1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See malloc.h for overview.
//
// TODO(rsc): double-check stats.
// TODO(rsc): solve "stack overflow during malloc" problem.
#include "runtime.h"
#include "malloc.h"
#include "defs.h"
MHeap mheap;
MStats mstats;
// Allocate an object of at least size bytes.
// Small objects are allocated from the per-thread cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
void*
malloc(uintptr size)
{
int32 sizeclass;
MCache *c;
uintptr npages;
MSpan *s;
void *v;
uint32 *ref;
if(m->mallocing)
throw("malloc/free - deadlock");
m->mallocing = 1;
if(size == 0)
size = 1;
if(size <= MaxSmallSize) {
// Allocate from mcache free lists.
sizeclass = SizeToClass(size);
size = class_to_size[sizeclass];
c = m->mcache;
v = MCache_Alloc(c, sizeclass, size);
if(v == nil)
throw("out of memory");
mstats.alloc += size;
} else {
// TODO(rsc): Report tracebacks for very large allocations.
// Allocate directly from heap.
npages = size >> PageShift;
if((size & PageMask) != 0)
npages++;
s = MHeap_Alloc(&mheap, npages, 0);
if(s == nil)
throw("out of memory");
mstats.alloc += npages<<PageShift;
v = (void*)(s->start << PageShift);
}
// setup for mark sweep
if(!mlookup(v, nil, nil, &ref)) {
printf("malloc %D; mlookup failed\n", (uint64)size);
throw("malloc mlookup");
}
*ref = RefNone;
m->mallocing = 0;
return v;
}
void*
mallocgc(uintptr size)
{
void *v;
v = malloc(size);
if(mstats.inuse_pages > mstats.next_gc)
gc(0);
return v;
}
// Free the object whose base pointer is v.
void
free(void *v)
{
int32 sizeclass, size;
uintptr page, tmp;
MSpan *s;
MCache *c;
uint32 *ref;
if(v == nil)
return;
if(m->mallocing)
throw("malloc/free - deadlock");
m->mallocing = 1;
if(!mlookup(v, nil, nil, &ref))
throw("free mlookup");
*ref = RefFree;
// Find size class for v.
page = (uintptr)v >> PageShift;
sizeclass = MHeapMapCache_GET(&mheap.mapcache, page, tmp);
if(sizeclass == 0) {
// Missed in cache.
s = MHeap_Lookup(&mheap, page);
if(s == nil)
throw("free - invalid pointer");
sizeclass = s->sizeclass;
if(sizeclass == 0) {
// Large object.
mstats.alloc -= s->npages<<PageShift;
sys_memclr(v, s->npages<<PageShift);
MHeap_Free(&mheap, s);
goto out;
}
MHeapMapCache_SET(&mheap.mapcache, page, sizeclass);
}
// Small object.
c = m->mcache;
size = class_to_size[sizeclass];
sys_memclr(v, size);
mstats.alloc -= size;
MCache_Free(c, v, sizeclass, size);
out:
m->mallocing = 0;
}
int32
mlookup(void *v, byte **base, uintptr *size, uint32 **ref)
{
uintptr n, nobj, i;
byte *p;
MSpan *s;
s = MHeap_LookupMaybe(&mheap, (uintptr)v>>PageShift);
if(s == nil) {
if(base)
*base = nil;
if(size)
*size = 0;
if(ref)
*ref = 0;
return 0;
}
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
// Large object.
if(base)
*base = p;
if(size)
*size = s->npages<<PageShift;
if(ref)
*ref = &s->gcref0;
return 1;
}
if((byte*)v >= (byte*)s->gcref) {
// pointers into the gc ref counts
// do not count as pointers.
return 0;
}
n = class_to_size[s->sizeclass];
i = ((byte*)v - p)/n;
if(base)
*base = p + i*n;
if(size)
*size = n;
nobj = (s->npages << PageShift) / (n + RefcountOverhead);
if((byte*)s->gcref < p || (byte*)(s->gcref+nobj) > p+(s->npages<<PageShift)) {
printf("odd span state=%d span=%p base=%p sizeclass=%d n=%D size=%D npages=%D\n",
s->state, s, p, s->sizeclass, (uint64)nobj, (uint64)n, (uint64)s->npages);
printf("s->base sizeclass %d v=%p base=%p gcref=%p blocksize=%D nobj=%D size=%D end=%p end=%p\n",
s->sizeclass, v, p, s->gcref, (uint64)s->npages<<PageShift,
(uint64)nobj, (uint64)n, s->gcref + nobj, p+(s->npages<<PageShift));
throw("bad gcref");
}
if(ref)
*ref = &s->gcref[i];
return 1;
}
MCache*
allocmcache(void)
{
return FixAlloc_Alloc(&mheap.cachealloc);
}
void
mallocinit(void)
{
InitSizes();
MHeap_Init(&mheap, SysAlloc);
m->mcache = allocmcache();
// See if it works.
free(malloc(1));
}
void*
SysAlloc(uintptr n)
{
mstats.sys += n;
return sys_mmap(nil, n, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_ANON|MAP_PRIVATE, -1, 0);
}
void
SysUnused(void *v, uintptr n)
{
USED(v);
USED(n);
// TODO(rsc): call madvise MADV_DONTNEED
}
void
SysFree(void *v, uintptr n)
{
USED(v);
USED(n);
// TODO(rsc): call munmap
}
// Runtime stubs.
extern void *oldmal(uint32);
void*
mal(uint32 n)
{
//return oldmal(n);
void *v;
v = mallocgc(n);
if(0) {
byte *p;
uint32 i;
p = v;
for(i=0; i<n; i++) {
if(p[i] != 0) {
printf("mal %d => %p: byte %d is non-zero\n", n, v, i);
throw("mal");
}
}
}
//printf("mal %d %p\n", n, v); // |checkmal to check for overlapping returns.
return v;
}
// Stack allocator uses malloc/free most of the time,
// but if we're in the middle of malloc and need stack,
// we have to do something else to avoid deadlock.
// In that case, we fall back on a fixed-size free-list
// allocator, assuming that inside malloc all the stack
// frames are small, so that all the stack allocations
// will be a single size, the minimum (right now, 5k).
struct {
Lock;
FixAlloc;
} stacks;
void*
stackalloc(uint32 n)
{
void *v;
uint32 *ref;
//return oldmal(n);
if(m->mallocing) {
lock(&stacks);
if(stacks.size == 0)
FixAlloc_Init(&stacks, n, SysAlloc, nil, nil);
if(stacks.size != n) {
printf("stackalloc: in malloc, size=%D want %d", (uint64)stacks.size, n);
throw("stackalloc");
}
v = FixAlloc_Alloc(&stacks);
unlock(&stacks);
return v;
}
v = malloc(n);
if(!mlookup(v, nil, nil, &ref))
throw("stackalloc mlookup");
*ref = RefStack;
return v;
}
void
stackfree(void *v)
{
//return;
if(m->mallocing) {
lock(&stacks);
FixAlloc_Free(&stacks, v);
unlock(&stacks);
return;
}
free(v);
}
|