1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs.h"
#include "os.h"
#include "stack.h"
extern SigTab runtime·sigtab[];
static int32 proccount;
int32 runtime·open(uint8*, int32, int32);
int32 runtime·close(int32);
int32 runtime·read(int32, void*, int32);
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
enum
{
MUTEX_UNLOCKED = 0,
MUTEX_LOCKED = 1,
MUTEX_SLEEPING = 2,
ACTIVE_SPIN = 4,
ACTIVE_SPIN_CNT = 30,
PASSIVE_SPIN = 1,
FUTEX_WAIT = 0,
FUTEX_WAKE = 1,
EINTR = 4,
EAGAIN = 11,
};
// TODO(rsc): I tried using 1<<40 here but futex woke up (-ETIMEDOUT).
// I wonder if the timespec that gets to the kernel
// actually has two 32-bit numbers in it, so that
// a 64-bit 1<<40 ends up being 0 seconds,
// 1<<8 nanoseconds.
static Timespec longtime =
{
1<<30, // 34 years
0
};
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
static void
futexsleep(uint32 *addr, uint32 val)
{
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
runtime·futex(addr, FUTEX_WAIT, val, &longtime, nil, 0);
}
// If any procs are sleeping on addr, wake up at most cnt.
static void
futexwakeup(uint32 *addr, uint32 cnt)
{
int64 ret;
ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0);
if(ret >= 0)
return;
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret);
*(int32*)0x1006 = 0x1006;
}
static int32
getproccount(void)
{
int32 fd, rd, cnt, cpustrlen;
byte *cpustr, *pos, *bufpos;
byte buf[256];
fd = runtime·open((byte*)"/proc/stat", O_RDONLY|O_CLOEXEC, 0);
if(fd == -1)
return 1;
cnt = 0;
bufpos = buf;
cpustr = (byte*)"\ncpu";
cpustrlen = runtime·findnull(cpustr);
for(;;) {
rd = runtime·read(fd, bufpos, sizeof(buf)-cpustrlen);
if(rd == -1)
break;
bufpos[rd] = 0;
for(pos=buf; pos=runtime·strstr(pos, cpustr); cnt++, pos++) {
}
if(rd < cpustrlen)
break;
runtime·memmove(buf, bufpos+rd-cpustrlen+1, cpustrlen-1);
bufpos = buf+cpustrlen-1;
}
runtime·close(fd);
return cnt ? cnt : 1;
}
// Possible lock states are MUTEX_UNLOCKED, MUTEX_LOCKED and MUTEX_SLEEPING.
// MUTEX_SLEEPING means that there is presumably at least one sleeping thread.
// Note that there can be spinning threads during all states - they do not
// affect mutex's state.
static void
futexlock(Lock *l)
{
uint32 i, v, wait, spin;
// Speculative grab for lock.
v = runtime·xchg(&l->key, MUTEX_LOCKED);
if(v == MUTEX_UNLOCKED)
return;
// wait is either MUTEX_LOCKED or MUTEX_SLEEPING
// depending on whether there is a thread sleeping
// on this mutex. If we ever change l->key from
// MUTEX_SLEEPING to some other value, we must be
// careful to change it back to MUTEX_SLEEPING before
// returning, to ensure that the sleeping thread gets
// its wakeup call.
wait = v;
if(proccount == 0)
proccount = getproccount();
// On uniprocessor's, no point spinning.
// On multiprocessors, spin for ACTIVE_SPIN attempts.
spin = 0;
if(proccount > 1)
spin = ACTIVE_SPIN;
for(;;) {
// Try for lock, spinning.
for(i = 0; i < spin; i++) {
while(l->key == MUTEX_UNLOCKED)
if(runtime·cas(&l->key, MUTEX_UNLOCKED, wait))
return;
runtime·procyield(ACTIVE_SPIN_CNT);
}
// Try for lock, rescheduling.
for(i=0; i < PASSIVE_SPIN; i++) {
while(l->key == MUTEX_UNLOCKED)
if(runtime·cas(&l->key, MUTEX_UNLOCKED, wait))
return;
runtime·osyield();
}
// Sleep.
v = runtime·xchg(&l->key, MUTEX_SLEEPING);
if(v == MUTEX_UNLOCKED)
return;
wait = MUTEX_SLEEPING;
futexsleep(&l->key, MUTEX_SLEEPING);
}
}
static void
futexunlock(Lock *l)
{
uint32 v;
v = runtime·xchg(&l->key, MUTEX_UNLOCKED);
if(v == MUTEX_UNLOCKED)
runtime·throw("unlock of unlocked lock");
if(v == MUTEX_SLEEPING)
futexwakeup(&l->key, 1);
}
void
runtime·lock(Lock *l)
{
if(m->locks++ < 0)
runtime·throw("runtime·lock: lock count");
futexlock(l);
}
void
runtime·unlock(Lock *l)
{
if(--m->locks < 0)
runtime·throw("runtime·unlock: lock count");
futexunlock(l);
}
// One-time notifications.
void
runtime·noteclear(Note *n)
{
n->state = 0;
}
void
runtime·notewakeup(Note *n)
{
runtime·xchg(&n->state, 1);
futexwakeup(&n->state, 1<<30);
}
void
runtime·notesleep(Note *n)
{
while(runtime·atomicload(&n->state) == 0)
futexsleep(&n->state, 0);
}
// Clone, the Linux rfork.
enum
{
CLONE_VM = 0x100,
CLONE_FS = 0x200,
CLONE_FILES = 0x400,
CLONE_SIGHAND = 0x800,
CLONE_PTRACE = 0x2000,
CLONE_VFORK = 0x4000,
CLONE_PARENT = 0x8000,
CLONE_THREAD = 0x10000,
CLONE_NEWNS = 0x20000,
CLONE_SYSVSEM = 0x40000,
CLONE_SETTLS = 0x80000,
CLONE_PARENT_SETTID = 0x100000,
CLONE_CHILD_CLEARTID = 0x200000,
CLONE_UNTRACED = 0x800000,
CLONE_CHILD_SETTID = 0x1000000,
CLONE_STOPPED = 0x2000000,
CLONE_NEWUTS = 0x4000000,
CLONE_NEWIPC = 0x8000000,
};
void
runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
int32 ret;
int32 flags;
/*
* note: strace gets confused if we use CLONE_PTRACE here.
*/
flags = CLONE_VM /* share memory */
| CLONE_FS /* share cwd, etc */
| CLONE_FILES /* share fd table */
| CLONE_SIGHAND /* share sig handler table */
| CLONE_THREAD /* revisit - okay for now */
;
m->tls[0] = m->id; // so 386 asm can find it
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p fn=%p clone=%p id=%d/%d ostk=%p\n",
stk, m, g, fn, runtime·clone, m->id, m->tls[0], &m);
}
if((ret = runtime·clone(flags, stk, m, g, fn)) < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret);
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
void
runtime·minit(void)
{
// Initialize signal handling.
m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024);
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000)
runtime·panicstring("invalid memory address or nil pointer dereference");
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000)
runtime·panicstring("invalid memory address or nil pointer dereference");
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}
|