summaryrefslogtreecommitdiff
path: root/src/pkg/math/big/arith.go
blob: 3d5a8682d94c53fa6c4c5f9d11ff80a4a80d0650 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file provides Go implementations of elementary multi-precision
// arithmetic operations on word vectors. Needed for platforms without
// assembly implementations of these routines.

package big

// A Word represents a single digit of a multi-precision unsigned integer.
type Word uintptr

const (
	// Compute the size _S of a Word in bytes.
	_m    = ^Word(0)
	_logS = _m>>8&1 + _m>>16&1 + _m>>32&1
	_S    = 1 << _logS

	_W = _S << 3 // word size in bits
	_B = 1 << _W // digit base
	_M = _B - 1  // digit mask

	_W2 = _W / 2   // half word size in bits
	_B2 = 1 << _W2 // half digit base
	_M2 = _B2 - 1  // half digit mask
)

// ----------------------------------------------------------------------------
// Elementary operations on words
//
// These operations are used by the vector operations below.

// z1<<_W + z0 = x+y+c, with c == 0 or 1
func addWW_g(x, y, c Word) (z1, z0 Word) {
	yc := y + c
	z0 = x + yc
	if z0 < x || yc < y {
		z1 = 1
	}
	return
}

// z1<<_W + z0 = x-y-c, with c == 0 or 1
func subWW_g(x, y, c Word) (z1, z0 Word) {
	yc := y + c
	z0 = x - yc
	if z0 > x || yc < y {
		z1 = 1
	}
	return
}

// z1<<_W + z0 = x*y
// Adapted from Warren, Hacker's Delight, p. 132.
func mulWW_g(x, y Word) (z1, z0 Word) {
	x0 := x & _M2
	x1 := x >> _W2
	y0 := y & _M2
	y1 := y >> _W2
	w0 := x0 * y0
	t := x1*y0 + w0>>_W2
	w1 := t & _M2
	w2 := t >> _W2
	w1 += x0 * y1
	z1 = x1*y1 + w2 + w1>>_W2
	z0 = x * y
	return
}

// z1<<_W + z0 = x*y + c
func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
	z1, zz0 := mulWW(x, y)
	if z0 = zz0 + c; z0 < zz0 {
		z1++
	}
	return
}

// Length of x in bits.
func bitLen_g(x Word) (n int) {
	for ; x >= 0x8000; x >>= 16 {
		n += 16
	}
	if x >= 0x80 {
		x >>= 8
		n += 8
	}
	if x >= 0x8 {
		x >>= 4
		n += 4
	}
	if x >= 0x2 {
		x >>= 2
		n += 2
	}
	if x >= 0x1 {
		n++
	}
	return
}

// log2 computes the integer binary logarithm of x.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0, the result is -1.
func log2(x Word) int {
	return bitLen(x) - 1
}

// Number of leading zeros in x.
func leadingZeros(x Word) uint {
	return uint(_W - bitLen(x))
}

// q = (u1<<_W + u0 - r)/y
// Adapted from Warren, Hacker's Delight, p. 152.
func divWW_g(u1, u0, v Word) (q, r Word) {
	if u1 >= v {
		return 1<<_W - 1, 1<<_W - 1
	}

	s := leadingZeros(v)
	v <<= s

	vn1 := v >> _W2
	vn0 := v & _M2
	un32 := u1<<s | u0>>(_W-s)
	un10 := u0 << s
	un1 := un10 >> _W2
	un0 := un10 & _M2
	q1 := un32 / vn1
	rhat := un32 - q1*vn1

	for q1 >= _B2 || q1*vn0 > _B2*rhat+un1 {
		q1--
		rhat += vn1
		if rhat >= _B2 {
			break
		}
	}

	un21 := un32*_B2 + un1 - q1*v
	q0 := un21 / vn1
	rhat = un21 - q0*vn1

	for q0 >= _B2 || q0*vn0 > _B2*rhat+un0 {
		q0--
		rhat += vn1
		if rhat >= _B2 {
			break
		}
	}

	return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s
}

func addVV_g(z, x, y []Word) (c Word) {
	for i := range z {
		c, z[i] = addWW_g(x[i], y[i], c)
	}
	return
}

func subVV_g(z, x, y []Word) (c Word) {
	for i := range z {
		c, z[i] = subWW_g(x[i], y[i], c)
	}
	return
}

func addVW_g(z, x []Word, y Word) (c Word) {
	c = y
	for i := range z {
		c, z[i] = addWW_g(x[i], c, 0)
	}
	return
}

func subVW_g(z, x []Word, y Word) (c Word) {
	c = y
	for i := range z {
		c, z[i] = subWW_g(x[i], c, 0)
	}
	return
}

func shlVU_g(z, x []Word, s uint) (c Word) {
	if n := len(z); n > 0 {
		ŝ := _W - s
		w1 := x[n-1]
		c = w1 >> ŝ
		for i := n - 1; i > 0; i-- {
			w := w1
			w1 = x[i-1]
			z[i] = w<<s | w1>>ŝ
		}
		z[0] = w1 << s
	}
	return
}

func shrVU_g(z, x []Word, s uint) (c Word) {
	if n := len(z); n > 0 {
		ŝ := _W - s
		w1 := x[0]
		c = w1 << ŝ
		for i := 0; i < n-1; i++ {
			w := w1
			w1 = x[i+1]
			z[i] = w>>s | w1<<ŝ
		}
		z[n-1] = w1 >> s
	}
	return
}

func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
	c = r
	for i := range z {
		c, z[i] = mulAddWWW_g(x[i], y, c)
	}
	return
}

func addMulVVW_g(z, x []Word, y Word) (c Word) {
	for i := range z {
		z1, z0 := mulAddWWW_g(x[i], y, z[i])
		c, z[i] = addWW_g(z0, c, 0)
		c += z1
	}
	return
}

func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) {
	r = xn
	for i := len(z) - 1; i >= 0; i-- {
		z[i], r = divWW_g(r, x[i], y)
	}
	return
}