summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/mgc0.c
blob: 14d485b71b03de22849879aa96ae89d7ea59b2eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector.

#include "runtime.h"
#include "malloc.h"

enum {
	Debug = 0,
	UseCas = 1,
	PtrSize = sizeof(void*),
	
	// Four bits per word (see #defines below).
	wordsPerBitmapWord = sizeof(void*)*8/4,
	bitShift = sizeof(void*)*8/4,
};

// Bits in per-word bitmap.
// #defines because enum might not be able to hold the values.
//
// Each word in the bitmap describes wordsPerBitmapWord words
// of heap memory.  There are 4 bitmap bits dedicated to each heap word,
// so on a 64-bit system there is one bitmap word per 16 heap words.
// The bits in the word are packed together by type first, then by
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
// the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits,
// then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits.
// This layout makes it easier to iterate over the bits of a given type.
//
// The bitmap starts at mheap.arena_start and extends *backward* from
// there.  On a 64-bit system the off'th word in the arena is tracked by
// the off/16+1'th word before mheap.arena_start.  (On a 32-bit system,
// the only difference is that the divisor is 8.)
//
// To pull out the bits corresponding to a given pointer p, we use:
//
//	off = p - (uintptr*)mheap.arena_start;  // word offset
//	b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
//	shift = off % wordsPerBitmapWord
//	bits = *b >> shift;
//	/* then test bits & bitAllocated, bits & bitMarked, etc. */
//
#define bitAllocated		((uintptr)1<<(bitShift*0))
#define bitNoPointers		((uintptr)1<<(bitShift*1))	/* when bitAllocated is set */
#define bitMarked		((uintptr)1<<(bitShift*2))	/* when bitAllocated is set */
#define bitSpecial		((uintptr)1<<(bitShift*3))	/* when bitAllocated is set - has finalizer or being profiled */
#define bitBlockBoundary	((uintptr)1<<(bitShift*1))	/* when bitAllocated is NOT set */

#define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial)

static uint64 nlookup;
static uint64 nsizelookup;
static uint64 naddrlookup;
static int32 gctrace;

typedef struct Workbuf Workbuf;
struct Workbuf
{
	Workbuf *next;
	uintptr nw;
	byte *w[2048-2];
};

extern byte data[];
extern byte etext[];
extern byte end[];

static G *fing;
static Finalizer *finq;
static int32 fingwait;

static void runfinq(void);
static Workbuf* getempty(Workbuf*);
static Workbuf* getfull(Workbuf*);

// scanblock scans a block of n bytes starting at pointer b for references
// to other objects, scanning any it finds recursively until there are no
// unscanned objects left.  Instead of using an explicit recursion, it keeps
// a work list in the Workbuf* structures and loops in the main function
// body.  Keeping an explicit work list is easier on the stack allocator and
// more efficient.
static void
scanblock(byte *b, int64 n)
{
	byte *obj, *arena_start, *p;
	void **vp;
	uintptr size, *bitp, bits, shift, i, j, x, xbits, off;
	MSpan *s;
	PageID k;
	void **bw, **w, **ew;
	Workbuf *wbuf;

	// Memory arena parameters.
	arena_start = runtime·mheap.arena_start;
	
	wbuf = nil;  // current work buffer
	ew = nil;  // end of work buffer
	bw = nil;  // beginning of work buffer
	w = nil;  // current pointer into work buffer

	// Align b to a word boundary.
	off = (uintptr)b & (PtrSize-1);
	if(off != 0) {
		b += PtrSize - off;
		n -= PtrSize - off;
	}

	for(;;) {
		// Each iteration scans the block b of length n, queueing pointers in
		// the work buffer.
		if(Debug > 1)
			runtime·printf("scanblock %p %D\n", b, n);

		vp = (void**)b;
		n /= PtrSize;
		for(i=0; i<n; i++) {
			obj = (byte*)vp[i];
			
			// Words outside the arena cannot be pointers.
			if((byte*)obj < arena_start || (byte*)obj >= runtime·mheap.arena_used)
				continue;
			
			// obj may be a pointer to a live object.
			// Try to find the beginning of the object.
			
			// Round down to word boundary.
			obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));

			// Find bits for this word.
			off = (uintptr*)obj - (uintptr*)arena_start;
			bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
			shift = off % wordsPerBitmapWord;
			xbits = *bitp;
			bits = xbits >> shift;

			// Pointing at the beginning of a block?
			if((bits & (bitAllocated|bitBlockBoundary)) != 0)
				goto found;

			// Pointing just past the beginning?
			// Scan backward a little to find a block boundary.
			for(j=shift; j-->0; ) {
				if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
					obj = (byte*)obj - (shift-j)*PtrSize;
					shift = j;
					bits = xbits>>shift;
					goto found;
				}
			}

			// Otherwise consult span table to find beginning.
			// (Manually inlined copy of MHeap_LookupMaybe.)
			nlookup++;
			naddrlookup++;
			k = (uintptr)obj>>PageShift;
			x = k;
			if(sizeof(void*) == 8)
				x -= (uintptr)arena_start>>PageShift;
			s = runtime·mheap.map[x];
			if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse)
				continue;
			p =  (byte*)((uintptr)s->start<<PageShift);
			if(s->sizeclass == 0) {
				obj = p;
			} else {
				if((byte*)obj >= (byte*)s->limit)
					continue;
				size = runtime·class_to_size[s->sizeclass];
				int32 i = ((byte*)obj - p)/size;
				obj = p+i*size;
			}

			// Now that we know the object header, reload bits.
			off = (uintptr*)obj - (uintptr*)arena_start;
			bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
			shift = off % wordsPerBitmapWord;
			xbits = *bitp;
			bits = xbits >> shift;

		found:
			// Now we have bits, bitp, and shift correct for
			// obj pointing at the base of the object.
			// If not allocated or already marked, done.
			if((bits & bitAllocated) == 0 || (bits & bitMarked) != 0)
				continue;
			*bitp |= bitMarked<<shift;

			// If object has no pointers, don't need to scan further.
			if((bits & bitNoPointers) != 0)
				continue;

			// If buffer is full, get a new one.
			if(w >= ew) {
				wbuf = getempty(wbuf);
				bw = wbuf->w;
				w = bw;
				ew = bw + nelem(wbuf->w);
			}
			*w++ = obj;
		}
		
		// Done scanning [b, b+n).  Prepare for the next iteration of
		// the loop by setting b and n to the parameters for the next block.

		// Fetch b from the work buffers.
		if(w <= bw) {
			// Emptied our buffer: refill.
			wbuf = getfull(wbuf);
			if(wbuf == nil)
				break;
			bw = wbuf->w;
			ew = wbuf->w + nelem(wbuf->w);
			w = bw+wbuf->nw;
		}
		b = *--w;
	
		// Figure out n = size of b.  Start by loading bits for b.
		off = (uintptr*)b - (uintptr*)arena_start;
		bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
		shift = off % wordsPerBitmapWord;
		xbits = *bitp;
		bits = xbits >> shift;
		
		// Might be small; look for nearby block boundary.
		// A block boundary is marked by either bitBlockBoundary
		// or bitAllocated being set (see notes near their definition).
		enum {
			boundary = bitBlockBoundary|bitAllocated
		};
		// Look for a block boundary both after and before b
		// in the same bitmap word.
		//
		// A block boundary j words after b is indicated by
		//	bits>>j & boundary
		// assuming shift+j < bitShift.  (If shift+j >= bitShift then
		// we'll be bleeding other bit types like bitMarked into our test.)
		// Instead of inserting the conditional shift+j < bitShift into the loop,
		// we can let j range from 1 to bitShift as long as we first
		// apply a mask to keep only the bits corresponding
		// to shift+j < bitShift aka j < bitShift-shift.
		bits &= (boundary<<(bitShift-shift)) - boundary;
		
		// A block boundary j words before b is indicated by
		//	xbits>>(shift-j) & boundary
		// (assuming shift >= j).  There is no cleverness here
		// avoid the test, because when j gets too large the shift
		// turns negative, which is undefined in C.		

		for(j=1; j<bitShift; j++) {
			if(((bits>>j)&boundary) != 0 || shift>=j && ((xbits>>(shift-j))&boundary) != 0) {
				n = j*PtrSize;
				goto scan;
			}
		}
		
		// Fall back to asking span about size class.
		// (Manually inlined copy of MHeap_Lookup.)
		nlookup++;
		nsizelookup++;
		x = (uintptr)b>>PageShift;
		if(sizeof(void*) == 8)
			x -= (uintptr)arena_start>>PageShift;
		s = runtime·mheap.map[x];
		if(s->sizeclass == 0)
			n = s->npages<<PageShift;
		else
			n = runtime·class_to_size[s->sizeclass];
	scan:;
	}
}

static struct {
	Workbuf	*full;
	Workbuf	*empty;
	byte	*chunk;
	uintptr	nchunk;
} work;

// Get an empty work buffer off the work.empty list,
// allocating new buffers as needed.
static Workbuf*
getempty(Workbuf *b)
{
	if(b != nil) {
		b->nw = nelem(b->w);
		b->next = work.full;
		work.full = b;
	}
	b = work.empty;
	if(b != nil) {
		work.empty = b->next;
		return b;
	}
	
	if(work.nchunk < sizeof *b) {
		work.nchunk = 1<<20;
		work.chunk = runtime·SysAlloc(work.nchunk);
	}
	b = (Workbuf*)work.chunk;
	work.chunk += sizeof *b;
	work.nchunk -= sizeof *b;
	return b;
}

// Get a full work buffer off the work.full list, or return nil.
static Workbuf*
getfull(Workbuf *b)
{
	if(b != nil) {
		b->nw = 0;
		b->next = work.empty;
		work.empty = b;
	}
	b = work.full;
	if(b != nil)
		work.full = b->next;
	return b;
}

// Scanstack calls scanblock on each of gp's stack segments.
static void
scanstack(G *gp)
{
	Stktop *stk;
	byte *sp;

	if(gp == g)
		sp = (byte*)&gp;
	else
		sp = gp->sched.sp;
	if(Debug > 1)
		runtime·printf("scanstack %d %p\n", gp->goid, sp);
	stk = (Stktop*)gp->stackbase;
	while(stk) {
		scanblock(sp, (byte*)stk - sp);
		sp = stk->gobuf.sp;
		stk = (Stktop*)stk->stackbase;
	}
}

// Markfin calls scanblock on the blocks that have finalizers:
// the things pointed at cannot be freed until the finalizers have run.
static void
markfin(void *v)
{
	uintptr size;

	size = 0;
	if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v))
		runtime·throw("mark - finalizer inconsistency");

	// do not mark the finalizer block itself.  just mark the things it points at.
	scanblock(v, size);
}

// Mark 
static void
mark(void)
{
	G *gp;

	// mark data+bss.
	// skip runtime·mheap itself, which has no interesting pointers
	// and is mostly zeroed and would not otherwise be paged in.
	scanblock(data, (byte*)&runtime·mheap - data);
	scanblock((byte*)(&runtime·mheap+1), end - (byte*)(&runtime·mheap+1));

	// mark stacks
	for(gp=runtime·allg; gp!=nil; gp=gp->alllink) {
		switch(gp->status){
		default:
			runtime·printf("unexpected G.status %d\n", gp->status);
			runtime·throw("mark - bad status");
		case Gdead:
			break;
		case Grunning:
			if(gp != g)
				runtime·throw("mark - world not stopped");
			scanstack(gp);
			break;
		case Grunnable:
		case Gsyscall:
		case Gwaiting:
			scanstack(gp);
			break;
		}
	}

	// mark things pointed at by objects with finalizers
	runtime·walkfintab(markfin);
}

// Sweep frees or calls finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
static void
sweep(void)
{
	MSpan *s;
	int32 cl, n, npages;
	uintptr size;
	byte *p;
	MCache *c;
	Finalizer *f;

	for(s = runtime·mheap.allspans; s != nil; s = s->allnext) {
		if(s->state != MSpanInUse)
			continue;

		p = (byte*)(s->start << PageShift);
		cl = s->sizeclass;
		if(cl == 0) {
			size = s->npages<<PageShift;
			n = 1;
		} else {
			// Chunk full of small blocks.
			size = runtime·class_to_size[cl];
			npages = runtime·class_to_allocnpages[cl];
			n = (npages << PageShift) / size;
		}
	
		// sweep through n objects of given size starting at p.
		for(; n > 0; n--, p += size) {
			uintptr off, *bitp, shift, bits;

			off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start;
			bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
			shift = off % wordsPerBitmapWord;
			bits = *bitp>>shift;

			if((bits & bitAllocated) == 0)
				continue;

			if((bits & bitMarked) != 0) {
				*bitp &= ~(bitMarked<<shift);
				continue;
			}

			if((bits & bitSpecial) != 0) {
				// Special means it has a finalizer or is being profiled.
				f = runtime·getfinalizer(p, 1);
				if(f != nil) {
					f->arg = p;
					f->next = finq;
					finq = f;
					continue;
				}
				runtime·MProf_Free(p, size);
			}

			// Mark freed; restore block boundary bit.
			*bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);

			if(s->sizeclass == 0) {
				// Free large span.
				runtime·unmarkspan(p, 1<<PageShift);
				*(uintptr*)p = 1;	// needs zeroing
				runtime·MHeap_Free(&runtime·mheap, s, 1);
			} else {
				// Free small object.
				c = m->mcache;
				if(size > sizeof(uintptr))
					((uintptr*)p)[1] = 1;	// mark as "needs to be zeroed"
				mstats.by_size[s->sizeclass].nfree++;
				runtime·MCache_Free(c, p, s->sizeclass, size);
			}
			mstats.alloc -= size;
			mstats.nfree++;
		}
	}
}

// Semaphore, not Lock, so that the goroutine
// reschedules when there is contention rather
// than spinning.
static uint32 gcsema = 1;

// Initialized from $GOGC.  GOGC=off means no gc.
//
// Next gc is after we've allocated an extra amount of
// memory proportional to the amount already in use.
// If gcpercent=100 and we're using 4M, we'll gc again
// when we get to 8M.  This keeps the gc cost in linear
// proportion to the allocation cost.  Adjusting gcpercent
// just changes the linear constant (and also the amount of
// extra memory used).
static int32 gcpercent = -2;

static void
stealcache(void)
{
	M *m;
	
	for(m=runtime·allm; m; m=m->alllink)
		runtime·MCache_ReleaseAll(m->mcache);
}

static void
cachestats(void)
{
	M *m;
	MCache *c;

	for(m=runtime·allm; m; m=m->alllink) {
		c = m->mcache;
		mstats.heap_alloc += c->local_alloc;
		c->local_alloc = 0;
		mstats.heap_objects += c->local_objects;
		c->local_objects = 0;
	}
}

void
runtime·gc(int32 force)
{
	int64 t0, t1, t2, t3;
	uint64 heap0, heap1, obj0, obj1;
	byte *p;
	Finalizer *fp;

	// The gc is turned off (via enablegc) until
	// the bootstrap has completed.
	// Also, malloc gets called in the guts
	// of a number of libraries that might be
	// holding locks.  To avoid priority inversion
	// problems, don't bother trying to run gc
	// while holding a lock.  The next mallocgc
	// without a lock will do the gc instead.
	if(!mstats.enablegc || m->locks > 0 || runtime·panicking)
		return;

	if(gcpercent == -2) {	// first time through
		p = runtime·getenv("GOGC");
		if(p == nil || p[0] == '\0')
			gcpercent = 100;
		else if(runtime·strcmp(p, (byte*)"off") == 0)
			gcpercent = -1;
		else
			gcpercent = runtime·atoi(p);
		
		p = runtime·getenv("GOGCTRACE");
		if(p != nil)
			gctrace = runtime·atoi(p);
	}
	if(gcpercent < 0)
		return;

	runtime·semacquire(&gcsema);
	if(!force && mstats.heap_alloc < mstats.next_gc) {
		runtime·semrelease(&gcsema);
		return;
	}

	t0 = runtime·nanotime();
	nlookup = 0;
	nsizelookup = 0;
	naddrlookup = 0;

	m->gcing = 1;
	runtime·stoptheworld();
	if(runtime·mheap.Lock.key != 0)
		runtime·throw("runtime·mheap locked during gc");

	cachestats();
	heap0 = mstats.heap_alloc;
	obj0 = mstats.nmalloc - mstats.nfree;

	mark();
	t1 = runtime·nanotime();
	sweep();
	t2 = runtime·nanotime();
	stealcache();

	mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
	m->gcing = 0;

	m->locks++;	// disable gc during the mallocs in newproc
	fp = finq;
	if(fp != nil) {
		// kick off or wake up goroutine to run queued finalizers
		if(fing == nil)
			fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc);
		else if(fingwait) {
			fingwait = 0;
			runtime·ready(fing);
		}
	}
	m->locks--;

	cachestats();
	heap1 = mstats.heap_alloc;
	obj1 = mstats.nmalloc - mstats.nfree;

	t3 = runtime·nanotime();
	mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0;
	mstats.pause_total_ns += t3 - t0;
	mstats.numgc++;
	if(mstats.debuggc)
		runtime·printf("pause %D\n", t3-t0);
	
	if(gctrace) {
		runtime·printf("gc%d: %D+%D+%D ms %D -> %D MB %D -> %D (%D-%D) objects %D pointer lookups (%D size, %D addr)\n",
			mstats.numgc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000,
			heap0>>20, heap1>>20, obj0, obj1,
			mstats.nmalloc, mstats.nfree,
			nlookup, nsizelookup, naddrlookup);
	}

	runtime·semrelease(&gcsema);
	runtime·starttheworld();
	
	// give the queued finalizers, if any, a chance to run
	if(fp != nil)
		runtime·gosched();
	
	if(gctrace > 1 && !force)
		runtime·gc(1);
}

static void
runfinq(void)
{
	Finalizer *f, *next;
	byte *frame;

	for(;;) {
		// There's no need for a lock in this section
		// because it only conflicts with the garbage
		// collector, and the garbage collector only
		// runs when everyone else is stopped, and
		// runfinq only stops at the gosched() or
		// during the calls in the for loop.
		f = finq;
		finq = nil;
		if(f == nil) {
			fingwait = 1;
			g->status = Gwaiting;
			runtime·gosched();
			continue;
		}
		for(; f; f=next) {
			next = f->next;
			frame = runtime·mal(sizeof(uintptr) + f->nret);
			*(void**)frame = f->arg;
			reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret);
			runtime·free(frame);
			f->fn = nil;
			f->arg = nil;
			f->next = nil;
			runtime·free(f);
		}
		runtime·gc(1);	// trigger another gc to clean up the finalized objects, if possible
	}
}

// mark the block at v of size n as allocated.
// If noptr is true, mark it as having no pointers.
void
runtime·markallocated(void *v, uintptr n, bool noptr)
{
	uintptr *b, obits, bits, off, shift;

	if(0)
		runtime·printf("markallocated %p+%p\n", v, n);

	if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
		runtime·throw("markallocated: bad pointer");

	off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;  // word offset
	b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
	shift = off % wordsPerBitmapWord;

	for(;;) {
		obits = *b;
		bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift);
		if(noptr)
			bits |= bitNoPointers<<shift;
		if(runtime·gomaxprocs == 1) {
			*b = bits;
			break;
		} else {
			// gomaxprocs > 1: use atomic op
			if(runtime·casp((void**)b, (void*)obits, (void*)bits))
				break;
		}
	}
}

// mark the block at v of size n as freed.
void
runtime·markfreed(void *v, uintptr n)
{
	uintptr *b, obits, bits, off, shift;

	if(0)
		runtime·printf("markallocated %p+%p\n", v, n);

	if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
		runtime·throw("markallocated: bad pointer");

	off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;  // word offset
	b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
	shift = off % wordsPerBitmapWord;

	for(;;) {
		obits = *b;
		bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
		if(runtime·gomaxprocs == 1) {
			*b = bits;
			break;
		} else {
			// gomaxprocs > 1: use atomic op
			if(runtime·casp((void**)b, (void*)obits, (void*)bits))
				break;
		}
	}
}

// check that the block at v of size n is marked freed.
void
runtime·checkfreed(void *v, uintptr n)
{
	uintptr *b, bits, off, shift;

	if(!runtime·checking)
		return;

	if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
		return;	// not allocated, so okay

	off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;  // word offset
	b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
	shift = off % wordsPerBitmapWord;

	bits = *b>>shift;
	if((bits & bitAllocated) != 0) {
		runtime·printf("checkfreed %p+%p: off=%p have=%p\n",
			v, n, off, bits & bitMask);
		runtime·throw("checkfreed: not freed");
	}
}

// mark the span of memory at v as having n blocks of the given size.
// if leftover is true, there is left over space at the end of the span.
void
runtime·markspan(void *v, uintptr size, uintptr n, bool leftover)
{
	uintptr *b, off, shift;
	byte *p;

	if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
		runtime·throw("markspan: bad pointer");

	p = v;
	if(leftover)	// mark a boundary just past end of last block too
		n++;
	for(; n-- > 0; p += size) {
		// Okay to use non-atomic ops here, because we control
		// the entire span, and each bitmap word has bits for only
		// one span, so no other goroutines are changing these
		// bitmap words.
		off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start;  // word offset
		b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
		shift = off % wordsPerBitmapWord;
		*b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift);
	}
}

// unmark the span of memory at v of length n bytes.
void
runtime·unmarkspan(void *v, uintptr n)
{
	uintptr *p, *b, off;

	if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
		runtime·throw("markspan: bad pointer");

	p = v;
	off = p - (uintptr*)runtime·mheap.arena_start;  // word offset
	if(off % wordsPerBitmapWord != 0)
		runtime·throw("markspan: unaligned pointer");
	b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
	n /= PtrSize;
	if(n%wordsPerBitmapWord != 0)
		runtime·throw("unmarkspan: unaligned length");
	// Okay to use non-atomic ops here, because we control
	// the entire span, and each bitmap word has bits for only
	// one span, so no other goroutines are changing these
	// bitmap words.
	n /= wordsPerBitmapWord;
	while(n-- > 0)
		*b-- = 0;
}

bool
runtime·blockspecial(void *v)
{
	uintptr *b, off, shift;

	off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;
	b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
	shift = off % wordsPerBitmapWord;

	return (*b & (bitSpecial<<shift)) != 0;
}

void
runtime·setblockspecial(void *v)
{
	uintptr *b, off, shift, bits, obits;

	off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start;
	b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
	shift = off % wordsPerBitmapWord;

	for(;;) {
		obits = *b;
		bits = obits | (bitSpecial<<shift);
		if(runtime·gomaxprocs == 1) {
			*b = bits;
			break;
		} else {
			// gomaxprocs > 1: use atomic op
			if(runtime·casp((void**)b, (void*)obits, (void*)bits))
				break;
		}
	}
}
 
void
runtime·MHeap_MapBits(MHeap *h)
{
	// Caller has added extra mappings to the arena.
	// Add extra mappings of bitmap words as needed.
	// We allocate extra bitmap pieces in chunks of bitmapChunk.
	enum {
		bitmapChunk = 8192
	};
	uintptr n;
	
	n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
	n = (n+bitmapChunk-1) & ~(bitmapChunk-1);
	if(h->bitmap_mapped >= n)
		return;

	runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped);
	h->bitmap_mapped = n;
}