summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/tls/prf.go
blob: df1eaad0586316fb25fd7576eb63f7d101ae4385 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
	"crypto/hmac"
	"crypto/md5"
	"crypto/sha1"
	"hash"
)

// Split a premaster secret in two as specified in RFC 4346, section 5.
func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
	s1 = secret[0 : (len(secret)+1)/2]
	s2 = secret[len(secret)/2:]
	return
}

// pHash implements the P_hash function, as defined in RFC 4346, section 5.
func pHash(result, secret, seed []byte, hash func() hash.Hash) {
	h := hmac.New(hash, secret)
	h.Write(seed)
	a := h.Sum(nil)

	j := 0
	for j < len(result) {
		h.Reset()
		h.Write(a)
		h.Write(seed)
		b := h.Sum(nil)
		todo := len(b)
		if j+todo > len(result) {
			todo = len(result) - j
		}
		copy(result[j:j+todo], b)
		j += todo

		h.Reset()
		h.Write(a)
		a = h.Sum(nil)
	}
}

// pRF10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5.
func pRF10(result, secret, label, seed []byte) {
	hashSHA1 := sha1.New
	hashMD5 := md5.New

	labelAndSeed := make([]byte, len(label)+len(seed))
	copy(labelAndSeed, label)
	copy(labelAndSeed[len(label):], seed)

	s1, s2 := splitPreMasterSecret(secret)
	pHash(result, s1, labelAndSeed, hashMD5)
	result2 := make([]byte, len(result))
	pHash(result2, s2, labelAndSeed, hashSHA1)

	for i, b := range result2 {
		result[i] ^= b
	}
}

// pRF30 implements the SSL 3.0 pseudo-random function, as defined in
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6.
func pRF30(result, secret, label, seed []byte) {
	hashSHA1 := sha1.New()
	hashMD5 := md5.New()

	done := 0
	i := 0
	// RFC5246 section 6.3 says that the largest PRF output needed is 128
	// bytes. Since no more ciphersuites will be added to SSLv3, this will
	// remain true. Each iteration gives us 16 bytes so 10 iterations will
	// be sufficient.
	var b [11]byte
	for done < len(result) {
		for j := 0; j <= i; j++ {
			b[j] = 'A' + byte(i)
		}

		hashSHA1.Reset()
		hashSHA1.Write(b[:i+1])
		hashSHA1.Write(secret)
		hashSHA1.Write(seed)
		digest := hashSHA1.Sum(nil)

		hashMD5.Reset()
		hashMD5.Write(secret)
		hashMD5.Write(digest)

		done += copy(result[done:], hashMD5.Sum(nil))
		i++
	}
}

const (
	tlsRandomLength      = 32 // Length of a random nonce in TLS 1.1.
	masterSecretLength   = 48 // Length of a master secret in TLS 1.1.
	finishedVerifyLength = 12 // Length of verify_data in a Finished message.
)

var masterSecretLabel = []byte("master secret")
var keyExpansionLabel = []byte("key expansion")
var clientFinishedLabel = []byte("client finished")
var serverFinishedLabel = []byte("server finished")

// masterFromPreMasterSecret generates the master secret from the pre-master
// secret. See http://tools.ietf.org/html/rfc5246#section-8.1
func masterFromPreMasterSecret(version uint16, preMasterSecret, clientRandom, serverRandom []byte) []byte {
	prf := pRF10
	if version == versionSSL30 {
		prf = pRF30
	}

	var seed [tlsRandomLength * 2]byte
	copy(seed[0:len(clientRandom)], clientRandom)
	copy(seed[len(clientRandom):], serverRandom)
	masterSecret := make([]byte, masterSecretLength)
	prf(masterSecret, preMasterSecret, masterSecretLabel, seed[0:])
	return masterSecret
}

// keysFromMasterSecret generates the connection keys from the master
// secret, given the lengths of the MAC key, cipher key and IV, as defined in
// RFC 2246, section 6.3.
func keysFromMasterSecret(version uint16, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
	prf := pRF10
	if version == versionSSL30 {
		prf = pRF30
	}

	var seed [tlsRandomLength * 2]byte
	copy(seed[0:len(clientRandom)], serverRandom)
	copy(seed[len(serverRandom):], clientRandom)

	n := 2*macLen + 2*keyLen + 2*ivLen
	keyMaterial := make([]byte, n)
	prf(keyMaterial, masterSecret, keyExpansionLabel, seed[0:])
	clientMAC = keyMaterial[:macLen]
	keyMaterial = keyMaterial[macLen:]
	serverMAC = keyMaterial[:macLen]
	keyMaterial = keyMaterial[macLen:]
	clientKey = keyMaterial[:keyLen]
	keyMaterial = keyMaterial[keyLen:]
	serverKey = keyMaterial[:keyLen]
	keyMaterial = keyMaterial[keyLen:]
	clientIV = keyMaterial[:ivLen]
	keyMaterial = keyMaterial[ivLen:]
	serverIV = keyMaterial[:ivLen]
	return
}

func newFinishedHash(version uint16) finishedHash {
	return finishedHash{md5.New(), sha1.New(), md5.New(), sha1.New(), version}
}

// A finishedHash calculates the hash of a set of handshake messages suitable
// for including in a Finished message.
type finishedHash struct {
	clientMD5  hash.Hash
	clientSHA1 hash.Hash
	serverMD5  hash.Hash
	serverSHA1 hash.Hash
	version    uint16
}

func (h finishedHash) Write(msg []byte) (n int, err error) {
	h.clientMD5.Write(msg)
	h.clientSHA1.Write(msg)
	h.serverMD5.Write(msg)
	h.serverSHA1.Write(msg)
	return len(msg), nil
}

// finishedSum10 calculates the contents of the verify_data member of a TLSv1
// Finished message given the MD5 and SHA1 hashes of a set of handshake
// messages.
func finishedSum10(md5, sha1, label, masterSecret []byte) []byte {
	seed := make([]byte, len(md5)+len(sha1))
	copy(seed, md5)
	copy(seed[len(md5):], sha1)
	out := make([]byte, finishedVerifyLength)
	pRF10(out, masterSecret, label, seed)
	return out
}

// finishedSum30 calculates the contents of the verify_data member of a SSLv3
// Finished message given the MD5 and SHA1 hashes of a set of handshake
// messages.
func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic [4]byte) []byte {
	md5.Write(magic[:])
	md5.Write(masterSecret)
	md5.Write(ssl30Pad1[:])
	md5Digest := md5.Sum(nil)

	md5.Reset()
	md5.Write(masterSecret)
	md5.Write(ssl30Pad2[:])
	md5.Write(md5Digest)
	md5Digest = md5.Sum(nil)

	sha1.Write(magic[:])
	sha1.Write(masterSecret)
	sha1.Write(ssl30Pad1[:40])
	sha1Digest := sha1.Sum(nil)

	sha1.Reset()
	sha1.Write(masterSecret)
	sha1.Write(ssl30Pad2[:40])
	sha1.Write(sha1Digest)
	sha1Digest = sha1.Sum(nil)

	ret := make([]byte, len(md5Digest)+len(sha1Digest))
	copy(ret, md5Digest)
	copy(ret[len(md5Digest):], sha1Digest)
	return ret
}

var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54}
var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52}

// clientSum returns the contents of the verify_data member of a client's
// Finished message.
func (h finishedHash) clientSum(masterSecret []byte) []byte {
	if h.version == versionSSL30 {
		return finishedSum30(h.clientMD5, h.clientSHA1, masterSecret, ssl3ClientFinishedMagic)
	}

	md5 := h.clientMD5.Sum(nil)
	sha1 := h.clientSHA1.Sum(nil)
	return finishedSum10(md5, sha1, clientFinishedLabel, masterSecret)
}

// serverSum returns the contents of the verify_data member of a server's
// Finished message.
func (h finishedHash) serverSum(masterSecret []byte) []byte {
	if h.version == versionSSL30 {
		return finishedSum30(h.serverMD5, h.serverSHA1, masterSecret, ssl3ServerFinishedMagic)
	}

	md5 := h.serverMD5.Sum(nil)
	sha1 := h.serverSHA1.Sum(nil)
	return finishedSum10(md5, sha1, serverFinishedLabel, masterSecret)
}