summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/os_netbsd.c
blob: a49dca295d65d8b2cc1c7a52413121a771d3fb95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
#include "../../cmd/ld/textflag.h"

enum
{
	ESRCH = 3,
	ENOTSUP = 91,

	// From NetBSD's <sys/time.h>
	CLOCK_REALTIME = 0,
	CLOCK_VIRTUAL = 1,
	CLOCK_PROF = 2,
	CLOCK_MONOTONIC = 3
};

extern SigTab runtime·sigtab[];

static Sigset sigset_none;
static Sigset sigset_all = { ~(uint32)0, ~(uint32)0, ~(uint32)0, ~(uint32)0, };

extern void runtime·getcontext(UcontextT *context);
extern int32 runtime·lwp_create(UcontextT *context, uintptr flags, void *lwpid);
extern void runtime·lwp_mcontext_init(void *mc, void *stack, M *mp, G *gp, void (*fn)(void));
extern int32 runtime·lwp_park(Timespec *abstime, int32 unpark, void *hint, void *unparkhint);
extern int32 runtime·lwp_unpark(int32 lwp, void *hint);
extern int32 runtime·lwp_self(void);

// From NetBSD's <sys/sysctl.h>
#define	CTL_HW	6
#define	HW_NCPU	3

static int32
getncpu(void)
{
	uint32 mib[2];
	uint32 out;
	int32 ret;
	uintptr nout;

	// Fetch hw.ncpu via sysctl.
	mib[0] = CTL_HW;
	mib[1] = HW_NCPU;
	nout = sizeof out;
	out = 0;
	ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
	if(ret >= 0)
		return out;
	else
		return 1;
}

uintptr
runtime·semacreate(void)
{
	return 1;
}

#pragma textflag NOSPLIT
int32
runtime·semasleep(int64 ns)
{
	Timespec ts;

	// spin-mutex lock
	while(runtime·xchg(&m->waitsemalock, 1))
		runtime·osyield();

	for(;;) {
		// lock held
		if(m->waitsemacount == 0) {
			// sleep until semaphore != 0 or timeout.
			// thrsleep unlocks m->waitsemalock.
			if(ns < 0) {
				// TODO(jsing) - potential deadlock!
				//
				// There is a potential deadlock here since we
				// have to release the waitsemalock mutex
				// before we call lwp_park() to suspend the
				// thread. This allows another thread to
				// release the lock and call lwp_unpark()
				// before the thread is actually suspended.
				// If this occurs the current thread will end
				// up sleeping indefinitely. Unfortunately
				// the NetBSD kernel does not appear to provide
				// a mechanism for unlocking the userspace
				// mutex once the thread is actually parked.
				runtime·atomicstore(&m->waitsemalock, 0);
				runtime·lwp_park(nil, 0, &m->waitsemacount, nil);
			} else {
				ns = ns + runtime·nanotime();
				// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
				ts.tv_nsec = 0;
				ts.tv_sec = runtime·timediv(ns, 1000000000, (int32*)&ts.tv_nsec);
				// TODO(jsing) - potential deadlock!
				// See above for details.
				runtime·atomicstore(&m->waitsemalock, 0);
				runtime·lwp_park(&ts, 0, &m->waitsemacount, nil);
			}
			// reacquire lock
			while(runtime·xchg(&m->waitsemalock, 1))
				runtime·osyield();
		}

		// lock held (again)
		if(m->waitsemacount != 0) {
			// semaphore is available.
			m->waitsemacount--;
			// spin-mutex unlock
			runtime·atomicstore(&m->waitsemalock, 0);
			return 0;  // semaphore acquired
		}

		// semaphore not available.
		// if there is a timeout, stop now.
		// otherwise keep trying.
		if(ns >= 0)
			break;
	}

	// lock held but giving up
	// spin-mutex unlock
	runtime·atomicstore(&m->waitsemalock, 0);
	return -1;
}

void
runtime·semawakeup(M *mp)
{
	uint32 ret;

	// spin-mutex lock
	while(runtime·xchg(&mp->waitsemalock, 1))
		runtime·osyield();
	mp->waitsemacount++;
	// TODO(jsing) - potential deadlock, see semasleep() for details.
	// Confirm that LWP is parked before unparking...
	ret = runtime·lwp_unpark(mp->procid, &mp->waitsemacount);
	if(ret != 0 && ret != ESRCH)
		runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret);
	// spin-mutex unlock
	runtime·atomicstore(&mp->waitsemalock, 0);
}

void
runtime·newosproc(M *mp, void *stk)
{
	UcontextT uc;
	int32 ret;

	if(0) {
		runtime·printf(
			"newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
			stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
	}

	mp->tls[0] = mp->id;	// so 386 asm can find it

	runtime·getcontext(&uc);
	
	uc.uc_flags = _UC_SIGMASK | _UC_CPU;
	uc.uc_link = nil;
	uc.uc_sigmask = sigset_all;

	runtime·lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp->g0, runtime·mstart);

	ret = runtime·lwp_create(&uc, 0, &mp->procid);

	if(ret < 0) {
		runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret);
		runtime·throw("runtime.newosproc");
	}
}

void
runtime·osinit(void)
{
	runtime·ncpu = getncpu();
}

void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
	static byte urandom_data[HashRandomBytes];
	int32 fd;
	fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
	if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
		*rnd = urandom_data;
		*rnd_len = HashRandomBytes;
	} else {
		*rnd = nil;
		*rnd_len = 0;
	}
	runtime·close(fd);
}

void
runtime·goenvs(void)
{
	runtime·goenvs_unix();
}

// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
	mp->gsignal = runtime·malg(32*1024);
}

// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
	m->procid = runtime·lwp_self();

	// Initialize signal handling
	runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024);
	runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
}

// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
	runtime·signalstack(nil, 0);
}

void
runtime·sigpanic(void)
{
	switch(g->sig) {
	case SIGBUS:
		if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) {
			if(g->sigpc == 0)
				runtime·panicstring("call of nil func value");
			runtime·panicstring("invalid memory address or nil pointer dereference");
		}
		runtime·printf("unexpected fault address %p\n", g->sigcode1);
		runtime·throw("fault");
	case SIGSEGV:
		if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) {
			if(g->sigpc == 0)
				runtime·panicstring("call of nil func value");
			runtime·panicstring("invalid memory address or nil pointer dereference");
		}
		runtime·printf("unexpected fault address %p\n", g->sigcode1);
		runtime·throw("fault");
	case SIGFPE:
		switch(g->sigcode0) {
		case FPE_INTDIV:
			runtime·panicstring("integer divide by zero");
		case FPE_INTOVF:
			runtime·panicstring("integer overflow");
		}
		runtime·panicstring("floating point error");
	}
	runtime·panicstring(runtime·sigtab[g->sig].name);
}

uintptr
runtime·memlimit(void)
{
	return 0;
}

extern void runtime·sigtramp(void);

typedef struct sigaction {
	union {
		void    (*_sa_handler)(int32);
		void    (*_sa_sigaction)(int32, Siginfo*, void *);
	} _sa_u;			/* signal handler */
	uint32	sa_mask[4];		/* signal mask to apply */
	int32	sa_flags;		/* see signal options below */
} Sigaction;

void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
	Sigaction sa;

	runtime·memclr((byte*)&sa, sizeof sa);
	sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
	if(restart)
		sa.sa_flags |= SA_RESTART;
	sa.sa_mask[0] = ~0U;
	sa.sa_mask[1] = ~0U;
	sa.sa_mask[2] = ~0U;
	sa.sa_mask[3] = ~0U;
	if (fn == runtime·sighandler)
		fn = (void*)runtime·sigtramp;
	sa._sa_u._sa_sigaction = (void*)fn;
	runtime·sigaction(i, &sa, nil);
}

GoSighandler*
runtime·getsig(int32 i)
{
	Sigaction sa;

	runtime·memclr((byte*)&sa, sizeof sa);
	runtime·sigaction(i, nil, &sa);
	if((void*)sa._sa_u._sa_sigaction == runtime·sigtramp)
		return runtime·sighandler;
	return (void*)sa._sa_u._sa_sigaction;
}

void
runtime·signalstack(byte *p, int32 n)
{
	StackT st;

	st.ss_sp = (void*)p;
	st.ss_size = n;
	st.ss_flags = 0;
	if(p == nil)
		st.ss_flags = SS_DISABLE;
	runtime·sigaltstack(&st, nil);
}