f.buf[0:4])
	f.roffset += int64(nr)
	if err != nil {
		f.err = &ReadError{f.roffset, err}
		return
	}
	n := int(f.buf[0]) | int(f.buf[1])<<8
	nn := int(f.buf[2]) | int(f.buf[3])<<8
	if uint16(nn) != uint16(^n) {
		f.err = CorruptInputError(f.roffset)
		return
	}

	if n == 0 {
		// 0-length block means sync
		f.flush((*decompressor).nextBlock)
		return
	}

	f.copyLen = n
	f.copyData()
}

// copyData copies f.copyLen bytes from the underlying reader into f.hist.
// It pauses for reads when f.hist is full.
func (f *decompressor) copyData() {
	n := f.copyLen
	for n > 0 {
		m := len(f.hist) - f.hp
		if m > n {
			m = n
		}
		m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
		f.roffset += int64(m)
		if err != nil {
			f.err = &ReadError{f.roffset, err}
			return
		}
		n -= m
		f.hp += m
		if f.hp == len(f.hist) {
			f.copyLen = n
			f.flush((*decompressor).copyData)
			return
		}
	}
	f.step = (*decompressor).nextBlock
}

func (f *decompressor) setDict(dict []byte) {
	if len(dict) > len(f.hist) {
		// Will only remember the tail.
		dict = dict[len(dict)-len(f.hist):]
	}

	f.hp = copy(f.hist[:], dict)
	if f.hp == len(f.hist) {
		f.hp = 0
		f.hfull = true
	}
	f.hw = f.hp
}

func (f *decompressor) moreBits() error {
	c, err := f.r.ReadByte()
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		return err
	}
	f.roffset++
	f.b |= uint32(c) << f.nb
	f.nb += 8
	return nil
}

// Read the next Huffman-encoded symbol from f according to h.
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
	n := uint(h.min)
	for {
		for f.nb < n {
			if err := f.moreBits(); err != nil {
				return 0, err
			}
		}
		chunk := h.chunks[f.b&(huffmanNumChunks-1)]
		n = uint(chunk & huffmanCountMask)
		if n > huffmanChunkBits {
			chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
			n = uint(chunk & huffmanCountMask)
			if n == 0 {
				f.err = CorruptInputError(f.roffset)
				return 0, f.err
			}
		}
		if n <= f.nb {
			f.b >>= n
			f.nb -= n
			return int(chunk >> huffmanValueShift), nil
		}
	}
}

// Flush any buffered output to the underlying writer.
func (f *decompressor) flush(step func(*decompressor)) {
	f.toRead = f.hist[f.hw:f.hp]
	f.woffset += int64(f.hp - f.hw)
	f.hw = f.hp
	if f.hp == len(f.hist) {
		f.hp = 0
		f.hw = 0
		f.hfull = true
	}
	f.step = step
}

func makeReader(r io.Reader) Reader {
	if rr, ok := r.(Reader); ok {
		return rr
	}
	return bufio.NewReader(r)
}

// NewReader returns a new ReadCloser that can be used
// to read the uncompressed version of r.  It is the caller's
// responsibility to call Close on the ReadCloser when
// finished reading.
func NewReader(r io.Reader) io.ReadCloser {
	var f decompressor
	f.bits = new([maxLit + maxDist]int)
	f.codebits = new([numCodes]int)
	f.r = makeReader(r)
	f.hist = new([maxHist]byte)
	f.step = (*decompressor).nextBlock
	return &f
}

// NewReaderDict is like NewReader but initializes the reader
// with a preset dictionary.  The returned Reader behaves as if
// the uncompressed data stream started with the given dictionary,
// which has already been read.  NewReaderDict is typically used
// to read data compressed by NewWriterDict.
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
	var f decompressor
	f.r = makeReader(r)
	f.hist = new([maxHist]byte)
	f.bits = new([maxLit + maxDist]int)
	f.codebits = new([numCodes]int)
	f.step = (*decompressor).nextBlock
	f.setDict(dict)
	return &f
}