1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs.h"
#include "signals.h"
#include "os.h"
void
runtime·dumpregs(Sigcontext *r)
{
runtime·printf("trap %x\n", r->trap_no);
runtime·printf("error %x\n", r->error_code);
runtime·printf("oldmask %x\n", r->oldmask);
runtime·printf("r0 %x\n", r->arm_r0);
runtime·printf("r1 %x\n", r->arm_r1);
runtime·printf("r2 %x\n", r->arm_r2);
runtime·printf("r3 %x\n", r->arm_r3);
runtime·printf("r4 %x\n", r->arm_r4);
runtime·printf("r5 %x\n", r->arm_r5);
runtime·printf("r6 %x\n", r->arm_r6);
runtime·printf("r7 %x\n", r->arm_r7);
runtime·printf("r8 %x\n", r->arm_r8);
runtime·printf("r9 %x\n", r->arm_r9);
runtime·printf("r10 %x\n", r->arm_r10);
runtime·printf("fp %x\n", r->arm_fp);
runtime·printf("ip %x\n", r->arm_ip);
runtime·printf("sp %x\n", r->arm_sp);
runtime·printf("lr %x\n", r->arm_lr);
runtime·printf("pc %x\n", r->arm_pc);
runtime·printf("cpsr %x\n", r->arm_cpsr);
runtime·printf("fault %x\n", r->fault_address);
}
/*
* This assembler routine takes the args from registers, puts them on the stack,
* and calls sighandler().
*/
extern void runtime·sigtramp(void);
extern void runtime·sigignore(void); // just returns
extern void runtime·sigreturn(void); // calls runtime·sigreturn
String
runtime·signame(int32 sig)
{
if(sig < 0 || sig >= NSIG)
return runtime·emptystring;
return runtime·gostringnocopy((byte*)runtime·sigtab[sig].name);
}
void
runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
{
Ucontext *uc;
Sigcontext *r;
uc = context;
r = &uc->uc_mcontext;
if(sig == SIGPROF) {
runtime·sigprof((uint8*)r->arm_pc, (uint8*)r->arm_sp, (uint8*)r->arm_lr, gp);
return;
}
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
// Make it look like a call to the signal func.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
gp->sig = sig;
gp->sigcode0 = info->si_code;
gp->sigcode1 = r->fault_address;
gp->sigpc = r->arm_pc;
// If this is a leaf function, we do smash LR,
// but we're not going back there anyway.
// Don't bother smashing if r->arm_pc is 0,
// which is probably a call to a nil func: the
// old link register is more useful in the stack trace.
if(r->arm_pc != 0)
r->arm_lr = r->arm_pc;
r->arm_pc = (uintptr)runtime·sigpanic;
return;
}
if(runtime·sigtab[sig].flags & SigQueue) {
if(runtime·sigsend(sig) || (runtime·sigtab[sig].flags & SigIgnore))
return;
runtime·exit(2); // SIGINT, SIGTERM, etc
}
if(runtime·panicking) // traceback already printed
runtime·exit(2);
runtime·panicking = 1;
if(sig < 0 || sig >= NSIG)
runtime·printf("Signal %d\n", sig);
else
runtime·printf("%s\n", runtime·sigtab[sig].name);
runtime·printf("PC=%x\n", r->arm_pc);
runtime·printf("\n");
if(runtime·gotraceback()){
runtime·traceback((void*)r->arm_pc, (void*)r->arm_sp, (void*)r->arm_lr, gp);
runtime·tracebackothers(gp);
runtime·printf("\n");
runtime·dumpregs(r);
}
// breakpoint();
runtime·exit(2);
}
void
runtime·signalstack(byte *p, int32 n)
{
Sigaltstack st;
st.ss_sp = p;
st.ss_size = n;
st.ss_flags = 0;
runtime·sigaltstack(&st, nil);
}
static void
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask = ~0ULL;
sa.sa_restorer = (void*)runtime·sigreturn;
if(fn == runtime·sighandler)
fn = (void*)runtime·sigtramp;
sa.sa_handler = fn;
runtime·rt_sigaction(i, &sa, nil, 8);
}
void
runtime·initsig(int32 queue)
{
int32 i;
void *fn;
runtime·siginit();
for(i = 0; i<NSIG; i++) {
if(runtime·sigtab[i].flags) {
if((runtime·sigtab[i].flags & SigQueue) != queue)
continue;
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
fn = runtime·sighandler;
else
fn = runtime·sigignore;
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
}
}
}
void
runtime·resetcpuprofiler(int32 hz)
{
Itimerval it;
runtime·memclr((byte*)&it, sizeof it);
if(hz == 0) {
runtime·setitimer(ITIMER_PROF, &it, nil);
sigaction(SIGPROF, SIG_IGN, true);
} else {
sigaction(SIGPROF, runtime·sighandler, true);
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000 / hz;
it.it_value = it.it_interval;
runtime·setitimer(ITIMER_PROF, &it, nil);
}
m->profilehz = hz;
}
void
os·sigpipe(void)
{
sigaction(SIGPIPE, SIG_DFL, false);
runtime·raisesigpipe();
}
|