summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/asm_386.s
blob: 531057ff8aee9aa6845dec7b62817a375fc16709 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "zasm_GOOS_GOARCH.h"

TEXT _rt0_386(SB),7,$0
	// copy arguments forward on an even stack
	MOVL	argc+0(FP), AX
	MOVL	argv+4(FP), BX
	SUBL	$128, SP		// plenty of scratch
	ANDL	$~15, SP
	MOVL	AX, 120(SP)		// save argc, argv away
	MOVL	BX, 124(SP)

	// set default stack bounds.
	// _cgo_init may update stackguard.
	MOVL	$runtime·g0(SB), BP
	LEAL	(-64*1024+104)(SP), BX
	MOVL	BX, g_stackguard(BP)
	MOVL	SP, g_stackbase(BP)
	
	// find out information about the processor we're on
	MOVL	$0, AX
	CPUID
	CMPL	AX, $0
	JE	nocpuinfo
	MOVL	$1, AX
	CPUID
	MOVL	CX, runtime·cpuid_ecx(SB)
	MOVL	DX, runtime·cpuid_edx(SB)
nocpuinfo:	

	// if there is an _cgo_init, call it to let it
	// initialize and to set up GS.  if not,
	// we set up GS ourselves.
	MOVL	_cgo_init(SB), AX
	TESTL	AX, AX
	JZ	needtls
	MOVL	$setmg_gcc<>(SB), BX
	MOVL	BX, 4(SP)
	MOVL	BP, 0(SP)
	CALL	AX
	// skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows
	CMPL runtime·iswindows(SB), $0
	JEQ ok
needtls:
	// skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases
	CMPL	runtime·isplan9(SB), $1
	JEQ	ok

	// set up %gs
	CALL	runtime·ldt0setup(SB)

	// store through it, to make sure it works
	get_tls(BX)
	MOVL	$0x123, g(BX)
	MOVL	runtime·tls0(SB), AX
	CMPL	AX, $0x123
	JEQ	ok
	MOVL	AX, 0	// abort
ok:
	// set up m and g "registers"
	get_tls(BX)
	LEAL	runtime·g0(SB), CX
	MOVL	CX, g(BX)
	LEAL	runtime·m0(SB), AX
	MOVL	AX, m(BX)

	// save m->g0 = g0
	MOVL	CX, m_g0(AX)

	CALL	runtime·emptyfunc(SB)	// fault if stack check is wrong

	// convention is D is always cleared
	CLD

	CALL	runtime·check(SB)

	// saved argc, argv
	MOVL	120(SP), AX
	MOVL	AX, 0(SP)
	MOVL	124(SP), AX
	MOVL	AX, 4(SP)
	CALL	runtime·args(SB)
	CALL	runtime·osinit(SB)
	CALL	runtime·hashinit(SB)
	CALL	runtime·schedinit(SB)

	// create a new goroutine to start program
	PUSHL	$runtime·main·f(SB)	// entry
	PUSHL	$0	// arg size
	CALL	runtime·newproc(SB)
	POPL	AX
	POPL	AX

	// start this M
	CALL	runtime·mstart(SB)

	INT $3
	RET

DATA	runtime·main·f+0(SB)/4,$runtime·main(SB)
GLOBL	runtime·main·f(SB),8,$4

TEXT runtime·breakpoint(SB),7,$0
	INT $3
	RET

TEXT runtime·asminit(SB),7,$0
	// Linux and MinGW start the FPU in extended double precision.
	// Other operating systems use double precision.
	// Change to double precision to match them,
	// and to match other hardware that only has double.
	PUSHL $0x27F
	FLDCW	0(SP)
	POPL AX
	RET

/*
 *  go-routine
 */

// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), 7, $0
	MOVL	4(SP), AX		// gobuf
	LEAL	4(SP), BX		// caller's SP
	MOVL	BX, gobuf_sp(AX)
	MOVL	0(SP), BX		// caller's PC
	MOVL	BX, gobuf_pc(AX)
	get_tls(CX)
	MOVL	g(CX), BX
	MOVL	BX, gobuf_g(AX)
	RET

// void gogo(Gobuf*, uintptr)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), 7, $0
	MOVL	8(SP), AX		// return 2nd arg
	MOVL	4(SP), BX		// gobuf
	MOVL	gobuf_g(BX), DX
	MOVL	0(DX), CX		// make sure g != nil
	get_tls(CX)
	MOVL	DX, g(CX)
	MOVL	gobuf_sp(BX), SP	// restore SP
	MOVL	gobuf_pc(BX), BX
	JMP	BX

// void gogocall(Gobuf*, void (*fn)(void), uintptr r0)
// restore state from Gobuf but then call fn.
// (call fn, returning to state in Gobuf)
TEXT runtime·gogocall(SB), 7, $0
	MOVL	12(SP), DX	// context
	MOVL	8(SP), AX		// fn
	MOVL	4(SP), BX		// gobuf
	MOVL	gobuf_g(BX), DI
	get_tls(CX)
	MOVL	DI, g(CX)
	MOVL	0(DI), CX		// make sure g != nil
	MOVL	gobuf_sp(BX), SP	// restore SP
	MOVL	gobuf_pc(BX), BX
	PUSHL	BX
	JMP	AX
	POPL	BX	// not reached

// void gogocallfn(Gobuf*, FuncVal*)
// restore state from Gobuf but then call fn.
// (call fn, returning to state in Gobuf)
TEXT runtime·gogocallfn(SB), 7, $0
	MOVL	8(SP), DX		// fn
	MOVL	4(SP), BX		// gobuf
	MOVL	gobuf_g(BX), DI
	get_tls(CX)
	MOVL	DI, g(CX)
	MOVL	0(DI), CX		// make sure g != nil
	MOVL	gobuf_sp(BX), SP	// restore SP
	MOVL	gobuf_pc(BX), BX
	PUSHL	BX
	MOVL	0(DX), BX
	JMP	BX
	POPL	BX	// not reached

// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
// Fn must never return.  It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), 7, $0
	MOVL	fn+0(FP), DI
	
	get_tls(CX)
	MOVL	g(CX), AX	// save state in g->gobuf
	MOVL	0(SP), BX	// caller's PC
	MOVL	BX, (g_sched+gobuf_pc)(AX)
	LEAL	4(SP), BX	// caller's SP
	MOVL	BX, (g_sched+gobuf_sp)(AX)
	MOVL	AX, (g_sched+gobuf_g)(AX)

	// switch to m->g0 & its stack, call fn
	MOVL	m(CX), BX
	MOVL	m_g0(BX), SI
	CMPL	SI, AX	// if g == m->g0 call badmcall
	JNE	2(PC)
	CALL	runtime·badmcall(SB)
	MOVL	SI, g(CX)	// g = m->g0
	MOVL	(g_sched+gobuf_sp)(SI), SP	// sp = m->g0->gobuf.sp
	PUSHL	AX
	CALL	DI
	POPL	AX
	CALL	runtime·badmcall2(SB)
	RET

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
TEXT runtime·morestack(SB),7,$0
	// Cannot grow scheduler stack (m->g0).
	get_tls(CX)
	MOVL	m(CX), BX
	MOVL	m_g0(BX), SI
	CMPL	g(CX), SI
	JNE	2(PC)
	INT	$3
	
	MOVL	DX, m_cret(BX)

	// frame size in DI
	// arg size in AX
	// Save in m.
	MOVL	DI, m_moreframesize(BX)
	MOVL	AX, m_moreargsize(BX)

	// Called from f.
	// Set m->morebuf to f's caller.
	MOVL	4(SP), DI	// f's caller's PC
	MOVL	DI, (m_morebuf+gobuf_pc)(BX)
	LEAL	8(SP), CX	// f's caller's SP
	MOVL	CX, (m_morebuf+gobuf_sp)(BX)
	MOVL	CX, m_moreargp(BX)
	get_tls(CX)
	MOVL	g(CX), SI
	MOVL	SI, (m_morebuf+gobuf_g)(BX)

	// Set m->morepc to f's PC.
	MOVL	0(SP), AX
	MOVL	AX, m_morepc(BX)

	// Call newstack on m->g0's stack.
	MOVL	m_g0(BX), BP
	MOVL	BP, g(CX)
	MOVL	(g_sched+gobuf_sp)(BP), AX
	MOVL	-4(AX), BX	// fault if CALL would, before smashing SP
	MOVL	AX, SP
	CALL	runtime·newstack(SB)
	MOVL	$0, 0x1003	// crash if newstack returns
	RET

// Called from reflection library.  Mimics morestack,
// reuses stack growth code to create a frame
// with the desired args running the desired function.
//
// func call(fn *byte, arg *byte, argsize uint32).
TEXT reflect·call(SB), 7, $0
	get_tls(CX)
	MOVL	m(CX), BX

	// Save our caller's state as the PC and SP to
	// restore when returning from f.
	MOVL	0(SP), AX	// our caller's PC
	MOVL	AX, (m_morebuf+gobuf_pc)(BX)
	LEAL	4(SP), AX	// our caller's SP
	MOVL	AX, (m_morebuf+gobuf_sp)(BX)
	MOVL	g(CX), AX
	MOVL	AX, (m_morebuf+gobuf_g)(BX)

	// Set up morestack arguments to call f on a new stack.
	// We set f's frame size to 1, as a hint to newstack
	// that this is a call from reflect·call.
	// If it turns out that f needs a larger frame than
	// the default stack, f's usual stack growth prolog will
	// allocate a new segment (and recopy the arguments).
	MOVL	4(SP), AX	// fn
	MOVL	8(SP), DX	// arg frame
	MOVL	12(SP), CX	// arg size

	MOVL	AX, m_morepc(BX)	// f's PC
	MOVL	DX, m_moreargp(BX)	// f's argument pointer
	MOVL	CX, m_moreargsize(BX)	// f's argument size
	MOVL	$1, m_moreframesize(BX)	// f's frame size

	// Call newstack on m->g0's stack.
	MOVL	m_g0(BX), BP
	get_tls(CX)
	MOVL	BP, g(CX)
	MOVL	(g_sched+gobuf_sp)(BP), SP
	CALL	runtime·newstack(SB)
	MOVL	$0, 0x1103	// crash if newstack returns
	RET


// Return point when leaving stack.
TEXT runtime·lessstack(SB), 7, $0
	// Save return value in m->cret
	get_tls(CX)
	MOVL	m(CX), BX
	MOVL	AX, m_cret(BX)

	// Call oldstack on m->g0's stack.
	MOVL	m_g0(BX), BP
	MOVL	BP, g(CX)
	MOVL	(g_sched+gobuf_sp)(BP), SP
	CALL	runtime·oldstack(SB)
	MOVL	$0, 0x1004	// crash if oldstack returns
	RET


// bool cas(int32 *val, int32 old, int32 new)
// Atomically:
//	if(*val == old){
//		*val = new;
//		return 1;
//	}else
//		return 0;
TEXT runtime·cas(SB), 7, $0
	MOVL	4(SP), BX
	MOVL	8(SP), AX
	MOVL	12(SP), CX
	LOCK
	CMPXCHGL	CX, 0(BX)
	JZ 3(PC)
	MOVL	$0, AX
	RET
	MOVL	$1, AX
	RET

// bool runtime·cas64(uint64 *val, uint64 *old, uint64 new)
// Atomically:
//	if(*val == *old){
//		*val = new;
//		return 1;
//	} else {
//		*old = *val
//		return 0;
//	}
TEXT runtime·cas64(SB), 7, $0
	MOVL	4(SP), BP
	MOVL	8(SP), SI
	MOVL	0(SI), AX
	MOVL	4(SI), DX
	MOVL	12(SP), BX
	MOVL	16(SP), CX
	LOCK
	CMPXCHG8B	0(BP)
	JNZ	cas64_fail
	MOVL	$1, AX
	RET
cas64_fail:
	MOVL	AX, 0(SI)
	MOVL	DX, 4(SI)
	MOVL	$0, AX
	RET

// bool casp(void **p, void *old, void *new)
// Atomically:
//	if(*p == old){
//		*p = new;
//		return 1;
//	}else
//		return 0;
TEXT runtime·casp(SB), 7, $0
	MOVL	4(SP), BX
	MOVL	8(SP), AX
	MOVL	12(SP), CX
	LOCK
	CMPXCHGL	CX, 0(BX)
	JZ 3(PC)
	MOVL	$0, AX
	RET
	MOVL	$1, AX
	RET

// uint32 xadd(uint32 volatile *val, int32 delta)
// Atomically:
//	*val += delta;
//	return *val;
TEXT runtime·xadd(SB), 7, $0
	MOVL	4(SP), BX
	MOVL	8(SP), AX
	MOVL	AX, CX
	LOCK
	XADDL	AX, 0(BX)
	ADDL	CX, AX
	RET

TEXT runtime·xchg(SB), 7, $0
	MOVL	4(SP), BX
	MOVL	8(SP), AX
	XCHGL	AX, 0(BX)
	RET

TEXT runtime·procyield(SB),7,$0
	MOVL	4(SP), AX
again:
	PAUSE
	SUBL	$1, AX
	JNZ	again
	RET

TEXT runtime·atomicstorep(SB), 7, $0
	MOVL	4(SP), BX
	MOVL	8(SP), AX
	XCHGL	AX, 0(BX)
	RET

TEXT runtime·atomicstore(SB), 7, $0
	MOVL	4(SP), BX
	MOVL	8(SP), AX
	XCHGL	AX, 0(BX)
	RET

// uint64 atomicload64(uint64 volatile* addr);
// so actually
// void atomicload64(uint64 *res, uint64 volatile *addr);
TEXT runtime·atomicload64(SB), 7, $0
	MOVL    4(SP), BX
	MOVL	8(SP), AX
	// MOVQ (%EAX), %MM0
	BYTE $0x0f; BYTE $0x6f; BYTE $0x00
	// MOVQ %MM0, 0(%EBX)
	BYTE $0x0f; BYTE $0x7f; BYTE $0x03
	// EMMS
	BYTE $0x0F; BYTE $0x77
	RET

// void runtime·atomicstore64(uint64 volatile* addr, uint64 v);
TEXT runtime·atomicstore64(SB), 7, $0
	MOVL	4(SP), AX
	// MOVQ and EMMS were introduced on the Pentium MMX.
	// MOVQ 0x8(%ESP), %MM0
	BYTE $0x0f; BYTE $0x6f; BYTE $0x44; BYTE $0x24; BYTE $0x08
	// MOVQ %MM0, (%EAX)
	BYTE $0x0f; BYTE $0x7f; BYTE $0x00 
	// EMMS
	BYTE $0x0F; BYTE $0x77
	// This is essentially a no-op, but it provides required memory fencing.
	// It can be replaced with MFENCE, but MFENCE was introduced only on the Pentium4 (SSE2).
	MOVL	$0, AX
	LOCK
	XADDL	AX, (SP)
	RET

// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
// 2. sub 5 bytes from the callers return
// 3. jmp to the argument
TEXT runtime·jmpdefer(SB), 7, $0
	MOVL	4(SP), DX	// fn
	MOVL	8(SP), BX	// caller sp
	LEAL	-4(BX), SP	// caller sp after CALL
	SUBL	$5, (SP)	// return to CALL again
	MOVL	0(DX), BX
	JMP	BX	// but first run the deferred function

// Dummy function to use in saved gobuf.PC,
// to match SP pointing at a return address.
// The gobuf.PC is unused by the contortions here
// but setting it to return will make the traceback code work.
TEXT return<>(SB),7,$0
	RET

// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),7,$0
	MOVL	fn+0(FP), AX
	MOVL	arg+4(FP), BX
	MOVL	SP, DX

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already.
	get_tls(CX)
	MOVL	m(CX), BP
	MOVL	m_g0(BP), SI
	MOVL	g(CX), DI
	CMPL	SI, DI
	JEQ	6(PC)
	MOVL	SP, (g_sched+gobuf_sp)(DI)
	MOVL	$return<>(SB), (g_sched+gobuf_pc)(DI)
	MOVL	DI, (g_sched+gobuf_g)(DI)
	MOVL	SI, g(CX)
	MOVL	(g_sched+gobuf_sp)(SI), SP

	// Now on a scheduling stack (a pthread-created stack).
	SUBL	$32, SP
	ANDL	$~15, SP	// alignment, perhaps unnecessary
	MOVL	DI, 8(SP)	// save g
	MOVL	DX, 4(SP)	// save SP
	MOVL	BX, 0(SP)	// first argument in x86-32 ABI
	CALL	AX

	// Restore registers, g, stack pointer.
	get_tls(CX)
	MOVL	8(SP), DI
	MOVL	DI, g(CX)
	MOVL	4(SP), SP
	RET

// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),7,$12
	LEAL	fn+0(FP), AX
	MOVL	AX, 0(SP)
	MOVL	frame+4(FP), AX
	MOVL	AX, 4(SP)
	MOVL	framesize+8(FP), AX
	MOVL	AX, 8(SP)
	MOVL	$runtime·cgocallback_gofunc(SB), AX
	CALL	AX
	RET

// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback_gofunc(SB),7,$12
	// If m is nil, Go did not create the current thread.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call through AX.
	get_tls(CX)
#ifdef GOOS_windows
	CMPL	CX, $0
	JNE	3(PC)
	PUSHL	$0
	JMP needm
#endif
	MOVL	m(CX), BP
	PUSHL	BP
	CMPL	BP, $0
	JNE	havem
needm:
	MOVL	$runtime·needm(SB), AX
	CALL	AX
	get_tls(CX)
	MOVL	m(CX), BP

havem:
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	MOVL	m_g0(BP), SI
	PUSHL	(g_sched+gobuf_sp)(SI)
	MOVL	SP, (g_sched+gobuf_sp)(SI)

	// Switch to m->curg stack and call runtime.cgocallbackg
	// with the three arguments.  Because we are taking over
	// the execution of m->curg but *not* resuming what had
	// been running, we need to save that information (m->curg->gobuf)
	// so that we can restore it when we're done. 
	// We can restore m->curg->gobuf.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->gobuf.pc, we push it onto the stack.
	// This has the added benefit that it looks to the traceback
	// routine like cgocallbackg is going to return to that
	// PC (because we defined cgocallbackg to have
	// a frame size of 12, the same amount that we use below),
	// so that the traceback will seamlessly trace back into
	// the earlier calls.
	MOVL	fn+0(FP), AX
	MOVL	frame+4(FP), BX
	MOVL	framesize+8(FP), DX

	MOVL	m_curg(BP), SI
	MOVL	SI, g(CX)
	MOVL	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI

	// Push gobuf.pc
	MOVL	(g_sched+gobuf_pc)(SI), BP
	SUBL	$4, DI
	MOVL	BP, 0(DI)

	// Push arguments to cgocallbackg.
	// Frame size here must match the frame size above
	// to trick traceback routines into doing the right thing.
	SUBL	$12, DI
	MOVL	AX, 0(DI)
	MOVL	BX, 4(DI)
	MOVL	DX, 8(DI)
	
	// Switch stack and make the call.
	MOVL	DI, SP
	CALL	runtime·cgocallbackg(SB)

	// Restore g->gobuf (== m->curg->gobuf) from saved values.
	get_tls(CX)
	MOVL	g(CX), SI
	MOVL	12(SP), BP
	MOVL	BP, (g_sched+gobuf_pc)(SI)
	LEAL	(12+4)(SP), DI
	MOVL	DI, (g_sched+gobuf_sp)(SI)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOVL	m(CX), BP
	MOVL	m_g0(BP), SI
	MOVL	SI, g(CX)
	MOVL	(g_sched+gobuf_sp)(SI), SP
	POPL	(g_sched+gobuf_sp)(SI)
	
	// If the m on entry was nil, we called needm above to borrow an m
	// for the duration of the call. Since the call is over, return it with dropm.
	POPL	BP
	CMPL	BP, $0
	JNE 3(PC)
	MOVL	$runtime·dropm(SB), AX
	CALL	AX

	// Done!
	RET

// void setmg(M*, G*); set m and g. for use by needm.
TEXT runtime·setmg(SB), 7, $0
#ifdef GOOS_windows
	MOVL	mm+0(FP), AX
	CMPL	AX, $0
	JNE	settls
	MOVL	$0, 0x14(FS)
	RET
settls:
	LEAL	m_tls(AX), AX
	MOVL	AX, 0x14(FS)
#endif
	MOVL	mm+0(FP), AX
	get_tls(CX)
	MOVL	mm+0(FP), AX
	MOVL	AX, m(CX)
	MOVL	gg+4(FP), BX
	MOVL	BX, g(CX)
	RET

// void setmg_gcc(M*, G*); set m and g. for use by gcc
TEXT setmg_gcc<>(SB), 7, $0	
	get_tls(AX)
	MOVL	mm+0(FP), DX
	MOVL	DX, m(AX)
	MOVL	gg+4(FP), DX
	MOVL	DX,g (AX)
	RET

// check that SP is in range [g->stackbase, g->stackguard)
TEXT runtime·stackcheck(SB), 7, $0
	get_tls(CX)
	MOVL	g(CX), AX
	CMPL	g_stackbase(AX), SP
	JHI	2(PC)
	INT	$3
	CMPL	SP, g_stackguard(AX)
	JHI	2(PC)
	INT	$3
	RET

TEXT runtime·memclr(SB),7,$0
	MOVL	4(SP), DI		// arg 1 addr
	MOVL	8(SP), CX		// arg 2 count
	MOVL	CX, BX
	ANDL	$3, BX
	SHRL	$2, CX
	MOVL	$0, AX
	CLD
	REP
	STOSL
	MOVL	BX, CX
	REP
	STOSB
	RET

TEXT runtime·getcallerpc(SB),7,$0
	MOVL	x+0(FP),AX		// addr of first arg
	MOVL	-4(AX),AX		// get calling pc
	RET

TEXT runtime·setcallerpc(SB),7,$0
	MOVL	x+0(FP),AX		// addr of first arg
	MOVL	x+4(FP), BX
	MOVL	BX, -4(AX)		// set calling pc
	RET

TEXT runtime·getcallersp(SB), 7, $0
	MOVL	sp+0(FP), AX
	RET

// int64 runtime·cputicks(void), so really
// void runtime·cputicks(int64 *ticks)
TEXT runtime·cputicks(SB),7,$0
	RDTSC
	MOVL	ret+0(FP), DI
	MOVL	AX, 0(DI)
	MOVL	DX, 4(DI)
	RET

TEXT runtime·ldt0setup(SB),7,$16
	// set up ldt 7 to point at tls0
	// ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go.
	// the entry number is just a hint.  setldt will set up GS with what it used.
	MOVL	$7, 0(SP)
	LEAL	runtime·tls0(SB), AX
	MOVL	AX, 4(SP)
	MOVL	$32, 8(SP)	// sizeof(tls array)
	CALL	runtime·setldt(SB)
	RET

TEXT runtime·emptyfunc(SB),0,$0
	RET

TEXT runtime·abort(SB),7,$0
	INT $0x3

TEXT runtime·stackguard(SB),7,$0
	MOVL	SP, DX
	MOVL	DX, sp+0(FP)
	get_tls(CX)
	MOVL	g(CX), BX
	MOVL	g_stackguard(BX), DX
	MOVL	DX, limit+4(FP)
	RET

GLOBL runtime·tls0(SB), $32

// hash function using AES hardware instructions
TEXT runtime·aeshash(SB),7,$0
	MOVL	4(SP), DX	// ptr to hash value
	MOVL	8(SP), CX	// size
	MOVL	12(SP), AX	// ptr to data
	JMP	runtime·aeshashbody(SB)

TEXT runtime·aeshashstr(SB),7,$0
	MOVL	4(SP), DX	// ptr to hash value
	MOVL	12(SP), AX	// ptr to string struct
	MOVL	4(AX), CX	// length of string
	MOVL	(AX), AX	// string data
	JMP	runtime·aeshashbody(SB)

// AX: data
// CX: length
// DX: ptr to seed input / hash output
TEXT runtime·aeshashbody(SB),7,$0
	MOVL	(DX), X0	// seed to low 32 bits of xmm0
	PINSRD	$1, CX, X0	// size to next 32 bits of xmm0
	MOVO	runtime·aeskeysched+0(SB), X2
	MOVO	runtime·aeskeysched+16(SB), X3
aesloop:
	CMPL	CX, $16
	JB	aesloopend
	MOVOU	(AX), X1
	AESENC	X2, X0
	AESENC	X1, X0
	SUBL	$16, CX
	ADDL	$16, AX
	JMP	aesloop
aesloopend:
	TESTL	CX, CX
	JE	finalize	// no partial block

	TESTL	$16, AX
	JNE	highpartial

	// address ends in 0xxxx.  16 bytes loaded
	// at this address won't cross a page boundary, so
	// we can load it directly.
	MOVOU	(AX), X1
	ADDL	CX, CX
	PAND	masks(SB)(CX*8), X1
	JMP	partial
highpartial:
	// address ends in 1xxxx.  Might be up against
	// a page boundary, so load ending at last byte.
	// Then shift bytes down using pshufb.
	MOVOU	-16(AX)(CX*1), X1
	ADDL	CX, CX
	PSHUFB	shifts(SB)(CX*8), X1
partial:
	// incorporate partial block into hash
	AESENC	X3, X0
	AESENC	X1, X0
finalize:	
	// finalize hash
	AESENC	X2, X0
	AESENC	X3, X0
	AESENC	X2, X0
	MOVL	X0, (DX)
	RET

TEXT runtime·aeshash32(SB),7,$0
	MOVL	4(SP), DX	// ptr to hash value
	MOVL	12(SP), AX	// ptr to data
	MOVL	(DX), X0	// seed
	PINSRD	$1, (AX), X0	// data
	AESENC	runtime·aeskeysched+0(SB), X0
	AESENC	runtime·aeskeysched+16(SB), X0
	AESENC	runtime·aeskeysched+0(SB), X0
	MOVL	X0, (DX)
	RET

TEXT runtime·aeshash64(SB),7,$0
	MOVL	4(SP), DX	// ptr to hash value
	MOVL	12(SP), AX	// ptr to data
	MOVQ	(AX), X0	// data
	PINSRD	$2, (DX), X0	// seed
	AESENC	runtime·aeskeysched+0(SB), X0
	AESENC	runtime·aeskeysched+16(SB), X0
	AESENC	runtime·aeskeysched+0(SB), X0
	MOVL	X0, (DX)
	RET


// simple mask to get rid of data in the high part of the register.
TEXT masks(SB),7,$0
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0x000000ff
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0x0000ffff
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0x00ffffff
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0x000000ff
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0x0000ffff
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0x00ffffff
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x000000ff
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x0000ffff
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x00ffffff
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x00000000
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x000000ff
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x0000ffff
	
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0x00ffffff

	// these are arguments to pshufb.  They move data down from
	// the high bytes of the register to the low bytes of the register.
	// index is how many bytes to move.
TEXT shifts(SB),7,$0
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	LONG $0x00000000
	
	LONG $0xffffff0f
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0xffff0f0e
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0xff0f0e0d
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0x0f0e0d0c
	LONG $0xffffffff
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0x0e0d0c0b
	LONG $0xffffff0f
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0x0d0c0b0a
	LONG $0xffff0f0e
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0x0c0b0a09
	LONG $0xff0f0e0d
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0x0b0a0908
	LONG $0x0f0e0d0c
	LONG $0xffffffff
	LONG $0xffffffff
	
	LONG $0x0a090807
	LONG $0x0e0d0c0b
	LONG $0xffffff0f
	LONG $0xffffffff
	
	LONG $0x09080706
	LONG $0x0d0c0b0a
	LONG $0xffff0f0e
	LONG $0xffffffff
	
	LONG $0x08070605
	LONG $0x0c0b0a09
	LONG $0xff0f0e0d
	LONG $0xffffffff
	
	LONG $0x07060504
	LONG $0x0b0a0908
	LONG $0x0f0e0d0c
	LONG $0xffffffff
	
	LONG $0x06050403
	LONG $0x0a090807
	LONG $0x0e0d0c0b
	LONG $0xffffff0f
	
	LONG $0x05040302
	LONG $0x09080706
	LONG $0x0d0c0b0a
	LONG $0xffff0f0e
	
	LONG $0x04030201
	LONG $0x08070605
	LONG $0x0c0b0a09
	LONG $0xff0f0e0d

TEXT runtime·memeq(SB),7,$0
	MOVL	a+0(FP), SI
	MOVL	b+4(FP), DI
	MOVL	count+8(FP), BX
	JMP	runtime·memeqbody(SB)


TEXT bytes·Equal(SB),7,$0
	MOVL	a_len+4(FP), BX
	MOVL	b_len+16(FP), CX
	XORL	AX, AX
	CMPL	BX, CX
	JNE	eqret
	MOVL	a+0(FP), SI
	MOVL	b+12(FP), DI
	CALL	runtime·memeqbody(SB)
eqret:
	MOVB	AX, ret+24(FP)
	RET

// a in SI
// b in DI
// count in BX
TEXT runtime·memeqbody(SB),7,$0
	XORL	AX, AX

	CMPL	BX, $4
	JB	small

	// 64 bytes at a time using xmm registers
hugeloop:
	CMPL	BX, $64
	JB	bigloop
	TESTL	$0x4000000, runtime·cpuid_edx(SB) // check for sse2
	JE	bigloop
	MOVOU	(SI), X0
	MOVOU	(DI), X1
	MOVOU	16(SI), X2
	MOVOU	16(DI), X3
	MOVOU	32(SI), X4
	MOVOU	32(DI), X5
	MOVOU	48(SI), X6
	MOVOU	48(DI), X7
	PCMPEQB	X1, X0
	PCMPEQB	X3, X2
	PCMPEQB	X5, X4
	PCMPEQB	X7, X6
	PAND	X2, X0
	PAND	X6, X4
	PAND	X4, X0
	PMOVMSKB X0, DX
	ADDL	$64, SI
	ADDL	$64, DI
	SUBL	$64, BX
	CMPL	DX, $0xffff
	JEQ	hugeloop
	RET

	// 4 bytes at a time using 32-bit register
bigloop:
	CMPL	BX, $4
	JBE	leftover
	MOVL	(SI), CX
	MOVL	(DI), DX
	ADDL	$4, SI
	ADDL	$4, DI
	SUBL	$4, BX
	CMPL	CX, DX
	JEQ	bigloop
	RET

	// remaining 0-4 bytes
leftover:
	MOVL	-4(SI)(BX*1), CX
	MOVL	-4(DI)(BX*1), DX
	CMPL	CX, DX
	SETEQ	AX
	RET

small:
	CMPL	BX, $0
	JEQ	equal

	LEAL	0(BX*8), CX
	NEGL	CX

	MOVL	SI, DX
	CMPB	DX, $0xfc
	JA	si_high

	// load at SI won't cross a page boundary.
	MOVL	(SI), SI
	JMP	si_finish
si_high:
	// address ends in 111111xx.  Load up to bytes we want, move to correct position.
	MOVL	-4(SI)(BX*1), SI
	SHRL	CX, SI
si_finish:

	// same for DI.
	MOVL	DI, DX
	CMPB	DX, $0xfc
	JA	di_high
	MOVL	(DI), DI
	JMP	di_finish
di_high:
	MOVL	-4(DI)(BX*1), DI
	SHRL	CX, DI
di_finish:

	SUBL	SI, DI
	SHLL	CX, DI
equal:
	SETEQ	AX
	RET