summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/tls/conn.go
blob: 2e64b88a68971f35340b1db04facb63abf041674 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// TLS low level connection and record layer

package tls

import (
	"bytes"
	"crypto/cipher"
	"crypto/subtle"
	"crypto/x509"
	"errors"
	"io"
	"net"
	"sync"
	"time"
)

// A Conn represents a secured connection.
// It implements the net.Conn interface.
type Conn struct {
	// constant
	conn     net.Conn
	isClient bool

	// constant after handshake; protected by handshakeMutex
	handshakeMutex    sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
	vers              uint16     // TLS version
	haveVers          bool       // version has been negotiated
	config            *Config    // configuration passed to constructor
	handshakeComplete bool
	didResume         bool // whether this connection was a session resumption
	cipherSuite       uint16
	ocspResponse      []byte // stapled OCSP response
	peerCertificates  []*x509.Certificate
	// verifiedChains contains the certificate chains that we built, as
	// opposed to the ones presented by the server.
	verifiedChains [][]*x509.Certificate
	// serverName contains the server name indicated by the client, if any.
	serverName string

	clientProtocol         string
	clientProtocolFallback bool

	// first permanent error
	connErr

	// input/output
	in, out  halfConn     // in.Mutex < out.Mutex
	rawInput *block       // raw input, right off the wire
	input    *block       // application data waiting to be read
	hand     bytes.Buffer // handshake data waiting to be read

	tmp [16]byte
}

type connErr struct {
	mu    sync.Mutex
	value error
}

func (e *connErr) setError(err error) error {
	e.mu.Lock()
	defer e.mu.Unlock()

	if e.value == nil {
		e.value = err
	}
	return err
}

func (e *connErr) error() error {
	e.mu.Lock()
	defer e.mu.Unlock()
	return e.value
}

// Access to net.Conn methods.
// Cannot just embed net.Conn because that would
// export the struct field too.

// LocalAddr returns the local network address.
func (c *Conn) LocalAddr() net.Addr {
	return c.conn.LocalAddr()
}

// RemoteAddr returns the remote network address.
func (c *Conn) RemoteAddr() net.Addr {
	return c.conn.RemoteAddr()
}

// SetDeadline sets the read and write deadlines associated with the connection.
// A zero value for t means Read and Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetDeadline(t time.Time) error {
	return c.conn.SetDeadline(t)
}

// SetReadDeadline sets the read deadline on the underlying connection.
// A zero value for t means Read will not time out.
func (c *Conn) SetReadDeadline(t time.Time) error {
	return c.conn.SetReadDeadline(t)
}

// SetWriteDeadline sets the write deadline on the underlying conneciton.
// A zero value for t means Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetWriteDeadline(t time.Time) error {
	return c.conn.SetWriteDeadline(t)
}

// A halfConn represents one direction of the record layer
// connection, either sending or receiving.
type halfConn struct {
	sync.Mutex
	version uint16      // protocol version
	cipher  interface{} // cipher algorithm
	mac     macFunction
	seq     [8]byte // 64-bit sequence number
	bfree   *block  // list of free blocks

	nextCipher interface{} // next encryption state
	nextMac    macFunction // next MAC algorithm

	// used to save allocating a new buffer for each MAC.
	inDigestBuf, outDigestBuf []byte
}

// prepareCipherSpec sets the encryption and MAC states
// that a subsequent changeCipherSpec will use.
func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
	hc.version = version
	hc.nextCipher = cipher
	hc.nextMac = mac
}

// changeCipherSpec changes the encryption and MAC states
// to the ones previously passed to prepareCipherSpec.
func (hc *halfConn) changeCipherSpec() error {
	if hc.nextCipher == nil {
		return alertInternalError
	}
	hc.cipher = hc.nextCipher
	hc.mac = hc.nextMac
	hc.nextCipher = nil
	hc.nextMac = nil
	for i := range hc.seq {
		hc.seq[i] = 0
	}
	return nil
}

// incSeq increments the sequence number.
func (hc *halfConn) incSeq() {
	for i := 7; i >= 0; i-- {
		hc.seq[i]++
		if hc.seq[i] != 0 {
			return
		}
	}

	// Not allowed to let sequence number wrap.
	// Instead, must renegotiate before it does.
	// Not likely enough to bother.
	panic("TLS: sequence number wraparound")
}

// resetSeq resets the sequence number to zero.
func (hc *halfConn) resetSeq() {
	for i := range hc.seq {
		hc.seq[i] = 0
	}
}

// removePadding returns an unpadded slice, in constant time, which is a prefix
// of the input. It also returns a byte which is equal to 255 if the padding
// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
func removePadding(payload []byte) ([]byte, byte) {
	if len(payload) < 1 {
		return payload, 0
	}

	paddingLen := payload[len(payload)-1]
	t := uint(len(payload)-1) - uint(paddingLen)
	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
	good := byte(int32(^t) >> 31)

	toCheck := 255 // the maximum possible padding length
	// The length of the padded data is public, so we can use an if here
	if toCheck+1 > len(payload) {
		toCheck = len(payload) - 1
	}

	for i := 0; i < toCheck; i++ {
		t := uint(paddingLen) - uint(i)
		// if i <= paddingLen then the MSB of t is zero
		mask := byte(int32(^t) >> 31)
		b := payload[len(payload)-1-i]
		good &^= mask&paddingLen ^ mask&b
	}

	// We AND together the bits of good and replicate the result across
	// all the bits.
	good &= good << 4
	good &= good << 2
	good &= good << 1
	good = uint8(int8(good) >> 7)

	toRemove := good&paddingLen + 1
	return payload[:len(payload)-int(toRemove)], good
}

// removePaddingSSL30 is a replacement for removePadding in the case that the
// protocol version is SSLv3. In this version, the contents of the padding
// are random and cannot be checked.
func removePaddingSSL30(payload []byte) ([]byte, byte) {
	if len(payload) < 1 {
		return payload, 0
	}

	paddingLen := int(payload[len(payload)-1]) + 1
	if paddingLen > len(payload) {
		return payload, 0
	}

	return payload[:len(payload)-paddingLen], 255
}

func roundUp(a, b int) int {
	return a + (b-a%b)%b
}

// cbcMode is an interface for block ciphers using cipher block chaining.
type cbcMode interface {
	cipher.BlockMode
	SetIV([]byte)
}

// decrypt checks and strips the mac and decrypts the data in b. Returns a
// success boolean, the number of bytes to skip from the start of the record in
// order to get the application payload, and an optional alert value.
func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
	// pull out payload
	payload := b.data[recordHeaderLen:]

	macSize := 0
	if hc.mac != nil {
		macSize = hc.mac.Size()
	}

	paddingGood := byte(255)
	explicitIVLen := 0

	// decrypt
	if hc.cipher != nil {
		switch c := hc.cipher.(type) {
		case cipher.Stream:
			c.XORKeyStream(payload, payload)
		case cipher.AEAD:
			explicitIVLen = 8
			if len(payload) < explicitIVLen {
				return false, 0, alertBadRecordMAC
			}
			nonce := payload[:8]
			payload = payload[8:]

			var additionalData [13]byte
			copy(additionalData[:], hc.seq[:])
			copy(additionalData[8:], b.data[:3])
			n := len(payload) - c.Overhead()
			additionalData[11] = byte(n >> 8)
			additionalData[12] = byte(n)
			var err error
			payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
			if err != nil {
				return false, 0, alertBadRecordMAC
			}
			b.resize(recordHeaderLen + explicitIVLen + len(payload))
		case cbcMode:
			blockSize := c.BlockSize()
			if hc.version >= VersionTLS11 {
				explicitIVLen = blockSize
			}

			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
				return false, 0, alertBadRecordMAC
			}

			if explicitIVLen > 0 {
				c.SetIV(payload[:explicitIVLen])
				payload = payload[explicitIVLen:]
			}
			c.CryptBlocks(payload, payload)
			if hc.version == VersionSSL30 {
				payload, paddingGood = removePaddingSSL30(payload)
			} else {
				payload, paddingGood = removePadding(payload)
			}
			b.resize(recordHeaderLen + explicitIVLen + len(payload))

			// note that we still have a timing side-channel in the
			// MAC check, below. An attacker can align the record
			// so that a correct padding will cause one less hash
			// block to be calculated. Then they can iteratively
			// decrypt a record by breaking each byte. See
			// "Password Interception in a SSL/TLS Channel", Brice
			// Canvel et al.
			//
			// However, our behavior matches OpenSSL, so we leak
			// only as much as they do.
		default:
			panic("unknown cipher type")
		}
	}

	// check, strip mac
	if hc.mac != nil {
		if len(payload) < macSize {
			return false, 0, alertBadRecordMAC
		}

		// strip mac off payload, b.data
		n := len(payload) - macSize
		b.data[3] = byte(n >> 8)
		b.data[4] = byte(n)
		b.resize(recordHeaderLen + explicitIVLen + n)
		remoteMAC := payload[n:]
		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])

		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
			return false, 0, alertBadRecordMAC
		}
		hc.inDigestBuf = localMAC
	}
	hc.incSeq()

	return true, recordHeaderLen + explicitIVLen, 0
}

// padToBlockSize calculates the needed padding block, if any, for a payload.
// On exit, prefix aliases payload and extends to the end of the last full
// block of payload. finalBlock is a fresh slice which contains the contents of
// any suffix of payload as well as the needed padding to make finalBlock a
// full block.
func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
	overrun := len(payload) % blockSize
	paddingLen := blockSize - overrun
	prefix = payload[:len(payload)-overrun]
	finalBlock = make([]byte, blockSize)
	copy(finalBlock, payload[len(payload)-overrun:])
	for i := overrun; i < blockSize; i++ {
		finalBlock[i] = byte(paddingLen - 1)
	}
	return
}

// encrypt encrypts and macs the data in b.
func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
	// mac
	if hc.mac != nil {
		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])

		n := len(b.data)
		b.resize(n + len(mac))
		copy(b.data[n:], mac)
		hc.outDigestBuf = mac
	}

	payload := b.data[recordHeaderLen:]

	// encrypt
	if hc.cipher != nil {
		switch c := hc.cipher.(type) {
		case cipher.Stream:
			c.XORKeyStream(payload, payload)
		case cipher.AEAD:
			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
			b.resize(len(b.data) + c.Overhead())
			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
			payload := b.data[recordHeaderLen+explicitIVLen:]
			payload = payload[:payloadLen]

			var additionalData [13]byte
			copy(additionalData[:], hc.seq[:])
			copy(additionalData[8:], b.data[:3])
			additionalData[11] = byte(payloadLen >> 8)
			additionalData[12] = byte(payloadLen)

			c.Seal(payload[:0], nonce, payload, additionalData[:])
		case cbcMode:
			blockSize := c.BlockSize()
			if explicitIVLen > 0 {
				c.SetIV(payload[:explicitIVLen])
				payload = payload[explicitIVLen:]
			}
			prefix, finalBlock := padToBlockSize(payload, blockSize)
			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
		default:
			panic("unknown cipher type")
		}
	}

	// update length to include MAC and any block padding needed.
	n := len(b.data) - recordHeaderLen
	b.data[3] = byte(n >> 8)
	b.data[4] = byte(n)
	hc.incSeq()

	return true, 0
}

// A block is a simple data buffer.
type block struct {
	data []byte
	off  int // index for Read
	link *block
}

// resize resizes block to be n bytes, growing if necessary.
func (b *block) resize(n int) {
	if n > cap(b.data) {
		b.reserve(n)
	}
	b.data = b.data[0:n]
}

// reserve makes sure that block contains a capacity of at least n bytes.
func (b *block) reserve(n int) {
	if cap(b.data) >= n {
		return
	}
	m := cap(b.data)
	if m == 0 {
		m = 1024
	}
	for m < n {
		m *= 2
	}
	data := make([]byte, len(b.data), m)
	copy(data, b.data)
	b.data = data
}

// readFromUntil reads from r into b until b contains at least n bytes
// or else returns an error.
func (b *block) readFromUntil(r io.Reader, n int) error {
	// quick case
	if len(b.data) >= n {
		return nil
	}

	// read until have enough.
	b.reserve(n)
	for {
		m, err := r.Read(b.data[len(b.data):cap(b.data)])
		b.data = b.data[0 : len(b.data)+m]
		if len(b.data) >= n {
			break
		}
		if err != nil {
			return err
		}
	}
	return nil
}

func (b *block) Read(p []byte) (n int, err error) {
	n = copy(p, b.data[b.off:])
	b.off += n
	return
}

// newBlock allocates a new block, from hc's free list if possible.
func (hc *halfConn) newBlock() *block {
	b := hc.bfree
	if b == nil {
		return new(block)
	}
	hc.bfree = b.link
	b.link = nil
	b.resize(0)
	return b
}

// freeBlock returns a block to hc's free list.
// The protocol is such that each side only has a block or two on
// its free list at a time, so there's no need to worry about
// trimming the list, etc.
func (hc *halfConn) freeBlock(b *block) {
	b.link = hc.bfree
	hc.bfree = b
}

// splitBlock splits a block after the first n bytes,
// returning a block with those n bytes and a
// block with the remainder.  the latter may be nil.
func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
	if len(b.data) <= n {
		return b, nil
	}
	bb := hc.newBlock()
	bb.resize(len(b.data) - n)
	copy(bb.data, b.data[n:])
	b.data = b.data[0:n]
	return b, bb
}

// readRecord reads the next TLS record from the connection
// and updates the record layer state.
// c.in.Mutex <= L; c.input == nil.
func (c *Conn) readRecord(want recordType) error {
	// Caller must be in sync with connection:
	// handshake data if handshake not yet completed,
	// else application data.  (We don't support renegotiation.)
	switch want {
	default:
		return c.sendAlert(alertInternalError)
	case recordTypeHandshake, recordTypeChangeCipherSpec:
		if c.handshakeComplete {
			return c.sendAlert(alertInternalError)
		}
	case recordTypeApplicationData:
		if !c.handshakeComplete {
			return c.sendAlert(alertInternalError)
		}
	}

Again:
	if c.rawInput == nil {
		c.rawInput = c.in.newBlock()
	}
	b := c.rawInput

	// Read header, payload.
	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
		// RFC suggests that EOF without an alertCloseNotify is
		// an error, but popular web sites seem to do this,
		// so we can't make it an error.
		// if err == io.EOF {
		// 	err = io.ErrUnexpectedEOF
		// }
		if e, ok := err.(net.Error); !ok || !e.Temporary() {
			c.setError(err)
		}
		return err
	}
	typ := recordType(b.data[0])

	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
	// start with a uint16 length where the MSB is set and the first record
	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
	// an SSLv2 client.
	if want == recordTypeHandshake && typ == 0x80 {
		c.sendAlert(alertProtocolVersion)
		return errors.New("tls: unsupported SSLv2 handshake received")
	}

	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
	n := int(b.data[3])<<8 | int(b.data[4])
	if c.haveVers && vers != c.vers {
		return c.sendAlert(alertProtocolVersion)
	}
	if n > maxCiphertext {
		return c.sendAlert(alertRecordOverflow)
	}
	if !c.haveVers {
		// First message, be extra suspicious:
		// this might not be a TLS client.
		// Bail out before reading a full 'body', if possible.
		// The current max version is 3.1.
		// If the version is >= 16.0, it's probably not real.
		// Similarly, a clientHello message encodes in
		// well under a kilobyte.  If the length is >= 12 kB,
		// it's probably not real.
		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
			return c.sendAlert(alertUnexpectedMessage)
		}
	}
	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		if e, ok := err.(net.Error); !ok || !e.Temporary() {
			c.setError(err)
		}
		return err
	}

	// Process message.
	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
	ok, off, err := c.in.decrypt(b)
	if !ok {
		return c.sendAlert(err)
	}
	b.off = off
	data := b.data[b.off:]
	if len(data) > maxPlaintext {
		c.sendAlert(alertRecordOverflow)
		c.in.freeBlock(b)
		return c.error()
	}

	switch typ {
	default:
		c.sendAlert(alertUnexpectedMessage)

	case recordTypeAlert:
		if len(data) != 2 {
			c.sendAlert(alertUnexpectedMessage)
			break
		}
		if alert(data[1]) == alertCloseNotify {
			c.setError(io.EOF)
			break
		}
		switch data[0] {
		case alertLevelWarning:
			// drop on the floor
			c.in.freeBlock(b)
			goto Again
		case alertLevelError:
			c.setError(&net.OpError{Op: "remote error", Err: alert(data[1])})
		default:
			c.sendAlert(alertUnexpectedMessage)
		}

	case recordTypeChangeCipherSpec:
		if typ != want || len(data) != 1 || data[0] != 1 {
			c.sendAlert(alertUnexpectedMessage)
			break
		}
		err := c.in.changeCipherSpec()
		if err != nil {
			c.sendAlert(err.(alert))
		}

	case recordTypeApplicationData:
		if typ != want {
			c.sendAlert(alertUnexpectedMessage)
			break
		}
		c.input = b
		b = nil

	case recordTypeHandshake:
		// TODO(rsc): Should at least pick off connection close.
		if typ != want {
			return c.sendAlert(alertNoRenegotiation)
		}
		c.hand.Write(data)
	}

	if b != nil {
		c.in.freeBlock(b)
	}
	return c.error()
}

// sendAlert sends a TLS alert message.
// c.out.Mutex <= L.
func (c *Conn) sendAlertLocked(err alert) error {
	switch err {
	case alertNoRenegotiation, alertCloseNotify:
		c.tmp[0] = alertLevelWarning
	default:
		c.tmp[0] = alertLevelError
	}
	c.tmp[1] = byte(err)
	c.writeRecord(recordTypeAlert, c.tmp[0:2])
	// closeNotify is a special case in that it isn't an error:
	if err != alertCloseNotify {
		return c.setError(&net.OpError{Op: "local error", Err: err})
	}
	return nil
}

// sendAlert sends a TLS alert message.
// L < c.out.Mutex.
func (c *Conn) sendAlert(err alert) error {
	c.out.Lock()
	defer c.out.Unlock()
	return c.sendAlertLocked(err)
}

// writeRecord writes a TLS record with the given type and payload
// to the connection and updates the record layer state.
// c.out.Mutex <= L.
func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
	b := c.out.newBlock()
	for len(data) > 0 {
		m := len(data)
		if m > maxPlaintext {
			m = maxPlaintext
		}
		explicitIVLen := 0
		explicitIVIsSeq := false

		var cbc cbcMode
		if c.out.version >= VersionTLS11 {
			var ok bool
			if cbc, ok = c.out.cipher.(cbcMode); ok {
				explicitIVLen = cbc.BlockSize()
			}
		}
		if explicitIVLen == 0 {
			if _, ok := c.out.cipher.(cipher.AEAD); ok {
				explicitIVLen = 8
				// The AES-GCM construction in TLS has an
				// explicit nonce so that the nonce can be
				// random. However, the nonce is only 8 bytes
				// which is too small for a secure, random
				// nonce. Therefore we use the sequence number
				// as the nonce.
				explicitIVIsSeq = true
			}
		}
		b.resize(recordHeaderLen + explicitIVLen + m)
		b.data[0] = byte(typ)
		vers := c.vers
		if vers == 0 {
			// Some TLS servers fail if the record version is
			// greater than TLS 1.0 for the initial ClientHello.
			vers = VersionTLS10
		}
		b.data[1] = byte(vers >> 8)
		b.data[2] = byte(vers)
		b.data[3] = byte(m >> 8)
		b.data[4] = byte(m)
		if explicitIVLen > 0 {
			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
			if explicitIVIsSeq {
				copy(explicitIV, c.out.seq[:])
			} else {
				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
					break
				}
			}
		}
		copy(b.data[recordHeaderLen+explicitIVLen:], data)
		c.out.encrypt(b, explicitIVLen)
		_, err = c.conn.Write(b.data)
		if err != nil {
			break
		}
		n += m
		data = data[m:]
	}
	c.out.freeBlock(b)

	if typ == recordTypeChangeCipherSpec {
		err = c.out.changeCipherSpec()
		if err != nil {
			// Cannot call sendAlert directly,
			// because we already hold c.out.Mutex.
			c.tmp[0] = alertLevelError
			c.tmp[1] = byte(err.(alert))
			c.writeRecord(recordTypeAlert, c.tmp[0:2])
			return n, c.setError(&net.OpError{Op: "local error", Err: err})
		}
	}
	return
}

// readHandshake reads the next handshake message from
// the record layer.
// c.in.Mutex < L; c.out.Mutex < L.
func (c *Conn) readHandshake() (interface{}, error) {
	for c.hand.Len() < 4 {
		if err := c.error(); err != nil {
			return nil, err
		}
		if err := c.readRecord(recordTypeHandshake); err != nil {
			return nil, err
		}
	}

	data := c.hand.Bytes()
	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
	if n > maxHandshake {
		c.sendAlert(alertInternalError)
		return nil, c.error()
	}
	for c.hand.Len() < 4+n {
		if err := c.error(); err != nil {
			return nil, err
		}
		if err := c.readRecord(recordTypeHandshake); err != nil {
			return nil, err
		}
	}
	data = c.hand.Next(4 + n)
	var m handshakeMessage
	switch data[0] {
	case typeClientHello:
		m = new(clientHelloMsg)
	case typeServerHello:
		m = new(serverHelloMsg)
	case typeCertificate:
		m = new(certificateMsg)
	case typeCertificateRequest:
		m = &certificateRequestMsg{
			hasSignatureAndHash: c.vers >= VersionTLS12,
		}
	case typeCertificateStatus:
		m = new(certificateStatusMsg)
	case typeServerKeyExchange:
		m = new(serverKeyExchangeMsg)
	case typeServerHelloDone:
		m = new(serverHelloDoneMsg)
	case typeClientKeyExchange:
		m = new(clientKeyExchangeMsg)
	case typeCertificateVerify:
		m = &certificateVerifyMsg{
			hasSignatureAndHash: c.vers >= VersionTLS12,
		}
	case typeNextProtocol:
		m = new(nextProtoMsg)
	case typeFinished:
		m = new(finishedMsg)
	default:
		c.sendAlert(alertUnexpectedMessage)
		return nil, alertUnexpectedMessage
	}

	// The handshake message unmarshallers
	// expect to be able to keep references to data,
	// so pass in a fresh copy that won't be overwritten.
	data = append([]byte(nil), data...)

	if !m.unmarshal(data) {
		c.sendAlert(alertUnexpectedMessage)
		return nil, alertUnexpectedMessage
	}
	return m, nil
}

// Write writes data to the connection.
func (c *Conn) Write(b []byte) (int, error) {
	if err := c.error(); err != nil {
		return 0, err
	}

	if err := c.Handshake(); err != nil {
		return 0, c.setError(err)
	}

	c.out.Lock()
	defer c.out.Unlock()

	if !c.handshakeComplete {
		return 0, alertInternalError
	}

	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
	// attack when using block mode ciphers due to predictable IVs.
	// This can be prevented by splitting each Application Data
	// record into two records, effectively randomizing the IV.
	//
	// http://www.openssl.org/~bodo/tls-cbc.txt
	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html

	var m int
	if len(b) > 1 && c.vers <= VersionTLS10 {
		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
			if err != nil {
				return n, c.setError(err)
			}
			m, b = 1, b[1:]
		}
	}

	n, err := c.writeRecord(recordTypeApplicationData, b)
	return n + m, c.setError(err)
}

// Read can be made to time out and return a net.Error with Timeout() == true
// after a fixed time limit; see SetDeadline and SetReadDeadline.
func (c *Conn) Read(b []byte) (n int, err error) {
	if err = c.Handshake(); err != nil {
		return
	}

	c.in.Lock()
	defer c.in.Unlock()

	// Some OpenSSL servers send empty records in order to randomize the
	// CBC IV. So this loop ignores a limited number of empty records.
	const maxConsecutiveEmptyRecords = 100
	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
		for c.input == nil && c.error() == nil {
			if err := c.readRecord(recordTypeApplicationData); err != nil {
				// Soft error, like EAGAIN
				return 0, err
			}
		}
		if err := c.error(); err != nil {
			return 0, err
		}

		n, err = c.input.Read(b)
		if c.input.off >= len(c.input.data) {
			c.in.freeBlock(c.input)
			c.input = nil
		}

		if n != 0 || err != nil {
			return n, err
		}
	}

	return 0, io.ErrNoProgress
}

// Close closes the connection.
func (c *Conn) Close() error {
	var alertErr error

	c.handshakeMutex.Lock()
	defer c.handshakeMutex.Unlock()
	if c.handshakeComplete {
		alertErr = c.sendAlert(alertCloseNotify)
	}

	if err := c.conn.Close(); err != nil {
		return err
	}
	return alertErr
}

// Handshake runs the client or server handshake
// protocol if it has not yet been run.
// Most uses of this package need not call Handshake
// explicitly: the first Read or Write will call it automatically.
func (c *Conn) Handshake() error {
	c.handshakeMutex.Lock()
	defer c.handshakeMutex.Unlock()
	if err := c.error(); err != nil {
		return err
	}
	if c.handshakeComplete {
		return nil
	}
	if c.isClient {
		return c.clientHandshake()
	}
	return c.serverHandshake()
}

// ConnectionState returns basic TLS details about the connection.
func (c *Conn) ConnectionState() ConnectionState {
	c.handshakeMutex.Lock()
	defer c.handshakeMutex.Unlock()

	var state ConnectionState
	state.HandshakeComplete = c.handshakeComplete
	if c.handshakeComplete {
		state.NegotiatedProtocol = c.clientProtocol
		state.DidResume = c.didResume
		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
		state.CipherSuite = c.cipherSuite
		state.PeerCertificates = c.peerCertificates
		state.VerifiedChains = c.verifiedChains
		state.ServerName = c.serverName
	}

	return state
}

// OCSPResponse returns the stapled OCSP response from the TLS server, if
// any. (Only valid for client connections.)
func (c *Conn) OCSPResponse() []byte {
	c.handshakeMutex.Lock()
	defer c.handshakeMutex.Unlock()

	return c.ocspResponse
}

// VerifyHostname checks that the peer certificate chain is valid for
// connecting to host.  If so, it returns nil; if not, it returns an error
// describing the problem.
func (c *Conn) VerifyHostname(host string) error {
	c.handshakeMutex.Lock()
	defer c.handshakeMutex.Unlock()
	if !c.isClient {
		return errors.New("VerifyHostname called on TLS server connection")
	}
	if !c.handshakeComplete {
		return errors.New("TLS handshake has not yet been performed")
	}
	return c.peerCertificates[0].VerifyHostname(host)
}