summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/tls/tls.go
blob: 6c67506fc3610aee314b138e7ccad5666684c46b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package tls partially implements TLS 1.2, as specified in RFC 5246.
package tls

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/rsa"
	"crypto/x509"
	"encoding/pem"
	"errors"
	"io/ioutil"
	"net"
	"strings"
)

// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must have
// at least one certificate.
func Server(conn net.Conn, config *Config) *Conn {
	return &Conn{conn: conn, config: config}
}

// Client returns a new TLS client side connection
// using conn as the underlying transport.
// Client interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Client(conn net.Conn, config *Config) *Conn {
	return &Conn{conn: conn, config: config, isClient: true}
}

// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
	net.Listener
	config *Config
}

// Accept waits for and returns the next incoming TLS connection.
// The returned connection c is a *tls.Conn.
func (l *listener) Accept() (c net.Conn, err error) {
	c, err = l.Listener.Accept()
	if err != nil {
		return
	}
	c = Server(c, l.config)
	return
}

// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with Server.
// The configuration config must be non-nil and must have
// at least one certificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
	l := new(listener)
	l.Listener = inner
	l.config = config
	return l
}

// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must have
// at least one certificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
	if config == nil || len(config.Certificates) == 0 {
		return nil, errors.New("tls.Listen: no certificates in configuration")
	}
	l, err := net.Listen(network, laddr)
	if err != nil {
		return nil, err
	}
	return NewListener(l, config), nil
}

// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
	raddr := addr
	c, err := net.Dial(network, raddr)
	if err != nil {
		return nil, err
	}

	colonPos := strings.LastIndex(raddr, ":")
	if colonPos == -1 {
		colonPos = len(raddr)
	}
	hostname := raddr[:colonPos]

	if config == nil {
		config = defaultConfig()
	}
	// If no ServerName is set, infer the ServerName
	// from the hostname we're connecting to.
	if config.ServerName == "" {
		// Make a copy to avoid polluting argument or default.
		c := *config
		c.ServerName = hostname
		config = &c
	}
	conn := Client(c, config)
	if err = conn.Handshake(); err != nil {
		c.Close()
		return nil, err
	}
	return conn, nil
}

// LoadX509KeyPair reads and parses a public/private key pair from a pair of
// files. The files must contain PEM encoded data.
func LoadX509KeyPair(certFile, keyFile string) (cert Certificate, err error) {
	certPEMBlock, err := ioutil.ReadFile(certFile)
	if err != nil {
		return
	}
	keyPEMBlock, err := ioutil.ReadFile(keyFile)
	if err != nil {
		return
	}
	return X509KeyPair(certPEMBlock, keyPEMBlock)
}

// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (cert Certificate, err error) {
	var certDERBlock *pem.Block
	for {
		certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
		if certDERBlock == nil {
			break
		}
		if certDERBlock.Type == "CERTIFICATE" {
			cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
		}
	}

	if len(cert.Certificate) == 0 {
		err = errors.New("crypto/tls: failed to parse certificate PEM data")
		return
	}

	var keyDERBlock *pem.Block
	for {
		keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
		if keyDERBlock == nil {
			err = errors.New("crypto/tls: failed to parse key PEM data")
			return
		}
		if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
			break
		}
	}

	cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
	if err != nil {
		return
	}

	// We don't need to parse the public key for TLS, but we so do anyway
	// to check that it looks sane and matches the private key.
	x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
	if err != nil {
		return
	}

	switch pub := x509Cert.PublicKey.(type) {
	case *rsa.PublicKey:
		priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
		if !ok {
			err = errors.New("crypto/tls: private key type does not match public key type")
			return
		}
		if pub.N.Cmp(priv.N) != 0 {
			err = errors.New("crypto/tls: private key does not match public key")
			return
		}
	case *ecdsa.PublicKey:
		priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
		if !ok {
			err = errors.New("crypto/tls: private key type does not match public key type")
			return

		}
		if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
			err = errors.New("crypto/tls: private key does not match public key")
			return
		}
	default:
		err = errors.New("crypto/tls: unknown public key algorithm")
		return
	}

	return
}

// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS#1 private keys by default, while OpenSSL 1.0.0 generates PKCS#8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
	if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
		return key, nil
	}
	if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
		switch key := key.(type) {
		case *rsa.PrivateKey, *ecdsa.PrivateKey:
			return key, nil
		default:
			return nil, errors.New("crypto/tls: found unknown private key type in PKCS#8 wrapping")
		}
	}
	if key, err := x509.ParseECPrivateKey(der); err == nil {
		return key, nil
	}

	return nil, errors.New("crypto/tls: failed to parse private key")
}