1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements signed multi-precision integers.
package big
import (
"errors"
"fmt"
"io"
"math/rand"
"strings"
)
// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
type Int struct {
neg bool // sign
abs nat // absolute value of the integer
}
var intOne = &Int{false, natOne}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Int) Sign() int {
if len(x.abs) == 0 {
return 0
}
if x.neg {
return -1
}
return 1
}
// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
neg := false
if x < 0 {
neg = true
x = -x
}
z.abs = z.abs.setUint64(uint64(x))
z.neg = neg
return z
}
// SetUint64 sets z to x and returns z.
func (z *Int) SetUint64(x uint64) *Int {
z.abs = z.abs.setUint64(x)
z.neg = false
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
return new(Int).SetInt64(x)
}
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
if z != x {
z.abs = z.abs.set(x.abs)
z.neg = x.neg
}
return z
}
// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian Word slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (x *Int) Bits() []Word {
return x.abs
}
// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian Word slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (z *Int) SetBits(abs []Word) *Int {
z.abs = nat(abs).norm()
z.neg = false
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
z.Set(x)
z.neg = false
return z
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
z.Set(x)
z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
return z
}
// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
neg := x.neg
if x.neg == y.neg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.abs = z.abs.add(x.abs, y.abs)
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.abs.cmp(y.abs) >= 0 {
z.abs = z.abs.sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.sub(y.abs, x.abs)
}
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z
}
// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
neg := x.neg
if x.neg != y.neg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.abs = z.abs.add(x.abs, y.abs)
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.abs.cmp(y.abs) >= 0 {
z.abs = z.abs.sub(x.abs, y.abs)
} else {
neg = !neg
z.abs = z.abs.sub(y.abs, x.abs)
}
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z
}
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
z.abs = z.abs.mul(x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
switch {
case a > b:
return z.SetInt64(1) // empty range
case a <= 0 && b >= 0:
return z.SetInt64(0) // range includes 0
}
// a <= b && (b < 0 || a > 0)
neg := false
if a < 0 {
neg = (b-a)&1 == 0
a, b = -b, -a
}
z.abs = z.abs.mulRange(uint64(a), uint64(b))
z.neg = neg
return z
}
// Binomial sets z to the binomial coefficient of (n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
var a, b Int
a.MulRange(n-k+1, n)
b.MulRange(1, k)
return z.Quo(&a, &b)
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
z.abs, _ = z.abs.div(nil, x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
return z
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
return z
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
// q = x/y with the result truncated to zero
// r = x - y*q
//
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
// See DivMod for Euclidean division and modulus (unlike Go).
//
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
return z, r
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
y_neg := y.neg // z may be an alias for y
var r Int
z.QuoRem(x, y, &r)
if r.neg {
if y_neg {
z.Add(z, intOne)
} else {
z.Sub(z, intOne)
}
}
return z
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
y0 := y // save y
if z == y || alias(z.abs, y.abs) {
y0 = new(Int).Set(y)
}
var q Int
q.QuoRem(x, y, z)
if z.neg {
if y0.neg {
z.Sub(z, y0)
} else {
z.Add(z, y0)
}
}
return z
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
// q = x div y such that
// m = x - y*q with 0 <= m < |q|
//
// (See Raymond T. Boute, ``The Euclidean definition of the functions
// div and mod''. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
//
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
y0 := y // save y
if z == y || alias(z.abs, y.abs) {
y0 = new(Int).Set(y)
}
z.QuoRem(x, y, m)
if m.neg {
if y0.neg {
z.Add(z, intOne)
m.Sub(m, y0)
} else {
z.Sub(z, intOne)
m.Add(m, y0)
}
}
return z, m
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Int) Cmp(y *Int) (r int) {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
switch {
case x.neg == y.neg:
r = x.abs.cmp(y.abs)
if x.neg {
r = -r
}
case x.neg:
r = -1
default:
r = 1
}
return
}
func (x *Int) String() string {
switch {
case x == nil:
return "<nil>"
case x.neg:
return "-" + x.abs.decimalString()
}
return x.abs.decimalString()
}
func charset(ch rune) string {
switch ch {
case 'b':
return lowercaseDigits[0:2]
case 'o':
return lowercaseDigits[0:8]
case 'd', 's', 'v':
return lowercaseDigits[0:10]
case 'x':
return lowercaseDigits[0:16]
case 'X':
return uppercaseDigits[0:16]
}
return "" // unknown format
}
// write count copies of text to s
func writeMultiple(s fmt.State, text string, count int) {
if len(text) > 0 {
b := []byte(text)
for ; count > 0; count-- {
s.Write(b)
}
}
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
// Also supported are the full suite of package fmt's format
// verbs for integral types, including '+', '-', and ' '
// for sign control, '#' for leading zero in octal and for
// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
// respectively, specification of minimum digits precision,
// output field width, space or zero padding, and left or
// right justification.
//
func (x *Int) Format(s fmt.State, ch rune) {
cs := charset(ch)
// special cases
switch {
case cs == "":
// unknown format
fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
return
case x == nil:
fmt.Fprint(s, "<nil>")
return
}
// determine sign character
sign := ""
switch {
case x.neg:
sign = "-"
case s.Flag('+'): // supersedes ' ' when both specified
sign = "+"
case s.Flag(' '):
sign = " "
}
// determine prefix characters for indicating output base
prefix := ""
if s.Flag('#') {
switch ch {
case 'o': // octal
prefix = "0"
case 'x': // hexadecimal
prefix = "0x"
case 'X':
prefix = "0X"
}
}
// determine digits with base set by len(cs) and digit characters from cs
digits := x.abs.string(cs)
// number of characters for the three classes of number padding
var left int // space characters to left of digits for right justification ("%8d")
var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
var right int // space characters to right of digits for left justification ("%-8d")
// determine number padding from precision: the least number of digits to output
precision, precisionSet := s.Precision()
if precisionSet {
switch {
case len(digits) < precision:
zeroes = precision - len(digits) // count of zero padding
case digits == "0" && precision == 0:
return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
}
}
// determine field pad from width: the least number of characters to output
length := len(sign) + len(prefix) + zeroes + len(digits)
if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
switch d := width - length; {
case s.Flag('-'):
// pad on the right with spaces; supersedes '0' when both specified
right = d
case s.Flag('0') && !precisionSet:
// pad with zeroes unless precision also specified
zeroes = d
default:
// pad on the left with spaces
left = d
}
}
// print number as [left pad][sign][prefix][zero pad][digits][right pad]
writeMultiple(s, " ", left)
writeMultiple(s, sign, 1)
writeMultiple(s, prefix, 1)
writeMultiple(s, "0", zeroes)
writeMultiple(s, digits, 1)
writeMultiple(s, " ", right)
}
// scan sets z to the integer value corresponding to the longest possible prefix
// read from r representing a signed integer number in a given conversion base.
// It returns z, the actual conversion base used, and an error, if any. In the
// error case, the value of z is undefined but the returned value is nil. The
// syntax follows the syntax of integer literals in Go.
//
// The base argument must be 0 or a value from 2 through MaxBase. If the base
// is 0, the string prefix determines the actual conversion base. A prefix of
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {
// determine sign
ch, _, err := r.ReadRune()
if err != nil {
return nil, 0, err
}
neg := false
switch ch {
case '-':
neg = true
case '+': // nothing to do
default:
r.UnreadRune()
}
// determine mantissa
z.abs, base, err = z.abs.scan(r, base)
if err != nil {
return nil, base, err
}
z.neg = len(z.abs) > 0 && neg // 0 has no sign
return z, base, nil
}
// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
func (z *Int) Scan(s fmt.ScanState, ch rune) error {
s.SkipSpace() // skip leading space characters
base := 0
switch ch {
case 'b':
base = 2
case 'o':
base = 8
case 'd':
base = 10
case 'x', 'X':
base = 16
case 's', 'v':
// let scan determine the base
default:
return errors.New("Int.Scan: invalid verb")
}
_, _, err := z.scan(s, base)
return err
}
// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
v := int64(x.Uint64())
if x.neg {
v = -v
}
return v
}
// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func (x *Int) Uint64() uint64 {
if len(x.abs) == 0 {
return 0
}
v := uint64(x.abs[0])
if _W == 32 && len(x.abs) > 1 {
v |= uint64(x.abs[1]) << 32
}
return v
}
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value from 2 through MaxBase. If the base
// is 0, the string prefix determines the actual conversion base. A prefix of
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
func (z *Int) SetString(s string, base int) (*Int, bool) {
r := strings.NewReader(s)
_, _, err := z.scan(r, base)
if err != nil {
return nil, false
}
_, _, err = r.ReadRune()
if err != io.EOF {
return nil, false
}
return z, true // err == io.EOF => scan consumed all of s
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
z.abs = z.abs.setBytes(buf)
z.neg = false
return z
}
// Bytes returns the absolute value of x as a big-endian byte slice.
func (x *Int) Bytes() []byte {
buf := make([]byte, len(x.abs)*_S)
return buf[x.abs.bytes(buf):]
}
// BitLen returns the length of the absolute value of x in bits.
// The bit length of 0 is 0.
func (x *Int) BitLen() int {
return x.abs.bitLen()
}
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
// See Knuth, volume 2, section 4.6.3.
func (z *Int) Exp(x, y, m *Int) *Int {
var yWords nat
if !y.neg {
yWords = y.abs
}
// y >= 0
var mWords nat
if m != nil {
mWords = m.abs // m.abs may be nil for m == 0
}
z.abs = z.abs.expNN(x.abs, yWords, mWords)
z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
return z
}
// GCD sets z to the greatest common divisor of a and b, which both must
// be > 0, and returns z.
// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
// If either a or b is <= 0, GCD sets z = x = y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
if a.Sign() <= 0 || b.Sign() <= 0 {
z.SetInt64(0)
if x != nil {
x.SetInt64(0)
}
if y != nil {
y.SetInt64(0)
}
return z
}
if x == nil && y == nil {
return z.binaryGCD(a, b)
}
A := new(Int).Set(a)
B := new(Int).Set(b)
X := new(Int)
Y := new(Int).SetInt64(1)
lastX := new(Int).SetInt64(1)
lastY := new(Int)
q := new(Int)
temp := new(Int)
for len(B.abs) > 0 {
r := new(Int)
q, r = q.QuoRem(A, B, r)
A, B = B, r
temp.Set(X)
X.Mul(X, q)
X.neg = !X.neg
X.Add(X, lastX)
lastX.Set(temp)
temp.Set(Y)
Y.Mul(Y, q)
Y.neg = !Y.neg
Y.Add(Y, lastY)
lastY.Set(temp)
}
if x != nil {
*x = *lastX
}
if y != nil {
*y = *lastY
}
*z = *A
return z
}
// binaryGCD sets z to the greatest common divisor of a and b, which both must
// be > 0, and returns z.
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
func (z *Int) binaryGCD(a, b *Int) *Int {
u := z
v := new(Int)
// use one Euclidean iteration to ensure that u and v are approx. the same size
switch {
case len(a.abs) > len(b.abs):
u.Set(b)
v.Rem(a, b)
case len(a.abs) < len(b.abs):
u.Set(a)
v.Rem(b, a)
default:
u.Set(a)
v.Set(b)
}
// v might be 0 now
if len(v.abs) == 0 {
return u
}
// u > 0 && v > 0
// determine largest k such that u = u' << k, v = v' << k
k := u.abs.trailingZeroBits()
if vk := v.abs.trailingZeroBits(); vk < k {
k = vk
}
u.Rsh(u, k)
v.Rsh(v, k)
// determine t (we know that u > 0)
t := new(Int)
if u.abs[0]&1 != 0 {
// u is odd
t.Neg(v)
} else {
t.Set(u)
}
for len(t.abs) > 0 {
// reduce t
t.Rsh(t, t.abs.trailingZeroBits())
if t.neg {
v, t = t, v
v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
} else {
u, t = t, u
}
t.Sub(u, v)
}
return z.Lsh(u, k)
}
// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
// If it returns true, x is prime with probability 1 - 1/4^n.
// If it returns false, x is not prime.
func (x *Int) ProbablyPrime(n int) bool {
return !x.neg && x.abs.probablyPrime(n)
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
z.neg = false
if n.neg == true || len(n.abs) == 0 {
z.abs = nil
return z
}
z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
return z
}
// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
// p is a prime) and returns z.
func (z *Int) ModInverse(g, p *Int) *Int {
var d Int
d.GCD(z, nil, g, p)
// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
// that modulo p results in g*x = 1, therefore x is the inverse element.
if z.neg {
z.Add(z, p)
}
return z
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
z.abs = z.abs.shl(x.abs, n)
z.neg = x.neg
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
if x.neg {
// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
t = t.shr(t, n)
z.abs = t.add(t, natOne)
z.neg = true // z cannot be zero if x is negative
return z
}
z.abs = z.abs.shr(x.abs, n)
z.neg = false
return z
}
// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {
if i == 0 {
// optimization for common case: odd/even test of x
if len(x.abs) > 0 {
return uint(x.abs[0] & 1) // bit 0 is same for -x
}
return 0
}
if i < 0 {
panic("negative bit index")
}
if x.neg {
t := nat(nil).sub(x.abs, natOne)
return t.bit(uint(i)) ^ 1
}
return x.abs.bit(uint(i))
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is, if b is 1 SetBit sets z = x | (1 << i);
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
// SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
if i < 0 {
panic("negative bit index")
}
if x.neg {
t := z.abs.sub(x.abs, natOne)
t = t.setBit(t, uint(i), b^1)
z.abs = t.add(t, natOne)
z.neg = len(z.abs) > 0
return z
}
z.abs = z.abs.setBit(x.abs, uint(i), b)
z.neg = false
return z
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x & y == x & y
z.abs = z.abs.and(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // & is symmetric
}
// x & (-y) == x & ^(y-1) == x &^ (y-1)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.andNot(x.abs, y1)
z.neg = false
return z
}
// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.andNot(y1, x1)
z.neg = false
return z
}
// x &^ y == x &^ y
z.abs = z.abs.andNot(x.abs, y.abs)
z.neg = false
return z
}
if x.neg {
// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
x1 := nat(nil).sub(x.abs, natOne)
z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
z.neg = true // z cannot be zero if x is negative and y is positive
return z
}
// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
y1 := nat(nil).add(y.abs, natOne)
z.abs = z.abs.and(x.abs, y1)
z.neg = false
return z
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
z.neg = true // z cannot be zero if x and y are negative
return z
}
// x | y == x | y
z.abs = z.abs.or(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // | is symmetric
}
// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
z.neg = true // z cannot be zero if one of x or y is negative
return z
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
if x.neg == y.neg {
if x.neg {
// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
x1 := nat(nil).sub(x.abs, natOne)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.xor(x1, y1)
z.neg = false
return z
}
// x ^ y == x ^ y
z.abs = z.abs.xor(x.abs, y.abs)
z.neg = false
return z
}
// x.neg != y.neg
if x.neg {
x, y = y, x // ^ is symmetric
}
// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
y1 := nat(nil).sub(y.abs, natOne)
z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
z.neg = true // z cannot be zero if only one of x or y is negative
return z
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
if x.neg {
// ^(-x) == ^(^(x-1)) == x-1
z.abs = z.abs.sub(x.abs, natOne)
z.neg = false
return z
}
// ^x == -x-1 == -(x+1)
z.abs = z.abs.add(x.abs, natOne)
z.neg = true // z cannot be zero if x is positive
return z
}
// Gob codec version. Permits backward-compatible changes to the encoding.
const intGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (x *Int) GobEncode() ([]byte, error) {
if x == nil {
return nil, nil
}
buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
i := x.abs.bytes(buf) - 1 // i >= 0
b := intGobVersion << 1 // make space for sign bit
if x.neg {
b |= 1
}
buf[i] = b
return buf[i:], nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Int) GobDecode(buf []byte) error {
if len(buf) == 0 {
// Other side sent a nil or default value.
*z = Int{}
return nil
}
b := buf[0]
if b>>1 != intGobVersion {
return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
}
z.neg = b&1 != 0
z.abs = z.abs.setBytes(buf[1:])
return nil
}
// MarshalJSON implements the json.Marshaler interface.
func (z *Int) MarshalJSON() ([]byte, error) {
// TODO(gri): get rid of the []byte/string conversions
return []byte(z.String()), nil
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (z *Int) UnmarshalJSON(text []byte) error {
// TODO(gri): get rid of the []byte/string conversions
if _, ok := z.SetString(string(text), 0); !ok {
return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
}
return nil
}
// MarshalText implements the encoding.TextMarshaler interface
func (z *Int) MarshalText() (text []byte, err error) {
return []byte(z.String()), nil
}
// UnmarshalText implements the encoding.TextUnmarshaler interface
func (z *Int) UnmarshalText(text []byte) error {
if _, ok := z.SetString(string(text), 0); !ok {
return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
}
return nil
}
|