summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/linux/thread.c
blob: 7166b0ef27f6af45c2b038dd2f4a9c5e65ebf207 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "defs.h"
#include "os.h"
#include "stack.h"

extern SigTab runtime·sigtab[];

// Linux futex.
//
//	futexsleep(uint32 *addr, uint32 val)
//	futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up one thread sleeping on addr.
// Futexsleep is allowed to wake up spuriously.

enum
{
	FUTEX_WAIT = 0,
	FUTEX_WAKE = 1,

	EINTR = 4,
	EAGAIN = 11,
};

// TODO(rsc): I tried using 1<<40 here but futex woke up (-ETIMEDOUT).
// I wonder if the timespec that gets to the kernel
// actually has two 32-bit numbers in it, so that
// a 64-bit 1<<40 ends up being 0 seconds,
// 1<<8 nanoseconds.
static Timespec longtime =
{
	1<<30,	// 34 years
	0
};

// Atomically,
//	if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
static void
futexsleep(uint32 *addr, uint32 val)
{
	// Some Linux kernels have a bug where futex of
	// FUTEX_WAIT returns an internal error code
	// as an errno.  Libpthread ignores the return value
	// here, and so can we: as it says a few lines up,
	// spurious wakeups are allowed.
	runtime·futex(addr, FUTEX_WAIT, val, &longtime, nil, 0);
}

// If any procs are sleeping on addr, wake up at least one.
static void
futexwakeup(uint32 *addr)
{
	int64 ret;

	ret = runtime·futex(addr, FUTEX_WAKE, 1, nil, nil, 0);

	if(ret >= 0)
		return;

	// I don't know that futex wakeup can return
	// EAGAIN or EINTR, but if it does, it would be
	// safe to loop and call futex again.

	runtime·prints("futexwakeup addr=");
	runtime·printpointer(addr);
	runtime·prints(" returned ");
	runtime·printint(ret);
	runtime·prints("\n");
	*(int32*)0x1006 = 0x1006;
}


// Lock and unlock.
//
// The lock state is a single 32-bit word that holds
// a 31-bit count of threads waiting for the lock
// and a single bit (the low bit) saying whether the lock is held.
// The uncontended case runs entirely in user space.
// When contention is detected, we defer to the kernel (futex).
//
// A reminder: compare-and-swap runtime·cas(addr, old, new) does
//	if(*addr == old) { *addr = new; return 1; }
//	else return 0;
// but atomically.

static void
futexlock(Lock *l)
{
	uint32 v;

again:
	v = l->key;
	if((v&1) == 0){
		if(runtime·cas(&l->key, v, v|1)){
			// Lock wasn't held; we grabbed it.
			return;
		}
		goto again;
	}

	// Lock was held; try to add ourselves to the waiter count.
	if(!runtime·cas(&l->key, v, v+2))
		goto again;

	// We're accounted for, now sleep in the kernel.
	//
	// We avoid the obvious lock/unlock race because
	// the kernel won't put us to sleep if l->key has
	// changed underfoot and is no longer v+2.
	//
	// We only really care that (v&1) == 1 (the lock is held),
	// and in fact there is a futex variant that could
	// accomodate that check, but let's not get carried away.)
	futexsleep(&l->key, v+2);

	// We're awake: remove ourselves from the count.
	for(;;){
		v = l->key;
		if(v < 2)
			runtime·throw("bad lock key");
		if(runtime·cas(&l->key, v, v-2))
			break;
	}

	// Try for the lock again.
	goto again;
}

static void
futexunlock(Lock *l)
{
	uint32 v;

	// Atomically get value and clear lock bit.
again:
	v = l->key;
	if((v&1) == 0)
		runtime·throw("unlock of unlocked lock");
	if(!runtime·cas(&l->key, v, v&~1))
		goto again;

	// If there were waiters, wake one.
	if(v & ~1)
		futexwakeup(&l->key);
}

void
runtime·lock(Lock *l)
{
	if(m->locks < 0)
		runtime·throw("lock count");
	m->locks++;
	futexlock(l);
}

void
runtime·unlock(Lock *l)
{
	m->locks--;
	if(m->locks < 0)
		runtime·throw("lock count");
	futexunlock(l);
}

void
runtime·destroylock(Lock*)
{
}


// One-time notifications.
//
// Since the lock/unlock implementation already
// takes care of sleeping in the kernel, we just reuse it.
// (But it's a weird use, so it gets its own interface.)
//
// We use a lock to represent the event:
// unlocked == event has happened.
// Thus the lock starts out locked, and to wait for the
// event you try to lock the lock.  To signal the event,
// you unlock the lock.

void
runtime·noteclear(Note *n)
{
	n->lock.key = 0;	// memset(n, 0, sizeof *n)
	futexlock(&n->lock);
}

void
runtime·notewakeup(Note *n)
{
	futexunlock(&n->lock);
}

void
runtime·notesleep(Note *n)
{
	futexlock(&n->lock);
	futexunlock(&n->lock);	// Let other sleepers find out too.
}


// Clone, the Linux rfork.
enum
{
	CLONE_VM = 0x100,
	CLONE_FS = 0x200,
	CLONE_FILES = 0x400,
	CLONE_SIGHAND = 0x800,
	CLONE_PTRACE = 0x2000,
	CLONE_VFORK = 0x4000,
	CLONE_PARENT = 0x8000,
	CLONE_THREAD = 0x10000,
	CLONE_NEWNS = 0x20000,
	CLONE_SYSVSEM = 0x40000,
	CLONE_SETTLS = 0x80000,
	CLONE_PARENT_SETTID = 0x100000,
	CLONE_CHILD_CLEARTID = 0x200000,
	CLONE_UNTRACED = 0x800000,
	CLONE_CHILD_SETTID = 0x1000000,
	CLONE_STOPPED = 0x2000000,
	CLONE_NEWUTS = 0x4000000,
	CLONE_NEWIPC = 0x8000000,
};

void
runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
	int32 ret;
	int32 flags;

	/*
	 * note: strace gets confused if we use CLONE_PTRACE here.
	 */
	flags = CLONE_VM	/* share memory */
		| CLONE_FS	/* share cwd, etc */
		| CLONE_FILES	/* share fd table */
		| CLONE_SIGHAND	/* share sig handler table */
		| CLONE_THREAD	/* revisit - okay for now */
		;

	m->tls[0] = m->id;	// so 386 asm can find it
	if(0){
		runtime·printf("newosproc stk=%p m=%p g=%p fn=%p clone=%p id=%d/%d ostk=%p\n",
			stk, m, g, fn, runtime·clone, m->id, m->tls[0], &m);
	}

	ret = runtime·clone(flags, stk, m, g, fn);

	if(ret < 0)
		*(int32*)123 = 123;
}

void
runtime·osinit(void)
{
}

void
runtime·goenvs(void)
{
	runtime·goenvs_unix();
}

// Called to initialize a new m (including the bootstrap m).
void
runtime·minit(void)
{
	// Initialize signal handling.
	m->gsignal = runtime·malg(32*1024);	// OS X wants >=8K, Linux >=2K
	runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024);
}

void
runtime·sigpanic(void)
{
	switch(g->sig) {
	case SIGBUS:
		if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000)
			runtime·panicstring("invalid memory address or nil pointer dereference");
		runtime·printf("unexpected fault address %p\n", g->sigcode1);
		runtime·throw("fault");
	case SIGSEGV:
		if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000)
			runtime·panicstring("invalid memory address or nil pointer dereference");
		runtime·printf("unexpected fault address %p\n", g->sigcode1);
		runtime·throw("fault");
	case SIGFPE:
		switch(g->sigcode0) {
		case FPE_INTDIV:
			runtime·panicstring("integer divide by zero");
		case FPE_INTOVF:
			runtime·panicstring("integer overflow");
		}
		runtime·panicstring("floating point error");
	}
	runtime·panicstring(runtime·sigtab[g->sig].name);
}