1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc small size classes.
//
// See malloc.h for overview.
//
// The size classes are chosen so that rounding an allocation
// request up to the next size class wastes at most 12.5% (1.125x).
//
// Each size class has its own page count that gets allocated
// and chopped up when new objects of the size class are needed.
// That page count is chosen so that chopping up the run of
// pages into objects of the given size wastes at most 12.5% (1.125x)
// of the memory. It is not necessary that the cutoff here be
// the same as above.
//
// The two sources of waste multiply, so the worst possible case
// for the above constraints would be that allocations of some
// size might have a 26.6% (1.266x) overhead.
// In practice, only one of the wastes comes into play for a
// given size (sizes < 512 waste mainly on the round-up,
// sizes > 512 waste mainly on the page chopping).
//
// TODO(rsc): Compute max waste for any given size.
#include "runtime.h"
#include "malloc.h"
int32 class_to_size[NumSizeClasses];
int32 class_to_allocnpages[NumSizeClasses];
int32 class_to_transfercount[NumSizeClasses];
// The SizeToClass lookup is implemented using two arrays,
// one mapping sizes <= 1024 to their class and one mapping
// sizes >= 1024 and <= MaxSmallSize to their class.
// All objects are 8-aligned, so the first array is indexed by
// the size divided by 8 (rounded up). Objects >= 1024 bytes
// are 128-aligned, so the second array is indexed by the
// size divided by 128 (rounded up). The arrays are filled in
// by InitSizes.
static int32 size_to_class8[1024/8 + 1];
static int32 size_to_class128[(MaxSmallSize-1024)/128 + 1];
int32
SizeToClass(int32 size)
{
if(size > MaxSmallSize)
throw("SizeToClass - invalid size");
if(size > 1024-8)
return size_to_class128[(size-1024+127) >> 7];
return size_to_class8[(size+7)>>3];
}
void
InitSizes(void)
{
int32 align, sizeclass, size, osize, nextsize, n;
uint32 i;
uintptr allocsize, npages;
// Initialize the class_to_size table (and choose class sizes in the process).
class_to_size[0] = 0;
sizeclass = 1; // 0 means no class
align = 8;
for(size = align; size <= MaxSmallSize; size += align) {
if((size&(size-1)) == 0) { // bump alignment once in a while
if(size >= 2048)
align = 256;
else if(size >= 128)
align = size / 8;
else if(size >= 16)
align = 16; // required for x86 SSE instructions, if we want to use them
}
if((align&(align-1)) != 0)
throw("InitSizes - bug");
// Make the allocnpages big enough that
// the leftover is less than 1/8 of the total,
// so wasted space is at most 12.5%.
allocsize = PageSize;
osize = size + RefcountOverhead;
while(allocsize%osize > (allocsize/8))
allocsize += PageSize;
npages = allocsize >> PageShift;
// If the previous sizeclass chose the same
// allocation size and fit the same number of
// objects into the page, we might as well
// use just this size instead of having two
// different sizes.
if(sizeclass > 1
&& npages == class_to_allocnpages[sizeclass-1]
&& allocsize/osize == allocsize/(class_to_size[sizeclass-1]+RefcountOverhead)) {
class_to_size[sizeclass-1] = size;
continue;
}
class_to_allocnpages[sizeclass] = npages;
class_to_size[sizeclass] = size;
sizeclass++;
}
if(sizeclass != NumSizeClasses) {
printf("sizeclass=%d NumSizeClasses=%d\n", sizeclass, NumSizeClasses);
throw("InitSizes - bad NumSizeClasses");
}
// Initialize the size_to_class tables.
nextsize = 0;
for (sizeclass = 1; sizeclass < NumSizeClasses; sizeclass++) {
for(; nextsize < 1024 && nextsize <= class_to_size[sizeclass]; nextsize+=8)
size_to_class8[nextsize/8] = sizeclass;
if(nextsize >= 1024)
for(; nextsize <= class_to_size[sizeclass]; nextsize += 128)
size_to_class128[(nextsize-1024)/128] = sizeclass;
}
// Double-check SizeToClass.
if(0) {
for(n=0; n < MaxSmallSize; n++) {
sizeclass = SizeToClass(n);
if(sizeclass < 1 || sizeclass >= NumSizeClasses || class_to_size[sizeclass] < n) {
printf("size=%d sizeclass=%d class_to_size=%d\n", n, sizeclass, class_to_size[sizeclass]);
printf("incorrect SizeToClass");
goto dump;
}
if(sizeclass > 1 && class_to_size[sizeclass-1] >= n) {
printf("size=%d sizeclass=%d class_to_size=%d\n", n, sizeclass, class_to_size[sizeclass]);
printf("SizeToClass too big");
goto dump;
}
}
}
// Copy out for statistics table.
for(i=0; i<nelem(class_to_size); i++)
mstats.by_size[i].size = class_to_size[i];
// Initialize the class_to_transfercount table.
for(sizeclass = 1; sizeclass < NumSizeClasses; sizeclass++) {
n = 64*1024 / class_to_size[sizeclass];
if(n < 2)
n = 2;
if(n > 32)
n = 32;
class_to_transfercount[sizeclass] = n;
}
return;
dump:
if(1){
printf("NumSizeClasses=%d\n", NumSizeClasses);
printf("class_to_size:");
for(sizeclass=0; sizeclass<NumSizeClasses; sizeclass++)
printf(" %d", class_to_size[sizeclass]);
printf("\n\n");
printf("size_to_class8:");
for(i=0; i<nelem(size_to_class8); i++)
printf(" %d=>%d(%d)\n", i*8, size_to_class8[i], class_to_size[size_to_class8[i]]);
printf("\n");
printf("size_to_class128:");
for(i=0; i<nelem(size_to_class128); i++)
printf(" %d=>%d(%d)\n", i*128, size_to_class128[i], class_to_size[size_to_class128[i]]);
printf("\n");
}
throw("InitSizes failed");
}
|